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ABSTRACT 
Multimodal optimization algorithms inspired by the immune system 
are generally characterized by a dynamic control of the population 
size and by diversity maintenance along the search. One of the most 
popular proposals is denoted opt-aiNet (artificial immune network 
for optimization) and is extended here to deal with time-varying 
fitness functions. Additional procedures are designed to improve the 
overall performance and the robustness of the immune-inspired 
approach, giving rise to a version for dynamic optimization, denoted 
dopt-aiNet. Firstly, challenging benchmark problems in static mul-
timodal optimization are considered to validate the new proposal. 
No parameter adjustment is necessary to adapt the algorithm accord-
ing to the peculiarities of each problem. In the sequence, dynamic 
environments are considered, and usual evaluation indices are 
adopted to assess the performance of dopt-aiNet and compare with 
alternative solution procedures available in the literature. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods.  

General Terms: Algorithms. 

Keywords: Immune network, opt-aiNet, multimodal optimiza-
tion, dynamic optimization. 

1. INTRODUCTION 
Among the many possible applications of artificial immune systems 
(AIS) [6], optimization has been receiving particular attention over 
the last few years. Within optimization, the emphasis has been on 
the use of AIS to perform multimodal and dynamic function optimi-
zation [5],[7],[8],[10],[15]-[17].  

The immune system of higher animals (e.g., humans) has a natural 
capacity of dealing with complex dynamic environments in which 
multiple disease-causing agents are trying to break through the body 
barriers and promote damage. Based on some of the biological im-
mune mechanisms of host defense, simple, evolutionary-like im-
mune algorithms have been devised and studied in the context of 
global, multimodal and dynamic optimization [5], [7], [8], [10], 
[15]-[17]. 
Despite these seminal works, a broader investigation of the useful-
ness of immune algorithms in the context of multimodal and dy-
namic function optimization has not been performed yet, and the 
results available in the literature are still limited. The present paper 
corroborates with all the previous works cited above in the direction 
of helping to assess the performance and usefulness of AIS for op-
timization. In particular, the optimization version of an immune 
network model, called opt-aiNet [7], is improved and extended to 
deal with multimodal, dynamic environments. 
The modified algorithm, termed here dopt-aiNet (opt-aiNet for dy-
namic environments) is applied to two sets of problems. First, a 
large set with 18 numeric benchmark functions, commonly used by 
the evolutionary computation (EC) community, is used to assess the 
potential of the approach to find global optimal solutions in spaces 
of very high dimension. Then, the same version of the dopt-aiNet 
algorithm is applied to a set of dynamic functions. In both cases the 
results are directly compared with results from the EC community 
and those of other immune algorithms. 
This paper is organized as follows. Section 2 presents the original 
opt-aiNet [7]. Section 3 develops new concepts to improve its capa-
bilities on broader domains still maintaining its efficiency on higher 
dimensions, and without losing its main feature of identifying multi-
ple solutions. In Section 4 it is shown several experimental results 
and test cases to demonstrate the performance of the algorithm on 
solving benchmark problems. Section 5 shows the application to 
dynamic environments without any changes on the main algorithm 
structure. Section 6 concludes the paper and gives further remarks. 

2. THE OPT-AINET ALGORITHM 
The opt-aiNet adaptation procedure was first conceived by de Castro 
and Timmis [7] as a multimodal function optimization algorithm 
developed by taking inspiration from some evolutionary properties 
of the human immune system. It is basically a mutation-based evolu-
tionary search procedure with a population with dynamic size allo-
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cation. Each individual of the population corresponds to a cell in the 
immune system, and is encoded as a real-valued vector in an Euclid-
ean shape-space [13]. Each cell generates a certain number of clones 
(identical offspring), which are subjected to a mutation rate in-
versely proportional to the fitness of the parent cell [1]. From time 
to time new cells can be generated at random and the affinity of 
every cell with each other, that is, the measure of how similar they 
are, is indirectly calculated based on their Euclidean distance, and 
those that are too similar to each other are left out of the next gen-
eration. The original opt-aiNet algorithm, as introduced by de Castro 
and Timmis [7], is summarized in the pseudocode below. The algo-
rithm requires as input parameters the number of clones to be gener-
ated (Nc), the initialization range, the suppression threshold (σs), 
and the function to be optimized (f). 
 
