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ABSTRACT
In this paper, we incorporate a diversity mechanism to the differen-
tial evolution algorithm to solve constrained optimization problems
without using a penalty function. The aim is twofold: (1) to allow
infeasible solutions with a promising value of the objective function
to remain in the population and also (2) to increase the probabili-
ties of an individual to generate a better offspring while promot-
ing collaboration of all the population to generate better solutions.
These goals are achieved by allowing each parent to generate more
than one offspring. The best offspring is selected using a com-
parison mechanism based on feasibility and this child is compared
against its parent. To maintain diversity, the proposed approach
uses a mechanism successfully adopted with other evolutionary al-
gorithms where, based on a parameter Sr a solution (between the
best offspring and the current parent) with a better value of the ob-
jective function can remain in the population, regardless of its feasi-
bility. The proposed approach is validated using test functions from
a well-known benchmark commonly adopted to validate constraint-
handling techniques used with evolutionary algorithms. The statis-
tical results obtained by the proposed approach are highly com-
petitive (based on quality, robustness and number of evaluations
of the objective function) with respect to other constraint-handling
techniques, either based on differential evolution or on other evo-
lutionary algorithms, that are representative of the state-of-the-art
in the area. Finally, a small set of experiments were made to detect
sensitivity of the approach to its parameters.

Categories and Subject Descriptors: G.1.6 [Mathematics of Com-
puting]: Numerical Analysis– global optimization,constrained op-
timization; J.2 [Computer Applications]: Physical Sciencies and
Engineering– Engineering;

General Terms: Algorithms

Keywords: Global Optimization, Constraint-Handling, Differen-
tial Evolution

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’2005 June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

Evolutionary Algorithms (EAs) are heuristics that have been suc-
cessfully applied in a wide set of areas [2, 17]. However, EAs in
their canonical versions lack a mechanism able to bias efficiently
the search towards the feasible region in constrained search spaces.
This has triggered a considerable amount of research and a wide
variety of approaches have been suggested in the last few years to
incorporate constraints into the fitness function of an evolutionary
algorithm [1, 18].

We are interested in the general nonlinear programming problem
in which we want to: Find �x which optimizes f(�x) subject to:
gi(�x) ≤ 0, i = 1, . . . , n hj(�x) = 0, j = 1, . . . , p where �x is
the vector of solutions �x = [x1, x2, . . . , xr]

T , n is the number of
inequality constraints and p is the number of equality constraints (in
both cases, constraints could be linear or nonlinear). If we denote
with F the feasible region and with S the whole search space, then
it should be clear that F ⊆ S . For an inequality constraint that
satisfies gi(�x) = 0, we will say that is active at �x. All equality
constraints hj (regardless of the value of �x used) are considered
active at all points of F .

The most common approach adopted to deal with constrained
search spaces is the use of penalty functions. When using a penalty
function, the amount of constraint violation is used to punish or
“penalize” an infeasible solution so that feasible solutions are fa-
vored by the selection process. Despite the popularity of penalty
functions, they have several drawbacks from which the main one
is that they require a careful fine tuning of the penalty factors that
accurately estimates the degree of penalization to be applied as to
approach efficiently the feasible region [23, 1].

Differential Evolution (DE) is a relatively new EA proposed by
Price and Storn [19]. The algorithm is based on the use of special
mutation and crossover operators, based on the linear combination
of three different individuals and one subject-to-replacement par-
ent. The selection process is performed via deterministic tourna-
ment selection between the parent and the child created by it. How-
ever, as any other EA, DE in its canonical version lacks a mecha-
nism to deal with constrained search spaces. Therefore, some ap-
proaches have been proposed to incorporate constraint-handling to
DE and they are discussed in the following Section.

We present a first attempt to incorporate a diversity mechanism
(to maintain either feasible and infeasible solutions in the popu-
lation) which proved its effectiveness when used with an evolu-
tion strategy [16] to the DE algorithm. Indeed, we believe that
the search power of other heuristics such as differential evolution
has been underestimated in the specialized literature on constrained
optimization and therefore our interest in analyzing such search
power. The motivation of this work is twofold: (1) to add a diver-
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sity mechanism to maintain infeasible solutions with a good value
of the objective function in the population and (2) to increase the
probability of each parent to create an offspring better than it. In
this way, we will exploit the capabilities of the DE recombination-
mutation operator.

The paper is organized as follows: In Section 2 we describe the
previous work related to the current algorithm. A detailed descrip-
tion of our approach is provided in Section 3. The experiments
performed and the results obtained are shown in Section 4 and in
Section 5 we discuss them. Finally, in Section 6 we establish some
conclusions and we define our future paths of research.

2. PREVIOUS WORK
DE [19] is a population-based evolutionary algorithm with a sim-

ple mutation mechanism and a crossover operator that performs a
linear recombination of a number of individuals (normally three)
and one parent (which is the subject to be replaced) to create one
child. The selection is deterministic between the parent and the
child (i.e., the best of them remains in the next population). DE
shares similarities with traditional EAs. However it does not use
binary encoding as a simple genetic algorithm [4] and it does not
use a probability density function to self-adapt its parameters as an
Evolution Strategy [22].

