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ABSTRACT
We discuss testing methods for exposing origin-seeking bias
in PSO motion algorithms. The strategy of resizing the ini-
tialization space, proposed by Gehlhaar and Fogel and made
popular in the PSO context by Angeline, is shown to be in-
sufficiently general for revealing an algorithm’s tendency to
focus its efforts on regions at or near the origin. An alterna-
tive testing method is proposed that reveals problems with
PSO motion algorithms that are not visible when merely
resizing the initialization space.
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1. INTRODUCTION
Particle swarms are now well known as an effective and

interesting approach to function optimization. The basic
algorithm scatters particles in a limited feasible region of
the function’s domain space, moving them over time in a
search for areas of better fitness. Each particle keeps track
of a current position x and velocity v, as well as the most fit
location it has ever seen p. The best p among all particles is
denoted g. In classical PSO, these data are easily combined:

vt+1 = χ (vt + φ1U()(p − xt) + φ2 U()(g − xt)) (1)

xt+1 = xt + vt+1 (2)
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Figure 1: Angeline’s initialization region for PSO

where U() is a sample from a standard uniform distribution,
φi are usually somewhere near 2, and χ represents the ad-
dition of a constriction coefficient that serves to control the
convergence properties of the algorithm [4].
Throughout the remainder of this paper, it will be as-

sumed that minimization is performed. It will also be im-
plied that g refers to the best known position among all p
in a particle’s neighborhood. While this is a slight departure
from the norm, where local neighborhood bests have differ-
ent notation (l), the two notations are rarely if ever used
in the same context. Therefore, it will be understood that
where a notion of sociometry is present, g is the best known
among all of the particles in a particular neighborhood and
is therefore particle-dependent.
Many population-based optimization approaches, includ-

ing PSO, suffer from a notable bias: they tend to perform
best when the optimum is located at or near the center of
the initialization region, which is often the origin. This is
especially true when some kind of averaging operator is used
to combine information from different members of the pop-
ulation [1]. In many of the standard benchmark functions,
the global optimum is at or very near the origin, making
this bias a potential problem when developing and testing
a new algorithm. To expose this bias while testing PSO al-
gorithms, Angeline [1] popularized a method previously in-
troduced by Gehlhaar and Fogel [5]. The method, hereafter
referred to as “Region Scaling” (RS) explicitly excludes the
optimum from the initialization region by initializing parti-
cles in a new region whose sides are all 1/4 the length of the
original, as shown in Figure 1.
This paper focuses on test methods used to expose origin-

seeking bias in PSO algorithms and shows that RS is not al-
ways sufficient. Experiments are done using Clerc’s TRIBES
[2, 3] with various kinds of particle motion. TRIBES is de-
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scribed in some detail, followed by descriptions of the kinds
of motion chosen for the experiments. An alternative to RS
called “Center Offset” (CO) is proposed as a means of ex-
posing the bias in PSO, and experimental results highlight
the contrast between the two approaches. Finally, some dis-
cussion of the meaning of the results is presented with ac-
companying recommendations for testing new algorithms.

2. TRIBES
TRIBES is a parameter-free approach to swarm size and

sociometry in PSO, at the heart of which is a swarm re-
structuring algorithm which adapts the number of particles
and the topology of particle neighborhoods based on swarm
performance [2].
Because it is parameter-free, TRIBES provides a useful

way to sidestep the issue of swarm size and sociometry speci-
fication, providing an out-of-the box approach that has been
shown to work well. Because the parameters of swarm size
and sociometry are adapted based on the success of the
swarm at a given time, TRIBES zeros in rapidly on settings
for those parameters that produce the best performance.
In the case of a biased motion algorithm, this feature of
TRIBES serves to expose that bias effectively.
Clerc’s TRIBES paper defines notions of tribes and in-

formers. A tribe is a data structure that keeps track of the
particles that belong to it, representing a fully connected
subgraph of the overall swarm topology. The informers of
a particle are itself, all of the particles in its tribe, and any
particles of other tribes to which it is connected. All links
are symmetrical.
The algorithm begins with one or more particles in a sin-

gle tribe. The memory of a particle is extended slightly
to include not only p, but also the number of times it has
changed in succession. If the number of successive changes
is greater than 0, then improvement was made during the
last position update and the particle is labeled “good”1 .
The tribes themselves also receive the labels “good” or