Function [C] = opt-aiNet(Nc,range,σs,f) 
C = random(range) 
While stopping criterion is not met do 

fit = f(C) 
C’ = clone(C,Nc) 
C’ = mutate(C’,fit*) 
best_clone = best(C’) 
If best_clone is better than c then 

c = best_clone 
End 
Avg = average(f(C)) 
If the average error doesn’t stagnate then 

return to the beginning of the loop 
else 

suppress(C) 
C = [C; random(range)] 

End 
End 
Algorithm 1. Original opt-aiNet algorithm. 
 
At the beginning, Nc cells are generated at random on the given 
domain range. The main loop starts, and after the population is 
evaluated each individual generates Nc clones that are mutated fol-
lowing Eq. 1. 

c' = c + α N(0,1), 
α = (1/β) exp(− f* ). 

(1) 

where c' is a mutated cell, N(0,1) is a Gaussian random variable of 
mean zero and standard deviation σ = 1, β is a parameter that con-
trols the decay of the inverse exponential function, and f* is the 
fitness of an individual normalized in the interval [0,1]. 
After every clone is mutated, the highest fitness cell within each 
clone survives to the next iteration. Whenever the algorithm stag-
nates, that is, when the average error does not improve significantly 
after an iterative step, the affinity among cells is calculated and those 
cells with affinity less than a pre-specified suppression threshold σs 
are eliminated from the population, thus avoiding redundancy. 
Then, new cells are generated randomly and introduced into the 
population. 

3. DOPT-AINET: A MODIFIED OPT-AINET 
In the original proposal of opt-aiNet [7], the authors applied the 
algorithm to a number of simple bi-dimensional functions with mul-
tiple optimal solutions. Although the performance was good on 
these simple functions, some problems have been identified in the 
original algorithm [15],[16], such as the need to perform a high 
number of function evaluations to find a good set of solutions. After 

some experimentation with dynamic environments, we also detected 
some aspects to be improved in the algorithm. In summary, four 
modifications are proposed here: 1) the use of a separate memory 
subpopulation; 2) a line search procedure to optimize and thus 
automatically set β; 3) two new mutation operator schemes; 4) a cell 
line suppression mechanism; and 5) a limited population size. These 
modifications are described in the following. 

3.1 Current and Memory Subpopulations 
To avoid a performance decay due to an excessive population 
growth, two separated populations were created: 1) the current sub-
population, which corresponds to the population used on the origi-
nal algorithm and in which newly created cells are placed; 2) and the 
memory subpopulation [5], which corresponds to those cells that 
have not evolved during a certain period of time, and thus will be 
assumed to have converged to local optimal solutions. To determine 
if a cell should go to the memory subpopulation, i.e., should become 
a memory cell, each cell receives a rank value that decrements 
whenever a mutation does not improve its objective function value, 
and increment otherwise. When this rank reaches zero, the cell is 
then moved to the memory subpopulation, where it will be treated 
with special mutation operators to be described bellow. Addition-
ally, when a cell becomes a memory cell, it receives a new rank that 
follows this same process, but when this rank reaches zero the 
memory cell does not suffer any mutation whatsoever. 

3.2 Line Search 
The traditional mutation applied to the algorithm requires a parame-
ter β (Eq. 1) that is a user-defined step size of the direction deter-
mined by the Gaussian random vector. This parameter sometimes 
requires a pre-analysis of the function landscape in order to be set 
properly. A very small value may lead to slow convergence, and, by 
contrast, a very high value may lead to a situation where the resul-
tant mutated cell never converges to an optimum solution. There-
fore, to take the best of each mutation for each Gaussian random 
vector generated, a line search procedure, called golden section [4], 
is performed to choose the best step size possible (β). 
The golden section method basically divides the search space into 
two and determines which area is most promising, sub-dividing it 
and thus generating new search intervals. The process repeats until 
this uncertainty interval reaches a given threshold length. The key 
point is how it divides the search space using a ratio called golden 
number or golden ratio, which is a proportion number found on 
many geometric figures and nature structures. 
This procedure is guaranteed to reach a global optimum solution in 
a certain direction given that the interval being searched has no 
discontinuity, is convex and unimodal. These restrictions stand as a 
problem on the use of this method together with opt-aiNet, since the 
algorithm does not have any information about the function to be 
optimized. To partially solve this problem, the initial segment to be 
searched can be divided into four new segments and the golden 
section method applied to each of these segments separately; the 
best result found is used as β, thus reducing the chance of failure. 
Even if this procedure fails to find an optimal β, this will still proba-
bly lead to a better value than the static parameter on the original 
algorithm and also, as there is a population of cells, an eventual fail 
on this search may not lead to total failure on the whole process. 
This procedure was chosen mainly because it has a fast convergence 
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rate and does not require any information about the search space; a 
pre-requisite when the algorithm is run for every mutation operation. 