Some previous approaches have been proposed to solve con-
strained optimization problems using DE. Storn [24] proposed an
adaptive mechanism that relaxes the constraints of the problem in
order to make all the initial solutions feasible. This pseudo-feasible
region is shrunk at each generation until it matches the real feasi-
ble region. Also, Storn [24] proposed to use an aging concept in
order to avoid that a solution remains in the population during too
many generations. Furthermore, he explored the idea of allowing
a solution to generate more than one offspring by modifying the
original DE algorithm in the following way: when a child is cre-
ated and it is not better than the parent subject to be replaced, an-
other child is created. The process is repeated NT times. If the
parent is still better, the parent remains in the population. Both,
the aging parameter and NT are defined by the user. Storn [24]
used a modified “DE/rand/1/bin” version. The approach showed a
good performance in problems with only inequality constraints but
presented problems when dealing with equality constraints. More-
over, only two test functions adopted in this study (out of the seven
used to test the approach) are part of the well-known benchmark
for constrained optimization proposed by Koziel & Michalewicz
[5] and extended by Runarsson & Yao [20].

Lampinen & Zelinka [8, 11, 9, 10] used DE to solve engineering
design problems. They opted to handle constraints using a static
penalty function approach that they called “Soft -constraint”. The
authors tested their approach using three well-known engineering
design problems [8]. They compared their results with respect
to several classical techniques and with respect to some heuristic
methods. The main drawback of the approach is the careful fine-
tuning required for the penalty factors which is in fact mentioned
by the authors in their article.

Yung-Chien and Feng-Sheng [12] proposed an Augmented La-
grangian approach with an adaptive mechanism to update the pe-
nalty parameters. The approach was compared against different
evolutionary-programming-based techniques and the results were
competitive on a set of eleven functions were six of them belong to
the well-known benchmark used to test EAs for constrained opti-
mization [20].

Lampinen [6, 7] also proposed an extended version of the Differ-
ential Evolution algorithm to solve constrained optimization prob-
lems. The approach consists on replacing the original DE selection

scheme, based only on the value of the objective function to be
optimized and where the individual with the best value between
the parent and its offspring is selected. Lampinen’s new selection
scheme [6, 7] is based on feasibility rules similar to those proposed
by Deb [3] using a genetic algorithm as a search engine and a nich-
ing mechanism to maintain diversity. In Deb’s comparison criteria:

• Between 2 feasible solutions, the one with the highest fitness
value wins.

• If one solution is feasible and the other one is infeasible, the
feasible solution wins.

• If both solutions are infeasible, the one with the lowest sum
of constraint violation is preferred.

The difference between Lampinen’s and Deb’s comparison criteria
is that in Lampinen’s approach, when both solutions are infeasible,
the selected solution will be that which Pareto-dominates the other
in the constraints space (instead of using the sum of constraint vio-
lation as the decision criterion). See [6] for details.

Mezura et al. [15] proposed an approach based on DE whose
selection criteria is based also in Deb’s comparison criteria (in-
cluding the sum of constraint violation criterion to choose between
two infeasible solutions). In this case, the DE algorithm was also
modified in a way such that the newly chosen individual could be
re-inserted in the current population (and not only inserted in the
population for the next generation like in the original DE algo-
rithm). The aim is to allow newly better solutions to be selected
as random parents for other offspring in the current generation and
to accelerate convergence. The approach provided good quality re-
sults, but was not consistent (not all runs reached either the best
known or the global optimum solution). In Deb’s approach, as well
as in Lampinen’s and Mezura’s algorithms, feasible solutions are
always considered better than infeasible ones. In fact, they lack a
mechanism to maintain diversity (to have both feasible and infeasi-
ble solutions in the population during all the evolutionary process),
which is one of the most important aspects to consider when de-
signing a competitive constraint-handling approach [14].

3. OUR APPROACH
Our proposed approach uses Storn’s idea of allowing to generate

more than one offspring, but now combining it with a mechanism to
allow infeasible solutions with a good value of the objective func-
tion to remain in the population. This idea is implemented in the
following way: Each solution in the population will generate no

offspring using the mutation and crossover operator of the DE algo-
rithm. The aim is to increase the probability of a parent to generate
a better offspring and also to promote the collaboration of the so-
lutions in the population to generate better offspring. Among these
no offspring we select the best of them, in a deterministic way and
based on the comparison criteria discussed in Section 2. In this
way, we will get either the best feasible offspring (if there are fea-
sible offspring generated) or that offspring whose sum of constraint
violation is the lowest (the nearest individual to the feasible region).
It is worth reminding that we use the version of comparison rules
where, between two infeasible solutions, the sum of constraint vi-
olation is used as criterion [3, 15], and not the version where the
Pareto-dominance in constraints space is used [6]. This decision
was made because there is empirical evidence that using multiob-
jective optimization concepts is not suitable to handle constraints
in global optimization [21, 13]. After this multiple offspring gen-
eration, we use the diversity mechanism proposed in [16] which
allows solutions with a good value of the objective function, re-
gardless of feasibility, to remain in the population. We apply this
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Begin
G=0
Create a random initial population �xi