“bad”, depending on the number of good particles in the
tribe. A tribe containing T particles is itself “good” only if
U() ≤ G/T , where G is the number of good particles in a
tribe and U() is a draw from a standard uniform distribu-
tion. Otherwise the tribe is “bad”.
Good tribes, because they are doing well and presumably

do not need as many particles, will remove one of their par-
ticles. Assuming that f is the function being minimized,
a good tribe containing more than one particle will remove
its worst performer, or the particle with the highest f(p).
When this occurs, any external links to the particle are re-
assigned to the best performer in the tribe, i.e. the particle
with the lowest f(p).
If a good tribe contains only one particle, the tribe itself

is removed only if its particle’s best external informer has a
better f(p) than itself. In this latter case, all external links
to the particle are reassigned to the external informer.
Bad tribes, on the other hand, presumably need more in-

formation, so each creates a new particle outside of its tribe
and forms a link between the new particle and the best par-
ticle within the tribe. The set of all new particles created
during one restructuring step forms a new tribe. Each new

1TRIBES also has a notion of “excellent”, assigned to a
particle if the number is 2 or higher, but we do not make
use of that distinction in this paper.

p

g

Figure 2: TRIBES Pivot method

particle is generated randomly and uniformly within the ini-
tialization space.
Restructuring occurs once at the beginning of the algo-

rithm and then periodically as it progresses. If, after re-
structuring, the swarm has N particles and L information
links, then restructuring will occur again after L/2 swarm
iterations, or NL/2 function evaluations.

3. PSO MOTION ALGORITHMS
Several motion algorithms have been suggested for PSO,

so many that they cannot all be discussed here. This section
describes algorithms that are representative of some inter-
esting features of existing approaches to PSO motion, and
these will be used in this paper’s empirical study of origin-
seeking bias.

3.1 Pivot
The central motion algorithm introduced in the TRIBES

paper is the “Simple Pivot” method. The “Noisy Pivot”
method, also introduced in the TRIBES paper, is an exten-
sion of Simple Pivot which performs an additional Gaussian
sample to generate the final position [2]. We will focus on
the Simple Pivot here, referring to it simply as “Pivot”.
The Pivot method, illustrated in Figure 2, generates a

new position by taking noisy samples in the neighborhood
of p and g. First, each is taken to be the center of a hyper-
sphere whose radius is ‖p − g‖2. Second, a point is sampled
from a uniform distribution within each sphere. Each of
these samples is given a mass based on the relative fitness of
its corresponding center point (either p or g), and the new
position is the center of mass of the two sampled points.
Mass may be assigned in a number of ways. One simple

approach is to assign mass linearly based on the relative
fitness of each particle, thus:

xt+1 =
f(p)

f(p) + f(g)

`
g +U

`‖p − g‖2

´´

+
f(g)

f(p) + f(g)

`
p +U

`‖p − g‖2

´´
(3)

where U(·) is a sample from a hyperspherical uniform distri-
bution with the specified radius. This formula assumes that
minimization is occuring, so smaller values of f are favored.
Maximization would reverse the positions of the fractional
coefficients.
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3.2 PSOGauss
The second type of motion proposed in conjunction with

TRIBES, but not given a name, is based on constricted PSO
with Gaussian noise [2]. We will refer to this motion as
PSOGauss:

vt+1 = χ

„
vt +G

„
p − xt,

1

4
I ‖p − xt‖2

2

«

+ G

„
g − xt,

1

4
I ‖g − xt‖2

2

««
(4)

where I is the identity matrix, χ ≈ 0.71441, and G(·, ·) is a
sample from a Gaussian distribution parameterized by the
supplied mean and covariance matrix.
This approach is similar to constricted PSO and differ-

ent from the others in this section because it uses velocity
instead of computing a position directly.

3.3 BareBones
The BareBones motion algorithm is probably the simplest

PSO algorithm proposed to date, but it is very successful at
optimization [6]. The motion equation is given here:

xt+1 = G

„
1

2
(p + g), I ‖p − g‖2

2

«
(5)

where G(·, ·) is a sample from a Gaussian distribution pa-
rameterized on a mean and covariance matrix.
This approach was developed after noting that the distri-

bution of samples between p and g was distinctly Gaussian
at each time step in classical PSO and was an effort to cull
out any useless properties of the traditional motion equa-
tions.
This particular method was not the only one proposed in

Kennedy’s Bare Bones paper [6], but it is the simplest and
is very effective.

4. EXPERIMENTS
To test for origin seeking behavior, the following bench-

mark functions were used:

Sphere:

f(x) =

DX
i=1

x2
i R = (−50, 50)D

(6)

Rastrigin:

f(x) =
DX

i=1

x2
i + 10− 10 cos(2πxi) R = (−5.12, 5.12)D

(7)

Rosenbrock:

f(x) =

D−1X
i=1

100(xi+1−x2
i )

2+(xi−1)2 R = (−100, 100)D

(8)

Sphere is unimodal and symmetric, Rastrigin is highly mul-
timodal and symmetric, and Rosenbrock is multimodal and
asymmetric. These functions are representative of the es-
sential characteristics of a number of popular benchmarks.