3.3 New Mutation Operators 
While testing the simple Gaussian mutation proposed by de Castro 
and Timmis [7], it was possible to note that a few network cells 
sometimes converged to a value that is not a peak (local optima) and 
that could not be further improved by this type of mutation. Al-
though an optimal search of β does alleviate this problem, two new 
mutation operators are proposed and applied to both populations. 

3.3.1 One-Dimensional Mutation 
The one-dimensional mutation (Algorithm 2) performs similarly to 
the traditional Gaussian mutation but only for one direction at a 
time, thus making a finer search on the area surrounding the cell. 
Additionally, it is performed the search on the unitary vectors 1 
(vectors in which every element is 1) and −−−−1. This method has the 
drawback of presenting a slow convergence for high dimensional 
spaces. Algorithm 2 describes the one-dimensional mutation, where 
D is a matrix of size (n+2) × n containing an Identity Matrix of size 
n, a row filled with 1’s and another row filled with −1’s. Parameter 
β is the step size obtained via golden section (Section 3.2). 
 

Function [C] = one-dimensional(C,f) 
D = [identity(n); 1; -1] 
For each vector element “c” of matrix C do, 
 For each row “d” of matrix D do, 

  % calculate the step size β that  
   optimizes the cell in direction d 

  beta = golden_section(c,d,f)  

c’ = c + d*β 
If c’ is better than c then 

c = c’ 
End 

 End 
End 
Algorithm 2. One-dimensional mutation. 

3.3.2 Gene Duplication 
In nature, a process called gene duplication, where some genes are 
duplicated during the process of chromosome reading, sometimes 
occur. This is known to play an important role in the evolution of 
species [9], [12]. 
A new mutation based on these observations was developed, where 
a randomly chosen element (coordinate) xi is copied into another 
element xj whenever it minimizes the objective function (minimiza-
tion problem). Algorithm 3 describes the operator. 
 

Function [x] = gene_duplication(x) 
Dup = x[rand(1,n)] 
x’ = x; 
For each element of x do 
 x’[j] = Dup; 
 If x’ is better than  x then 
  x[j] = x’[j] 
 Else 
  x’[j] = x[j] 
 End 
End 
Algorithm 3. Gene duplication. 
The two new mutations proposed work better if the one-dimensional 

mutation precedes gene duplication, because the former results in an 
improvement of at least one element of the vector, and the latter can 
benefit from this improvement. 

3.4 Cell Line Suppression 
The use of Euclidean distance to indirectly measure the affinity 
among cells in opt-aiNet may require some pre-analysis of the func-
tion to be optimized in order to adjust the threshold parameter (σs). 
In some cases, it is very hard to determine an appropriate threshold 
value. A new algorithm is then proposed to decrease the probability 
of having more than one cell located at each peak of the fitness land-
scape, thus reducing redundancy. The cell line suppression algo-
rithm is described as follows (see Figure 1) 
 

Function [X] = cell_line_suppress(X, σs) 
For each pair of cells x1,x2 do 

P1 = [x1 f(x1)] 
P2 = [x2 f(x2)] 
P = [x1+0.5(x2-x1)  f(x1+0.5(x2-x1))] 
v = P2 – P1 
w = P – P1 
c1 = w.v  %dot product of vectors w and v 
c2 = |v|  %norm of vector v 
b = c1/c2   %projection of P on 12 PP  

If c1 <= 0, % nearest point is on P1 
  d = dist(P,P1) 
 Else If c2 <= c1,  %nearest point is on P2 
  d = dist(P,P2) 

Else, %nearest point is at the point  

Pb where 12 PPPPb ⊥  

  Pb = P1 + b.v 
  d = dist(P,Pb) 

End 

If d < σs then  
eliminate the cell with worst objec-

tive function value. 
End 

 
End 
Algorithm 4. Cell line suppression. 
 