G ∀i, i = 1, . . . , NP
Evaluate f(�xi

G) ∀i, i = 1, . . . , NP
For G=1 to MAX GENERATIONS Do

F=rand[0.3,0.9]
For i=1 to NP Do

⇒ For k=1 to no Do
Select randomly r1 �= r2 �= r3 �= i
jrand = randint(1, D)
For j=1 to no Do

If (randj[0, 1) < CR or j = jrand) Then
childj = x

r3
j,G + F (x

r1
j,G − x

r2
j,G)

Else
childj = xi

j,G

End If
End For
If k > 1 Then

⇒ If (child is better than �ui
G+1

(based on the three selection criteria)) Then
�ui

G+1=child
End If

Else
�ui

G+1=child
End For

⇒ If flip(Sr ) Then
⇒ If (f(�ui

G+1) ≤ f(�xi
G)) Then

�xi
G+1 = �ui

G+1
Else

�xi
G+1 = �xi

G

End If
Else

⇒ If (�ui
G+1is better than �xi

G

(based on the three selection criteria)) Then
�xi

G+1 = �ui
G+1

Else
�xi

G+1 = �xi
G

End If
End If

End For
G = G + 1

End For
End

Figure 1: Our algorithm. Modified steps with respect
to the original DE algorithm are marked with an arrow.
randint(min,max) returns an integer number between min and
max. rand[0, 1) returns a real number between 0 and 1. Both
with uniform probability distribution. flip(W ) returns 1 with
probability W .

mechanism when comparing the best offspring against its parent in
the following way: Based on the value of a parameter called Sr (se-
lection ratio) the selection will be performed either based only in
the value of the objective function, regardless of feasibility or based
on the aforementioned feasibility rules. Unlike Storn’s approach
[24], we always generate the pre-defined number of offspring in
order to increase the probability of improvement and we do not
use any shrinking mechanism. Besides, our approach is the first
attempt (to the best of our knowledge) to incorporate a diversity
mechanism previously used with other search engines (like evolu-
tion strategies) in order to know the capabilities of sampling of DE
in constrained search spaces. Also, our approach differs of previous
DE-based approaches [6, 15] because none of them has a diversity
mechanism. Note that, when a decision variable value is generated
by the DE operator outside the bounds defined for each variable,
we only generate a random value with uniform distribution inside
the valid bounds. Our proposed version of the DE algorithm, called
Diversity-DE is shown in Figure 1.

Problem n Function ρ LI NI LE NE

g01 13 quadratic 0.0003% 9 0 0 0
g02 20 nonlinear 99.9973% 1 1 0 0
g03 10 nonlinear 0.0026% 0 0 0 1
g04 5 quadratic 27.0079% 0 6 0 0
g05 4 nonlinear 0.0000% 2 0 0 3
g06 2 nonlinear 0.0057% 0 2 0 0
g07 10 quadratic 0.0000% 3 5 0 0
g08 2 nonlinear 0.8581% 0 2 0 0
g09 7 nonlinear 0.5199% 0 4 0 0
g10 8 linear 0.0020% 3 3 0 0
g11 2 quadratic 0.0973% 0 0 0 1
g12 3 quadratic 4.7697% 0 93 0 0
g13 5 nonlinear 0.0000% 0 0 0 3

Table 1: Main features of the 13 test problems chosen. n is
the number of decision variables, and for the constraints LI is
the number of linear inequalities, NI the number of nonlinear
inequalities, LE is the number of linear equalities and NE is
the number of nonlinear equalities. ρ is the ratio between the
feasible region and the whole search space.

4. EXPERIMENTS AND RESULTS
To evaluate the performance of Diversity-DE we used the 13 test

functions described in [20]. The test functions chosen contain char-
acteristics that are representative of what can be considered “diffi-
cult” global optimization problems for an evolutionary algorithm.
Their expressions are presented in an Appendix at the end of this
paper. However, a summary of their main features is presented in
Table 1, where we also show the value of ρ, a metric to estimate
the ratio between the feasible region and the entire search space. It
was computed as follows: ρ = |F |/|S|, where |F | is the number of
feasible solutions and |S| is the total number of solutions randomly
generated. In this work, S = 1, 000, 000 random solutions.

