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1. Production Planning in Mfg./Rmfg. 
environment  
Because of increasing consumptions, finite resources, and 
disposal capacities, remanufacturing is receiving more attention 
[2]. Remanufacturing is the most important process in recovery: is 
an environmentally and economically sound way to achieve many 
of the goals of sustainable development; closes the material-use 
cycle and forms an essentially closed-loop manufacturing system; 
focuses on value-added recovery, rather than just materials 
recovery, i.e., recycling. Production planning and scheduling of 
remanufacturing should be handled differently from that of 
manufacturing because of high uncertainty of that.  

Clegg et. al. proposed a linear programming model for production 
planning and control in an aggregate manufacturing environment 
[1]. However, they could not suggest a real method to resolve the 
problem.  

In this study, we propose a new method for production planning 
in a hybrid manufacturing system. In the production planning, we 
want to determine the production schedule in mid-term reflecting 
long term planning from sales as well as operation planning. In 
each planning period and in each resource, the production 
quantity and return quantity of used products should be 
determined. We considered multiple products consisting of 
multiple product structures.  

 

2. Solution Methodology 
The kernel of this algorithm schedules parts, subassemblies, 
products levels ,separately, not in a local optimal solution but in a 
global optimal solution. The most movable section of the overall 
schedule is the manufacturing/remanufacturing schedule of a 
part’s level. After one population of GA determines only this 
section, the disassembly/assembly schedule is determined 
according to that schedule. Then, the total cost and fitness 
function value is determined, and through selection, crossover and 
mutation, the optimal solution is obtained. The overall flow of the 
algorithm can be described in figure 1. Next, each process of the 
algorithm is explained, in detail.  
First, decision variables that are represented as the chromosomes 
of GA must be selected. The decision variables for the part level 
will be encoded as chromosomes. But variables for all planning 
periods do not have to be encoded because in some periods, 
workcenters cannot manufacture or remanufacture. In the first two 
periods and last two periods, part level cannot be remanufactured 
because of the time for disassembly and assembly. Similarly, part 
level cannot be manufacturing in the last two periods because 
assembly is not required. 

We generate initial populations. It means that we decide the 
production level for each variable. Once initial populations are 
generated, we can calculate the production quantities, number of 
setups, and the overtime working hours. Overall production 
quantities are divided to each period along initial populations. The 
number of setups for each part should be calculated to extract the 
setup costs. We assume one setup for no production in the earlier 
period but production in the present period. Overtime working 
hours are calculated for each period and each workcenter. If the 
processing time for each workcenter exceeds the capacity of the 
workcenter, the extra time will be calculated as overtime working 
hours. 

Using remanufacturing schedule for part level, we can calculate 
process requirements (PRs) of subassemblies. PR means that if we 
want to remanufacture x item of part p in period t, subassemblies 
as many as required for part p should have been already 
disassembled. PR calculation is done by the following formula. 
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If the PRs are determined, the optimal disassembly plan of 
subassemblies can be solved by linear programming. Because LP 
is used only for subassemblies, many decision variables may not 
be required. 

Similarly, the concept of process provisions (PPs) for an assembly 
plan of subassemblies can be used. PP means that if one decides 
to manufacture or remanufacture x item of a part for subassembly 
p in period t, the number of subassembly p as many as that will be 
produced in period t+1 can be assembled. PPs are calculated by 
the following formula. 
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In the same manner, the optimal assembly plan of subassemblies 
can be solved by linear programming. 
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Figure 1. Overall flow of the algorithm 
After completing the disassembly and assembly plan in 
subassembly level, similar process is applied to end product level. 
Likewise, we can calculate PR and PP and optimize disassembly 
and assembly plan of the end product level. 

Then total costs is calculated. Total costs consist of setup costs of 
part level and overtime costs for each workcenter. Setup cost is 
calculated as (the number of setup)*(setup unit cost). Overtime 
cost is calculated based on calculated overtime working hours. 

We use 1/(total cost) for the fitness function. Based on fitness 
function values of all populations, we certify the termination 
condition of the algorithm. The termination conditions are two 
types. One requires that the average of the fitness function values 
of the present generation is twice that of the first generation. The 
other requires that the total number of generations equals 100. 

If the algorithm doesn’t terminate, selection, crossover and 
mutation of GA evolve the present generation into the next 
generation. Selection is the process that selects high fitness value 
populations among the parent populations. Survival probability of 
each population is normalized by the fitness value. 

Crossover is the process that generates child populations from 
survived parent populations. In this study, 2 parent populations 
are ready and 2 crossover points are randomly generated. Between 
two points, parent populations interchange their genes. As high 
fitness value populations are selected through the selection 
process, child populations with higher fitness values can be 
obtained. Mutation is done to randomly selected genes from each 
population. In 0/1 encoding, mutation changes gene 0 to 1, or 1 to 
0. In case of 0/1/2 encoding, 0 to 1, 1 to 2, or 2 to 0. 

Through the processes, populations of the next generation are 
generated. The algorithm returns and repeats the same processes. 

3. Computational Experiments 
Because this study attempts to solve the problem that has been 
uninvestigated by any other research, our results could not be 
compared. Therefore, we investigated the adequacy of the settings 
for encoding, crossover rate and mutation rate and whether the 
fitness values of the algorithm improve through further 
generations. 

First, we searched the optimal setting combination for a randomly 
generated problem set. That is, the gene encoding method 0-1 or 
0-1-2, crossover rate 0.1 or 0.3, and mutation rate 0.01 or 0.05. 
There are 8 setting combinations for 3 factors. We made an 
experiment on each setting combination and selected the optimal 
setting combination based on the global maximum fitness values 
and trend of the maximum fitness value for each generation.  

Of all results, we can say that the best combination is 0/1/2 
encoding, crossover rate 0.3, and mutation rate 0.01. With these 
settings, we carried out the second experiment. 

Second, we checked if the optimal setting combination obtained 
from first experiment is applicable for other problem sets. The 
combination of 0/1/2 encoding, crossover rate 0.3, and mutation 
rate 0.01 was applied to randomly generated 10 problem sets. Like 
experiment 1, we observed the global maximum fitness values and 
trend of maximum fitness value for each generation and etc. 
Overall, good results were obtained. 
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