First the line segment 

21PP  is built from [x1 f(x1)] and [x2 f(x2)], its 
middle point is taken and its corresponding function value is calcu-
lated forming point P = [(x1+x2)/2 f((x1+x2)/2)]. Next, the direc-
tion vectors v and w of lines 

21PP  and 
1PP , respectively, are calcu-

lated. Then, to measure the distance from point P to the line segment 

21PP , it is first calculated the nearest point from P to P1P2, that is 
done by projecting this point into the line segment. If this projection 
is outside the line segment, then either the point P1 (when c1 ≤ 0) or 
the point P2 (when c1/c2 ≥ 1) is taken, whatever is closer. After that, 
the Euclidean distance from these two points is calculated and if it is 
less than the threshold σs, one of the two cells are eliminated. This 
threshold is much easier to set, since the difference from the distance 
of cells that must be eliminated and those that must not is too high. 
Experimentally a value σs = 0.5 is a good suggestion.  
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 (a)    (b)         (c) 

Figure 1. Cell Line Suppression example. In (a) three points must be evaluated, (b) P1 and P2 hold a large similarity (small distance value) and the dis-
tance is measured by the projection point Pb, while in (c) P1 and P3 are too far apart (large distance value) and on this case the projection point is out-

side the line segment, so the point P1 is taken to measure the distance as it is the nearest point between P1 and P3. 
 

3.5 Limited Population 
The last modification proposed was developed to deal with func-
tions with too many optimal solutions. In such cases, as the algo-
rithm tends to find every possible optimum, the population expands 
along the iterations and may cause an excessive memory usage, 
resulting in an increase of convergence time. To avoid this, a maxi-
mum number of cells is pre-defined. When the population of cells 
reaches this number, a percentage of the worst fitness cells is elimi-
nated from the current subpopulation. 

The resultant dopt-aiNet is summarized in Algorithm 5. 

Function [C] = dopt-aiNet(Nc,range,σs,f,max_cells) 
C = random(range) 
While stopping criterion is not met do 

fit = f(C)     
C’ = clone(C,Nc)    
C’ = mutate(C’,f) 
For each cell c from C do, 
 If c’ is better than c, 
  c.rank = c.rank + 1 
  c = c’ 

Else 
 c.rank = c.rank – 1 
End 
If c.rank == 0, 
 Mem = [Mem, c] 
End 

 End 
% These two mutations are only applied to    
  cells with rank values greater than zero 
C = one-dimensional(C,f) 

 C = gene_duplication(C,f) 
 Mem = one-dimensional(Mem,f) 
 Mem = gene_duplication(Mem,f) 

For each cell m from Mem do, 
 If m has improved, 
  m.rank = m.rank + 1 

Else 
 m.rank = m.rank – 1 
End 

 End 
Avg = average(f(C))   
If the average error does not stagnate 

return to the beginning of the loop 
else 

cell_line_suppress(C, σs) 
C = [C; random(range)] 

End 
If size(C) > max_cells, 
 suppress_fitness(C) 
End 

End 
Algorithm 5. dopt-aiNet: an extended version of opt-aiNet for optimiza-
tion in dynamic environments. 

4. NUMERICAL EXPERIMENTS 
To assess the performance of dopt-aiNet for solving global and mul-
timodal optimization problems, some initial experiments were con-
ducted with a large number of multi-dimensional static functions. A 
good performance on static benchmark functions not only validates 
the proposal in these circumstances, but also gives an indication that 
the algorithm may react with sufficient speed so as to cope with 
dynamic environments. The second set of experiments was thus 
performed taking into account time-varying functions. In both cases 
the results of dopt-aiNet were directly compared with those found in 
the literature. 

4.1 Static Environments 
The application of dopt-aiNet to static environments was performed 
by applying it to 18 numeric functions with varying degrees of com-
plexity. The first 11 functions were taken from Leung and Wang 
[11], and the last 7 functions were taken from Timmis et al. [16]. 
The performance will be compared with those provided by the algo-
rithms discussed in the cited references. Two aspects are taken into 
account for comparison: 1) the capability of finding the global opti-
mal solution; and 2) the average number of function evaluations to 
find the optima. Discussions about the number of optimal solutions 
found are also included. 
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The initialization range and the dimension adopted for each of the 
first 11 functions follow Leung and Wang [11] (Table 1). 