We performed 100 independent runs for each test function. Equal-
ity constraints were transformed into inequalities using a tolerance
value of 0.0001. The parameters used for our CHDE are the fol-
lowing: NP = 90, MAX GENERATIONS = 500 (225,000
evaluations of the objective function), CR = 0.9, no = 5 and
Sr = 0.45. To ensure that there is no sensitivity to the “F” pa-
rameter used to add noise to an individual (i.e., the mutation op-
erator adopted in differential evolution), its value was randomly
generated (using a uniform distribution) per generation between
[0.3, 0.9]. The values of this range were empirically derived. We
observed that this scaling factor worked better when the value was
far from 0 and 1. This indicates that the search direction obtained
by the DE operator is more suitable for the solution of these con-
strained problems when it is calculated using the first individual
and the scaled combination of the second and the third ones almost
with the same percentage. We decided to compare the obtained re-
sults against three types of approaches: (1) the most competitive
approach known to date, (2) the approach based in other EA which
uses a similar diversity mechanism and (3) approaches based on
DE as well. In this way we will know: (1) how competitive is our
approach against the approach whose results are the best, (2) how
well the diversity mechanism works using DE as a search engine
and (3) how competitive is our approach among other DE-based
approaches. We selected as the most competitive approach the im-
proved version of the Stochastic Ranking approach by Runarsson
& Yao [21]. Also, we compared against the Simple Evolution Strat-
egy by Mezura & Coello [16] which uses the same diversity mech-
anism adopted in this work. Finally, we selected three competitive
DE-based approaches previously discussed in Section 2 (the DE
approach with re-insertion by Mezura et al. [15], the Hybrid DE by
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Yung-Chien and Feng-Sheng [12] and the extended DE approach
by Lampinen [6]). The statistical results of these six approaches
(including our proposal) are presented in Table 2. Note that some
results on problems with equality constraints seem to improve the
best known solution or global optimum (this is because the small
tolerance used when transforming the equality constraints into two
inequality constraints). The source code of the approach is avail-
able at: http://www.cs.cinvestav.mx/˜EVOCINV/software.html

5. DISCUSSION OF RESULTS
As can be seen in Table 2 (column 8), our Diversity-DE could

reach the global optimum consistently in 10 of the 13 test func-
tions. The only exceptions were g02, g10 and g13 where the worst
results are, however, very close to the global optimum (or to the
best known solution). Now, we divide our discussion based on the
three types of comparisons performed and described in Section 4.
Discussions based on standard deviation values were omitted be-
cause they were very small and similar in most of the cases and in
others they were not available.

5.1 Diversity-DE Against One of the Most Com-
petitive Approaches

With respect to the improved Stochastic Ranking (ISR) approach
(columns 3 and 8 on Table 2) [21], our approach obtained “bet-
ter” results in problem g02 and “similar” results in the remaining
twelve. It is important to remark that the ISR is the most competi-
tive approach which is able to find the global optimum in every sin-
gle run for each test function, and the performance of our Diversity-
DE is very similar. Furthermore, note that the results provided by
the ISR required 350,000 evaluations of the objective function and
our Diversity-DE only required 225,000 evaluations.

5.2 Diversity-DE Against Diversity-ES
With respect to the Simple Evolution Strategy that uses a similar

diversity mechanism (columns 4 and 8 on Table 2), our Diversity-
DE obtained clearly “better” best, mean and worst results in six
functions (g02, g07, g09, g10 and g13). The Simple Evolution
Strategy was not able to provide “better” results in any given func-
tion. Furthermore, the ES-based approach required 330,000 evalu-
ations of the objective function to provide those results.

5.3 Diversity-DE Against Other DE-Based Ap-
proaches

With respect to re-insert DE version (columns 5 and 8 on Table
2) , our approach found a “better” best result in problem g13 and
a “similar” best result in the remaining 12 problems. Furthermore,
our Diversity-DE found considerable “better” mean and worst re-
sult in all problems except problem g12 where the mean and worst
result were “similar”. The re-insert DE version used 350,000 eval-
uations of the objective function.

With respect to the Hybrid DE approach (columns 6 and 8 on
Table 2), we could only compare with six benchmark functions be-
cause only those results were available. Diversity-DE found “bet-
ter” best results in problem g10 and it found “better” mean and
worst results in problems g07, g09 and g10. The Hybrid DE found
“better” mean and worst results in problem g13, but it required
271,000 evaluations of the objective function to get them. For the
remaining functions the number of evaluations required by this ap-
proach were not available (the authors did not use a fixed number
of evaluations as a stop criterion).

Finally, with respect to the Extended-DE approach (columns 7
and 8 on Table 2), we could only compare using the eight test
functions available (function g04 was available but the definition

of the function was different from that commonly used in the lit-
erature and therefore the results were different). Our approach
found slightly “ better” worst result in problem g07 and it provided
“similar” best, mean and worst results in six problems (g01, g05,
g06, g07, g08 and g11). In problem g10, our approach found a
“similar” best result, but it was slightly surpassed in the mean and
worst results. The extended DE used different parameters for each
test function and therefore, the number of evaluations of the ob-
jective function was also different for each problem. For problem
g01 they used 80, 000, for problem g05 12, 000, 000, for problem
g06 12, 000, for problem g07 175, 000, for problem g08 10, 000
for problem g09 37500, for problem g10 270, 000 and for prob-
lem g11 30, 000. This variations difficult a fair comparison. How-
ever, the discussion presented here gives some insights about the
performance of both approaches. Furthermore, the Extended-DE
used a larger tolerance value for equality constraints ε = 0.001
and we used ε = 0.0001 (which makes the problem more difficult
to solve).

5.4 Remarks
From the previous comparison, we can see that the Diversity-DE

produced very competitive results based on quality and robustness
with respect to one of the best techniques. Also, the obtained re-
sults suggest that allowing the survival of infeasible solutions with
a good value of the objective function provides better results when
using DE as a search engine compared with the use of an evolution
strategy. This aspect requires further analysis. Also, our Diversity-
DE provided very competitive results compared with other DE-
based approaches.