0.1

0.25

0.5

0.75

(a) Region Scaling (RS)

0.75

0.5

0.25

(b) Center Offset (CO)

Figure 3: Different methods of exposing origin-
seeking bias

For each function and type of motion, experiments were
performed using “Region Scaling” (RS) and “Center Offset”
(CO). In the first (RS), several different initialization regions
were chosen, each formed by taking a fraction of the feasible
rectangle in each dimension as shown in Figure 3(a)2. In
the second (CO), the center of each function was moved to
a different location of space, as shown in Figure3(b), leaving
the initialization region in its original location. For example,
Sphere would become

f(x, c) =
DX

i=1

(xi − ci)
2

where c is the location of the new center, calculated using
the feasible region and the numbers shown in the figure (0.5
leaves the center unchanged). This can only be applied to
functions whose support extends outside of the feasible re-
gion, as is the case with all of the benchmarks used here. CO
values outside of the range [0, 1] are valid and indicate that
the center has moved beyond the boundaries of the feasible
region along the line shown.

5. RESULTS
The results of all of the experiments are shown in Fig-

ures 4, 5, and 6. The x-axis of each graph shows one tic per
50 function evaluations, and the y-axis is the best fitness
obtained among all particles. Because the focus is mini-
mization, lower values are better. All results are averaged
over 30 runs and plotted on a log-log scale.
Figure 4 shows the results of the experiments using the

Pivot method. Using RS the Pivot method appears to per-
form equally well in all cases, easily overcoming the difficul-
ties imposed by a smaller initialization region. When CO is
applied, however, the bias becomes evident. Pivot only per-
forms well when the global minimum is located at or near
the origin.
Figure 5 displays results for PSOGauss. In this case, the

origin seeking bias is more subtle. The key is to look for
natural grouping of results near the end of a run. With

2This is somewhat different from Angeline’s approach, since
the region is chosen from the opposite corner. While this
does not affect the symmetric Sphere or Rastrigin functions,
it tends to initialize particles in a more challenging part of
Rosenbrock’s domain.
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(b) Sphere iterations (CO)
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(c) Rastrigin iterations (RS)
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(d) Rastrigin iterations (CO)
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Figure 4: Pivot performance under Region Scaling and Center Offset
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Figure 5: PSOGauss performance under Region Scaling and Center Offset
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Figure 6: BareBones performance under Region Scaling and Center Offset
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Rastrigin and RS, some clustering occurs among the regions
that include the global minimum in Figure 5(c), but it does
not show up when using CO in Figure 5(d). Rosenbrock and
Sphere show no significant clustering in either case.
In Figure 6 the results are shown for BareBones. Simi-

lar to PSOGauss, clustering is observed with Rastrigin and
RS in Figure 6(c) but not with CO in Figure 6(d). On
Rosenbrock, however, clustering is definitely observed (note
the log-log scales) both under RS in Figure 6(e) and CO
in Figure 6(f). The clustering observed is much more strik-
ing under CO, with some counterintuitive results under RS.
Again, no such clustering is observed when tested on Sphere.

6. DISCUSSION

6.1 Exposure Methods
The behavior of Pivot in Figure 4 suggests that a strong

argument can be made for using CO to test for origin-seeking
bias; it succeeded where RS failed. Additionally, when look-
ing at results for Rosenbrock among all motion algorithms,
anywhere that RS exposed a bias, CO did as well. In that
sense, CO appears to be no worse than RS, and in the case
of Pivot it is vastly better for discovering bias.
The Rastrigin case is somewhat different, where any bias

shown on that function only occurred under RS. While this
may say more about Rastrigin than any of the algorithms
used to optimize it, it does expose weakness in both PSO-
Gauss and BareBones when dealing with such a highly reg-
ular and multimodal function.
The types of bias exposed by these two approaches are

different. RS exposes a bias toward the center of the initial-
ization region, while CO exposes a bias toward the absolute
origin. To further verify this idea, other experiments were
performed that moved the center of the function and the ini-
tialization region by the same amount simultaneously. This
simply performed a coordinate shift for the entire problem,
something that would not be expected to cause difficulty for
any of the algorithms here. The results for Pivot, however,
were nearly identical to those shown here when using CO
exclusively, indicating that there is indeed a bias toward the
absolute origin in that algorithm.
It is possible to combine both the RS technique and the

CO technique into a single experiment, shifting the coor-
dinate system and then shrinking the initialization region.
This approach can sometimes expose both kinds of bias at
once, suggesting that if only one experiment is to be done,
RS and CO should be combined. Otherwise, it is best to
do each separately in order to expose the various potential
algorithmic weaknesses.