For each function 1,000 iterations of dopt-aiNet were run in 30 
independent experiments and the results compared with the follow-
ing methods (see [11] and [16] for details): 

Table 1. Initialization range for the benchmark functions. 

Function Initialization Range Problem Dimension (N) 
f1 [-500, 500]N 30 
f2 [-5.12, 5.12]N 30 
f3 [-32, 32]N 30 
f4 [-600, 600]N 30 
f5 [0, π]N 30 
f6 [-5, 5]N 100 
f7 [-5, 10]N 30 
f8 [-100, 100]N 30 
f9 [-10, 10]N 30 
f10 [-100, 100]N 30 
f11 [-100, 100]N 30 

 
 
o Orthogonal Genetic Algorithm with Quantization (OGA/Q) 

[11]: an enhanced GA with quantization. 
o Conventional Genetic Algorithm (CGA): the ordinary genetic 

algorithm used for comparison with OGA/Q. 
o Fast Evolution Strategy (FES) [18]: evolution strategy with 

Cauchy mutation. 
o Enhanced Simulated Annealing (ESA) [14]: a simulated an-

nealing where large steps are used on high temperatures and 
small steps at low temperatures. 

o Particle Swarm Optimization (PSO) [2]: a swarm based meta-
heuristic. 

o Evolutionary Optimization (EO) [2]: following the same 
framework of evolutionary algorithms, it uses only mutation 
and selection to evolve a population. 

o B-Cell Algorithm (BCA) [16]: another immune system based 
algorithm, but this one has a fixed population size, bit-string 
representation and uses a contiguous somatic hypermutation. 

o Hybrid GA algorithm (HGA) [16]: a genetic algorithm with 
hybrid search technique to help improving the solutions. 

Tables 2, 3 and 4 summarize the performance of the algorithms 
when applied to some of the benchmark functions from Leung and 
Wang [11].  

Table 2. Performance comparison between dopt-aiNet and opt-aiNet when applied to four benchmark functions from [11].  
Mean Objective Function Value Mean no. of Function Evaluations ±±±± std Function Known Global 

Value dopt-ainet opt-aiNet dopt-ainet opt-aiNet 
f2 0 0 153.54±13.58 3379.3±1040.8 5500000 
f4 0 0 340±61.94 7276±2072.5 5500000 
f7 0 0 0.2192±0.085  81296±5801.8 5500000 
f8 0 0 0 6182.6±1693.4 3109986±362220 

 

Table 3. Performance comparison among dopt-aiNet, OGA/Q and CGA when applied to eleven benchmark functions from [11]. 
Mean Objective Function Value Mean no. of Function Evaluations ±±±± std Function Known Global 

Value dopt-ainet OGA/Q CGA dopt-ainet OGA/Q CGA 
f1 −12569.5 −18286 −12569.5 −8444.75 4168.7±4250.9 302166 458653 
f2 0 0 0 22.97 3379.3±1040.8 224710 335993 
f3 0 0 4.440×10−6 2.69 5563.7±1112.3 112421 336481 
f4 0 0 0 1.26 7276±2072.5 134000 346971 
f5 −99.27 −99.27 −92.83 −83.27 2318.7±1901.4 302773 338417 
f6 −78.33 −78.33 −78.30 −59.05 428460±34992  245930 268286 
f7 0 0 0.752 150.79  81296±5801.8 167863 1651448 
f8 0 0 0 4.96 6182.6±1693.4 112559 181445 
f9 0 0 0 0.79 406150±22774  112612 170955 
f10 0 0 0 18.83 10113±3050.1 112576 203143 
f11 0 0 0 2.62 119840±6052.8 112893 185373 
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Table 4. Performance of dopt-aiNet, FES and ESA when applied to some benchmark functions from [11]. 
Mean Objective Function Value Mean no. of Function Evaluations ±±±± std 