Our Diversity-DE can deal with highly constrained problems,
problems with low (g06 and g08) and high (g01, g02, g03, g07)
dimensionality, with different types of combined constraints (lin-
ear, nonlinear, equality and inequality) and with very large (g02) or
very small (g05, g13) or even disjoint (g12) feasible regions.

Measuring the computational cost, the number of objective func-
tion evaluations (OFE) performed by our approach is lower than the
other techniques with respect to which it was compared. Our ap-
proach performed 225,000 OFE. The improved Stochastic ranking
performed 350,000 OFE, the Simple Evolution Strategy performed
330,000 OFE and the DE with re-insertion performed 350,000 OFE.
No comparison against the other two DE-based approaches based
on the number of evaluations were made because the authors used
different parameters for each test problem.

5.5 Confidence Intervals
In order to predict the average performance of our approach we

performed an statistical test to calculate the confidence intervals
for the mean statistic based on the 100 runs sample. To verify if the
distributions provided by the sample were close to a normal, we
performed a one-sample Kolmogorov-Smirnov test for each sam-
ple for each function. In all cases the results proved that the distri-
butions were not close to a normal one. After that, we performed a
bootstrapping test with 1000 re-samples. Briefly, the aim of boot-
strapping is to create several new samples by sampling with re-
placement (allowing a data to be repeated in the same resample)
from the original sample. Each sample is the same size of the orig-
inal sample. Then the desired statistic is calculated for each resam-
ple. The distribution of these resample statistics is called a boot-
strap distribution, which gives information about the shape, center
and spread of the sampling distribution of the statistic. We used
the S-plus software. The obtained bootstrapping distributions were
close to a normal. The summary of results with the confidence in-
tervals for the mean statistic, with 95% confidence is presented in
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Problem & Different ES tested
Best Known Sol. Stats ISR [21] SES [16] RDE [15] HDE [12] EXDE [6] Diversity-DE

best −15.000 −15.000 −15.000 −15.000 −15.000 −15.000
g01 mean −15.000 −15.000 −14.792 −15.000 −15.000 −15.000

−15.000 worst −15.000 −15.000 −12.743 −15.000 −15.000 −15.000
St. Dev 5.8E-14 0 NA NA NA 1.0E-9

best 0.803619 0.803569 0.803619 NA NA 0.803619
g02 mean 0.782715 0.769612 0.746236 NA NA 0.798079

0.803619 worst 0.723591 0.702322 0.302179 NA NA 0.751742
St. Dev 2.2E-2 2.75E-2 NA NA NA 1.01E-2

best 1.001 1.004 1.000 NA NA 1.000
g03 mean 1.001 1.003 0.640 NA NA 1.000

1.000 worst 1.001 1.002 0.029 NA NA 1.000
St. Dev 8.2E-9 4.23E-4 NA NA NA 0

best −30665.539 −30665.539 −30665.539 NA NA −30665.539
g04 mean −30665.539 −30665.539 −30592.154 NA NA −30665.539

−30665.539 worst −30665.539 −30665.539 −29986.214 NA NA −30665.539
St. Dev 1.1E-11 0 NA NA NA 0

best 5126.497 NA 5126.497 NA 5126.484 5126.497
g05 mean 5126.497 NA 5218.729 NA 5126.484 5126.497

5216.498 worst 5126.497 NA 5502.410 NA 5126.484 5126.497
St. Dev 7.2E-13 NA NA NA NA 0

best −6961.814 −6961.814 −6961.814 −6961.814 −6961.814 −6961.814
g06 mean −6961.814 −6961.814 −6367.575 −6961.814 −6961.814 −6961.814

−6961.814 worst −6961.814 −6961.814 −2236.950 −6961.814 −6961.814 −6961.814
St. Dev 1.9E-12 0 NA NA NA 0

best 24.306 24.314 24.306 24.306 24.306 24.306
g07 mean 24.306 24.419 104.599 24.306 24.306 24.306

24.306 worst 24.306 24.561 1120.541 24.307 24.307 24.306
St. Dev 6.3E-5 7.11E-2 NA NA NA 8.22E-9

best 0.095825 0.095825 0.095825 NA 0.095825 0.095825
g08 mean 0.095825 0.095784 0.091292 NA 0.095825 0.095825

0.095825 worst 0.095825 0.095473 0.027188 NA 0.095825 0.095825
St. Dev 2.7E-17 1.04E-4 NA NA NA 0

best 680.630 680.669 680.630 680.630 680.630 680.630
g09 mean 680.630 680.810 692.472 680.631 680.630 680.630

680.63 worst 680.630 681.200 839.78 680.634 680.630 680.630
St. Dev 3.2E-13 1.22E-1 NA NA NA 0

best 7049.248 7057.044 7049.248 7049.862 7049.248 7049.248
g10 mean 7049.250 10771.41 8442.66 7055.079 7049.248 7049.266