6.2 TRIBES Behavior
The use of TRIBES as the basis for swarm size and so-

ciometry, while not an arbitrary choice, merits further dis-
cussion. It was mentioned previously that TRIBES was
chosen because it tends to find the right combination of so-
ciometry and swarm size for effectively exposing the bias in
a motion algorithm. It does this because it adapts swarm
characteristics based on performance.
The biased behavior does not only show up when using

TRIBES, however. Figure 7 gives results for BareBones
on various fixed-size fully connected swarms. The experi-
ments are performed under CO. It is especially clear in Fig-
ures 7(a) and 7(b) that BareBones displays origin-seeking

bias on Rosenbrock. It is therefore possible to find the be-
havior using a fixed swarm size and a specific sociometry,
but it can be difficult to find the right combination by hand.
More particles implies initially more diverse function sam-
ples and increases the likelihood of finding a good area to
explore at the beginning of the run, making it difficult to see
any bias that may exist. Fewer particles have little available
information and therefore nearly always get stuck quickly,
making it difficult to make any convincing statements about
observed bias. TRIBES seems to get it just right.
That TRIBES is good at exposing the bias actually makes

a very positive statement about the algorithm in general.
The exposure occurs because it is using just enough parti-
cles and just enough connections between them to get the
best results possible. In other words, when an algorithm is
center seeking, it exploits that fact because it finds a good
combination of swarm size and sociometry for that algo-
rithm. It makes sense to test new algorithms using TRIBES
because strange origin-seeking behavior may otherwise be
masked by lucky choices of fixed swarm size and sociometry.

6.3 Benchmark Behavior
Rastrigin is somewhat unique among the benchmarks here

in that it exposes a bias only under RS. The others expose
it either in both cases or only in the CO case. Why does
this happen with Rastrigin? The function is highly multi-
modal with very deep local minima spread out on a regular
grid. In order for particles to find the global minimum, they
must jump over or out of these local minima in a reliable
way. If particles manage to acquire the correct speed, they
tend to jump quickly from one minimum to the next since
a straight line will pass through many evenly-spaced local
minima. A larger initialization space facilitates the discov-
ery of an appropriate velocity while a smaller one tends to
generate particles that get stuck because of small initial ve-
locities.
Rosenbrock has some counterintuitive behavior. When

applying RS, the bias appears to be reversed in some cases.
This may be due to its asymmetric properties; too many
particles in a misleading area of the space (with strange local
minima) can cause the swarm to converge too quickly to a
challenging part of the domain. As the initialization region
is made smaller but still includes the global minimum, fewer
particles start out in misleading areas.
These properties do not discredit these benchmarks as

indicators of bias, but rather highlight some of the unique
issues that they expose. It is a good idea to use multiple
different benchmarks when looking for bias.

6.4 Motion Algorithms
Pivot is undeniably biased, but what of the others? Be-

tween PSOGauss and BareBones, PSOGauss appears to dis-
play the least bias, since it works well on Rosenbrock no
matter what is done to it. BareBones, on the other hand,
appears to show significant bias on Rosenbrock. Both show
a small amount of bias on Rastrigin when the region size is
altered.
If they must be ranked, then, it appears that PSOGuass is

the least biased, followed by the slightly more biased Bare-
Bones, finally followed by the extremely biased Pivot.
What it is about Pivot and BareBones that makes them

biased is not obvious from the results. They are different
from PSOGauss in one very fundamental way, however: they
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(c) Rosenbrock iterations – 10 Particles

Figure 7: BareBones average fitness using CO, the
star sociometry, and various fixed swarm sizes

update positions directly while PSOGauss updates veloci-
ties. This one difference may be enough to account for a
center seeking bias, though that idea has not yet been fully
explored. The reasons behind the extreme nature of Pivot’s
bias also merit further exploration.

7. CONCLUSION
Region Scaling (RS), a popular method of testing for bias

in PSO, is effective but not always sufficient for detecting
origin-seeking behavior. In fact, on motion like the Pivot
method, it fails to expose any bias whatsoever. Center Off-
set (CO), on the other hand, catches cases that are not oth-
erwise visible, making it an essential testing tool for any new
PSO algorithm.
Additionally, it was found that TRIBES provides a useful

framework for testing different kinds of PSO motion, given
that it tends to exploit the best behavior of a motion al-
gorithm. This, in combination with CO and RS is a very
effective method of testing for origin-seeking bias.
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