Function 
Known 
Global 
Value dopt-ainet FES ESA PSO EO dopt-ainet FES ESA PSO EO 

f1 −12569.5 −18286 −12556.4 --- --- --- 4168.7±4250.9 900030 --- --- --- 
f2 0 0 0.16 --- 47.1345 46.4689 3379.3±1040.8 500030 --- 250000 250000 
f3 0 0 0.012 --- --- --- 5563.7±1112.3 150030 --- --- --- 
f4 0 0 0.037 --- 0.4498 0.4033 7276±2072.5 200030 --- 250000 250000 
f6 −78.33 −−−−78.33 --- --- 11.175 9.8808 428460±34992   250000 250000 
f7 0 0 --- 17.1 --- ---  81296±5801.8 --- 188227 --- --- 

 

Table 5. Performance of dopt-aiNet, opt-aiNet, BCA and HGA when applied to the last 7 benchmark functions from [16]. 
Mean Objective Function Value Mean no. of Function Evaluations ±±±± std 

Function 
Known 
Global 
Value dopt-ainet opt-aiNet BCA HGA dopt-ainet opt-aiNet BCA HGA 

f12 −1,12 −1,12 −1,12 −1,08±04 −1,12 103.4±26.38 6717±538 3016±2252 6081±4471 
f13 −12,06 −12,06 −12,03 −12,03 −12,03 110±0 41419±25594 1219±767 3709±2397 
f14 0,4 0,4 0,39 0,4 −0,4 302.4±99.19 6346±4656 4921±31587 30583±28378 
f15 −186,73 −186,73 −180,83 −186,73 −186,73 1742.7±1412.3 363528±248161 46433±31587 78490±6344 
f16 −186,73 −186,73 −173,16 −186,73 −186,73 1227.6±976.21 346330±255980 426360±32809 76358±11187 
f17 −0,35 −0,35 −0,26 −0,91 0,99 442.8±141.82 54703±29701 2862±351 12894±9235 
f18 −186,73 −186,73 −186,73 −186,73 −186 349.2±67.15 50875±45530 14654±5277 52581±19095 

 
Table 6. Number of peaks found by dopt-aiNet in 1000 iterations. 

Function Number of peaks found 
f1 20 

f2 18 

f3 33 

f4 40 

f5 20 

f6 23 

f7 20 

f8 22 

f9 20 

f10 20 

f11 30 

 
Table 5 compares the performance of dopt-aiNet with opt-aiNet (as 
presented by Timmis et al. [16]), BCA and HGA on the last 7 func-
tions used by Timmis et al. [16]. Table 6 depicts the number of local 
optima found by dopt-aiNet, stressing its capability of locating mul-
tiple optimal solutions. As can be observed, dopt-aiNet presented a 
good performance, both in terms of number and quality of solutions, 
on most problems. Most works from the literature do not present the 
standard deviation for the algorithms discussed. However, it is pos-
sible to infer that even the worst case of dopt-aiNet is superior to the 
mean of most results from the literature.  

4.2 Dynamic Environments 
Motivated by the good results obtained for the static benchmark 
problems, dopt-aiNet was tested on dynamic environments. There 
are some other recent papers that successfully applied immune algo-
rithms on time-varying problems [8],[10],[17]. However, in all cases 
the test functions used were simpler than the ones to be investigated 
here. 
The tests were made based on one of Angeline’s experiments [3], in 
which the optima suffer a displacement at every n iterations, as 
specified. In Angeline [3], three movements (linear, circular and 
Gaussian) and two adjusting parameters (τ and f) were defined, the 
amount of displacement (τ) and the update frequency (f), that means 
that at every f iterations the function is updated. 

The linear movement displaces the optimum by a constant rate at 
every iteration update, simply adding ∆k to each variable. The up-
date rule for ∆k is as follows: 

∆k = ∆k + τ (20) 

where τ is the amount of displacement. 
The circular movement displaces the optimum in cycles of 25 units 
of time regarding update: 
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where t is the number of times the function was displaced so far. 
Finally, the Gaussian movement displaces the optimum at a Gaus-
sian random rate, updating ∆k as follows: 

∆k = ∆k + N(1,0) (22) 

As the optima keep moving along the iterations, there is no need for 
a memory subpopulation, as the cells will always have a direction to 
improve. Thus, the mutation operators described in Sections 3.3.1 
and 3.3.2 were run at each iteration on the current subpopulation. 
For this set of experiments, it were tested the linear, circular and 
Gaussian movements with τ = 0.1 and update rate at every iteration. 
A total of 1,000 iterations were run to study the behavior of dopt-
aiNet when dealing with a moving target on some of the functions 
studied above. It was calculated the maximum, minimum and aver-
age objective function values and the mean error; that is, the dis-
tance from the best current point to the optimum of each function. 
Four functions were used in these experiments: Sphere, Rosenbrock, 
Rastrigin, and Griewank, as described below: 
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The initialization range and problem dimension are summarized in 
Table 7. All functions have the global optimum equals to 0. 