7049.248 worst 7049.270 16375.267 15580.37 7116.188 7049.248 7049.617
St. Dev 3.2E-3 2.52E+3 NA NA NA 4.45E-2

best 0.75 0.75 0.75 NA 0.75 0.75
g11 mean 0.75 0.75 0.76 NA 0.75 0.75
0.75 worst 0.75 0.75 0.87 NA 0.75 0.75

St. Dev 1.1E-16 3.16E-4 NA NA NA 0
best 1.000 1.000 1.000 NA NA 1.000

g12 mean 1.000 1.000 1.000 NA NA 1.000
1.000 worst 1.000 1.000 1.000 NA NA 1.000

St. Dev 1.2E-9 0 NA NA NA 0
best 0.053942 0.053964 0.053866 0.053950 NA 0.053941

g13 mean 0.06677 0.264135 0.747227 0.053950 NA 0.069336
0.053950 worst 0.438803 0.544346 2.259875 0.053950 NA 0.438803

St. Dev 7.0E-2 2.06E-1 NA NA NA 7.58E-2

Table 2: Statistical results obtained by the improved version of the Stochastic Ranking (ISR), the Simple Evolution Strategy (SES),
the DE approach with re-insertion mechanism (RDE), the Hybrid Differential Evolution(HDE), the Extended Differential Evolution
(EXDE) and our Diversity-DE. A result in boldface means a better (or best) solution obtained. NA means not available.
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Problem Optimum Confidence Interval
for the Mean statistic

g01 −15.000 [−15.000,−15.000]
g02 0.803619 [0.796136, 0.800064]
g03 1.000 [1.000,1.000]
g03 −30665.539 [−30665.539,−30665.539]
g05 5126.498 [5126.497,5126.497]
g06 −6961.814 [−6961.814,−6961.814]
g07 24.306 [24.306,24.306]
g08 0.095825 [0.095825,0.095825]
g09 680.63 [680.630,680.630]
g10 7049.25 [7049.25, 7049.27]
g11 0.75 [0.75,0.75]
g12 1.000 [1.000,1.000]
g13 0.053950 [0.054670, 0.084010]

Table 3: 95% Confidence intervals for the sampled mean of our
approach. These intervals were generated using a bootstrap-
ping process. A result in boldface means that the optimum was
reached consistently.

Table 3.
The confidence intervals for the mean suggest that Diversity-DE

either reaches the global optimum or provides a very good approx-
imation to it. For problem g02, which presents many problems
to optimization algorithms to consistently reach the vicinity of the
best known solution, the mean confidence interval obtained by the
Diversity-DE is considered competitive. Besides, For problem g10,
whose size of the search space is one of the widest (based on the
valid intervals for the decision variables), the obtained confidence
interval is also considered very competitive. Finally, the confidence
interval for problem g13, whose global optimum is not easy to find
consistently, is also very close to it. Based on this small statistical
test we can conclude that Diversity-DE is able to find the global
optimum or best known solution (or its vicinity) with a high prob-
ability for this set of problems.

5.6 Analyzing the Effects of the Parameters
In order to know the sensitivity of Diversity-DE to its two extra

parameters (number of offspring no and Selection ratio Sr) we per-
formed a set of experiments varying them. We used the exact set
of values for the remaining DE parameters used in our previous ex-
periments and we also we maintained the total number of objective
function evaluations (225, 000) in order to have a fair comparison.
We only modified the aforementioned two parameters in the fol-
lowing combinations: (1) no = 2 and Sr = 0.45, (2) no = 10 and
Sr = 0.45, (3) no = 5 and Sr = 0.2 and (4) no = 5 and Sr = 0.8.
For each combination we performed 100 runs per test problem. In
Table 4 we present those functions where we found differences in
the results with respect to those shown in Table 2 (“B” means best,
“M” means mean, “W” means worst and SD means Standard Devi-
ation). We omitted the functions in which the results were exactly
the same as those shown in Table 2 for the four combinations of
parameters.

For the combination of no = 2 and Sr = 0.45, in problem g10
only in 55 runs out of 100, feasible solutions were found. For the
combination of no = 5 and Sr = 0.8, in problem g05 only in 16
runs out of 100, feasible solutions were found; the same occurred in
problems g10 (31 of 100) and g13 (56 of 100). The results suggest
a negative effect when decreasing the number of offspring gener-
ated. This result confirms our hypothesis of the utility of allowing
each parent to be combined with more individuals in the population
in order to sample the search space with more intensity. Also in-

P Different parameter values
Stat no = 2 no = 10 no = 5 no = 5

Sr = 0.45 Sr = 0.45 Sr = 0.2 Sr = 0.8

B - N/E N/E −14.999
g01 M - N/E N/E −14.999

−15.000 W - N/E N/E −14.980
SD - N/E N/E 2.3E-3
B 0.803536 0.803619 0.803619 0.803619

g02 M 0.797273 0.797482 0.797021 0.799335
0.803619 W 0.762730 0.770412 0.771749 0.732078

SD 8.9E-3 8.6E-3 8.5E-3 9.1E-3
B 0.999 N/E N/E N/E

g03 M 0.999 N/E N/E N/E
1.000 W 0.997 N/E N/E N/E

SD 3.3E-4 N/E N/E N/E
B −30665.539 N/E N/E N/E

g04 M −30650.978 N/E N/E N/E
−30665.539 W −29253.553 N/E N/E N/E

SD 1.4E+2 N/E N/E N/E
B - N/E N/E 5126.497

g05 M - N/E N/E 5126.499
5216.498 W - N/E N/E 5126.507

SD - N/E N/E 3.1E-3
B 24.444 N/E N/E 24.306

g07 M 24.744 N/E N/E 24.310
24.306 W 25.215 N/E N/E 24.344

SD 1.7E-1 N/E N/E 5.8E-3
B 680.630 N/E N/E N/E

g09 M 680.640 N/E N/E N/E
680.63 W 680.640 N/E N/E N/E

SD 3.5E-4 N/E N/E N/E
B 7479.604 N/E N/E 8048.279

g10 M 12526.493 N/E N/E 10089.717
7049.248 W 23848.704 N/E N/E 14722.025

SD 3.8E+3 N/E N/E 1.9E+3
B - 0.053941 0.053941 0.053941

g13 M - 0.242523 0.339476 0.053956
0.053950 W - 0.438803 0.446898 0.054000

SD - 1.9E-1 1.6E-1 1.4E-5

Table 4: Statistical results obtained by the Diversity-DE with
different values for its parameters. N/E means no effect (or
difference) found by this combination with respect to the results
in Table 2. “-” means no feasible solutions were found.

teresting was that this small value of no prevented the approach to
find the feasible region for some test problems (g01, g05 and g13,
whose estimated feasible region is very small). Also a negative ef-
fect was found when increasing the value of the Sr . This result was
also expected, because with higher values of Sr, the search will be
guided most of the time only by the objective function value and
the search will not concentrate enough as to find the feasible re-
gion. See for example functions g05, g10 and g13 where in only
a fraction of the total number of runs we were able to find feasible
solutions. Finally, we observed no significant negative effects when
increasing the value of the number of offspring generated and also
decreasing the value of the Sr. This last result is also interesting
because it suggests that, for the case of DE as a search engine, the
number of infeasible solutions with a good value of the objective
function required to remain in the population is not necessarily big,
if we want to obtain competitive results. This result will be subject
for future research.

6. CONCLUSIONS AND FUTURE WORK
We have proposed a novel approach based on Differential Evo-

lution to solve constrained optimization problems. The constraint-
handling technique consists on a comparison method based on fea-
sibility. Also two additional modifications to the DE approach were
added: (1) a diversity mechanism based on allowing the survival
for the next generation of those individuals with a good value of
the objective function (regardless of feasibility) and (2) allowing
to each parent to generate more than one offspring with the aim of
increasing the probability of getting a better offspring and promot-
ing the collaboration of more individuals with one parent to gen-
erate new solutions. The approach was compared against one of
the most competitive approaches (the improved Stochastic Rank-
ing), also against an evolution strategy whose diversity mechanism
is similar to that used in this work and finally against three DE-
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based approaches. From this comparison we can conclude that our
approach is competitive at a low computational cost (measured by
the number of evaluations of the objective function). Besides, we
conclude that the use of DE as a search engine is very suitable to
solve this set of constrained problems and that the addition of a
diversity mechanism improves the quality and robustness of the fi-
nal results. However, the approach showed some sensitivity to the
values of its two extra parameters. Our future work consists on test-
ing the approach using the main modifications separately (diversity
mechanism and multiple offspring) in order to detect if either only
one of them or just the combined effect is mandatory in the algo-
rithm. Also, we must find a self or on-line adaptive mechanism for
the two extra-parameters of the approach (number of offspring per
parent no and the selection ratio Sr). We will also analyze more
in-depth the possible causes of the improvement when using a sim-
ilar constraint-handling approach but with different search engines.
Finally, we will perform an analysis of Variance (ANOVA) as an
in-depth test to analyze the sensitivity of Diversity-DE to all its pa-
rameters, including those used by the DE approach itself.
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APPENDIX

A. TEST FUNCTIONS
The details of the 13 test functions used in this paper are the

following:

1. g01:
Minimize: f(�x) = 5

P4
i=1 xi − 5

P4
i=1 x

2
i −P13

i=5 xi subject to:

g1(�x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(�x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(�x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(�x) = −8x1 + x10 ≤ 0

g5(�x) = −8x2 + x11 ≤ 0

g6(�x) = −8x3 + x12 ≤ 0

g7(�x) = −2x4 − x5 + x10 ≤ 0

g8(�x) = −2x6 − x7 + x11 ≤ 0

g9(�x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100
(i = 10, 11, 12) and 0 ≤ x13 ≤ 1. The global optimum is at x∗ =
(1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where f(x∗) = −15. Constraints g1 ,
g2 , g3 , g7 , g8 and g9 are active.

2. g02:
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Maximize: f(�x) =

�����

Pn
i=1 cos4(xi)−2

Qn
i=1 cos2(xi)qPn

i=1 ix2
i

����� subject to:

g1(�x) = 0.75 −
nY

i=1

xi ≤ 0

g2(�x) =
nX

i=1

xi − 7.5n ≤ 0 (1)

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is
unknown; the best reported solution is [20] f(x∗) = 0.803619. Constraint
g1 is close to being active (g1 = −10−8).