Table 7. Initialization range for the dynamic functions. 
Function Initialization Range Problem Dimension (N) 
Rastrigrin [-5.12, 5.12]N 30 
Griewank [-600, 600]N 30 
Rosenbrock [-100, 100]N 30 
Sphere [-1.28, 1.28]N 30 

 
Table 8 summarizes the performance of dopt-aiNet when applied to 
the four dynamic problems described above, and Figure 2 illustrates 
the behavior of the algorithm during the iterative search. The num-
bers within parentheses in Table 8 correspond to the iteration when 
dopt-aiNet first identified the global optimum and the maximum, 
minimum, mean and error values corresponds to the period between 
this iteration to the end. Through the error value it can be inferred 
that after the global optimum is found the oscillation around this 
point is minimal indicating the capacity of the algorithm to pursue 
the moving target. 
As can be observed from Figure 2, for all functions, with the excep-
tion of Rosenbrock, dopt-aiNet reached the region surrounding the 
global optimum very quickly and oscillated around it while the envi-
ronment was moving. From the four functions tested, Rosenbrock 
was the one with higher learning time. This is because it has a large 
plateau near the global optimum, making the search more compli-
cated at the neighborhood of the optimum. 
 

Table 8. Max, min, and mean objective function value, together with the 
average error for 1,000 iterations. 

Function Linear Circular Gaussian 
Max 46.76 0.75 0.05 
Min 4.16×10−16 8.32×10−16 8.12×10−19 
Mean 0.05±1.47 0.13±0.13 7.11×10−4

 Sphere 

Error 0.02±0.22 0.32±0.18 
(100) 

0.02±0.02 
(100) 

Max 2.59 43.79 0.92 
Min 0.14 0.21 0.06 
Mean 0.74±0.58 8.49±7.44 0.14±0.19 Rosenbrock 

Error 0.50±0.17 (400) 0.57±0.24 
(300) 

0.22±0.17 
(400) 

Max 39.56 74.05 55.11 
Min 9.4×10−9 0 0 
Mean 0.35±1.47 16.05±15.46 0.48±2.62 

Rastrigin 

Error 0.03±0.16 0.38±0.58 0.03±0.16 
Max 1.48 0.02 3.8 
Min 0 0 0.01 
Mean 0.003±0.06 0.006±0.005 0.04±0.23 Griewank 

Error 0.13±1.76 0.33±0.17 
(100) 7.57±5.79 

 

5. CONCLUSION 
This work proposed several improvements to the opt-aiNet algo-
rithm that not only helped to enhance its capabilities of quickly 
finding local optimal solutions and maintaining the cell diversity but  
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Figure 2. Performance of the dopt-aiNet on dynamic environments (iterations ×××× log(fitness)). Linear displacement, with step size ττττ = 0.1 and update 
frequency f = 1. (a) Sphere. (b) Rosenbrock. (c) Rastrigin. (d) Griewank. 
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also made it capable of dealing with dynamic environments (func-
tion with moving optima). The new procedures include: 1) the use 
of a modified golden section method as a local search procedure for 
an optimal mutation rate; 2) two new mutation operators to fine-tune 
each cell; and 3) a new suppress algorithm based on the approxima-
tion of a line between two points and the corresponding objective 
function curve, what provides a better measure of the affinity among 
cells.   

These modifications were tested and showed to successfully solve 
several benchmark static problems with large dimensions. On dy-
namic environments, the behavior of the algorithm was also encour-
aging. In the most difficult situations, dopt-aiNet was able to track 
the optima while it changed its position through time. 

For future research it must be studied a single suitable mutation to 
deal with tracking the optima once this is reached. Also some other 
types of dynamic environments must be investigated, for instance, 
when some optima disappear and others appear somewhere else, or 
when the intensity of peaks and valleys varies. Also, some tests 
should be performed on discrete optimization problems. 
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