3. g03:
Maximize: f(�x) =

�√
n
�nQn

i=1 xi

subject to:

h(�x) =
Pn

i=1 x
2
i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is at
x∗

i = 1/
√
n (i = 1, . . . , n) where f(x∗) = 1.

4. g04:
Minimize: f(�x) = 5.3578547x2

3 + 0.8356891x1x5 + 37.293239x1 −
40792.141
subject to:
g1(�x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4
− 0.0022053x3x5 − 92 ≤ 0
g2(�x) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4
+ 0.0022053x3x5 ≤ 0
g3(�x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2
+ 0.0021813x2

3 − 110 ≤ 0
g4(�x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2
− 0.0021813x2

3 + 90 ≤ 0
g5(�x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3
+ 0.0019085x3x4 − 25 ≤ 0
g6(�x) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3
− 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5).
The optimum solution is x∗ = (78, 33, 29.995256025682, 45,
36.775812905788) where f(x∗) = −30665.539. Constraints g1 y g6
are active.

5. g05
Minimize:f(�x) = 3x1 + 0.000001x3

1 + 2x2 + (0.000002/3)x3
2

subject to:
g1(�x) = −x4 + x3 − 0.55 ≤ 0
g2(�x) = −x3 + x4 − 0.55 ≤ 0
h3(�x) = 1000 sin(−x3 − 0.25) +
1000 sin(−x4 − 0.25) + 894.8 − x1 = 0
h4(�x) = 1000 sin(x3 − 0.25) +
1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0
h5(�x) = 1000 sin(x4 − 0.25) +
1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55, and
−0.55 ≤ x4 ≤ 0.55. The best known solution is x∗ = (679.9453,
1026.067, 0.1188764, −0.3962336) where f(x∗) = 5126.4981.

6. g06
Minimize: f(�x) = (x1 − 10)3 + (x2 − 20)3

subject to:
g1(�x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(�x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution
is x∗ = (14.095, 0.84296) where f(x∗) = −6961.81388. Both con-
straints are active.

7. g07
Minimize: f(�x) = x2

1 + x2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 +

4(x4 − 5)2 +(x5 − 3)2 +2(x6 − 1)2 +5x2
7 +7(x8 − 11)2 +2(x9 −

10)2 + (x10 − 7)2 + 45
subject to:
g1(�x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(�x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(�x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(�x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0

g5(�x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(�x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(�x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(�x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is x∗ =
(2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574,
1.321644, 9.828726, 8.280092, 8.375927) where f(x∗) = 24.3062091.
Constraints g1 , g2, g3 , g4 , g5 and g6 are active.

8. g08

Maximize: f(�x) =
sin3(2πx1) sin(2πx2)

x3
1(x1+x2)

subject to:
g1(�x) = x2

1 − x2 + 1 ≤ 0

g2(�x) = 1 − x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum solution is located at
x∗ = (1.2279713, 4.2453733) where f(x∗) = 0.095825.

9. g09
Minimize: f(�x) = (x1 − 10)2 + 5(x2 − 12)2 + x4

3 + 3(x4 − 11)2 +

10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to:

g1(�x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(�x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(�x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(�x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum is x∗ =
(2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131,
1.594227) where f(x∗) = 680.6300573. Two constraints are active (g1
and g4).

10. g10
Minimize: f(�x) = x1 + x2 + x3
subject to: g1(�x) = −1 + 0.0025(x4 + x6) ≤ 0
g2(�x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0
g3(�x) = −1 + 0.01(x8 − x5) ≤ 0
g4(�x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0
g5(�x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(�x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3), 10 ≤
xi ≤ 1000, (i = 4, . . . , 8). The global optimum is: x∗ = (579.19,
1360.13, 5109.92, 182.0174, 295.5985, 217.9799, 286.40, 395.5979),
where f(x∗) = 7049.248. g1 , g2 and g3 are active.

11. g11
Minimize: f(�x) = x2

1 + (x2 − 1)2

subject to:
h(�x) = x2 − x2

1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution is
x∗ = (±1/

√
2, 1/2) where f(x∗) = 0.75.

12. g12

Maximize: f(�x) =
100−(x1−5)2−(x2−5)2−(x3−5)2

100
subject to:
g1(�x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9. The fea-
sible region of the search space consists of 93 disjointed spheres. A point
(x1, x2, x3) is feasible if and only if there exist p, q, r such the above in-
equality (12) holds. The global optimum is located at x∗ = (5, 5, 5) where
f(x∗) = 1.

13. g13
Minimize: f(�x) = ex1x2x3x4x5

subject to:

h1(�x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(�x) = x2x3 − 5x4x5 = 0
h3(�x) = x3

1 + x3
2 + 1 = 0

where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5).
The optimum solution is x∗ = (−1.717143, 1.595709, 1.827247,
− 0.7636413,−0.763645) where f(x∗) = 0.0539498.
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