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ABSTRACT

Negative selection algorithms for hamming and real-valued
shape-spaces are reviewed. Problems are identified with the
use of these shape-spaces, and the negative selection algo-
rithm in general, when applied to anomaly detection. A
straightforward self detector classification principle is pro-
posed and its classification performance is compared to a
real-valued negative selection algorithm and to a one-class
support vector machine. FEarlier work suggests that real-
value negative selection requires a single class to learn from.
The investigations presented in this paper reveal, however,
that when applied to anomaly detection, the real-valued neg-
ative selection and self detector classification techniques re-
quire positive and negative examples to achieve a high clas-
sification accuracy. Whereas, one-class SVMs only require
examples from a single class.

Categories and Subject Descriptors

1.5.2 [Pattern Recognition]: Design Methodology— Clas-
sifier design and evaluation, Pattern analysis

General Terms
Algorithms

Keywords

Artificial Immune Systems, Negative Selection, Positive Se-
lection, Anomaly Detection, One-Class SVM

1. INTRODUCTION

The goal of (supervised) pattern classification, also re-
ferred to as pattern recognition, is to find a functional map-
ping between input data X to a class label Y so that ¥ =
f(X). The mapping function is the pattern classification
algorithm which is trained (or learned) with a given number
of labeled data called training data. The aim is to find the
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mapping function, which gives the smallest possible error in
the mapping, i.e. the minimum number of examples where
Y is the wrong label, especially for test data not seen by the
algorithm during the learning phase. In the simplest case
there are only two different classes and the task is to esti-
mate a function f : RY — {0,1} 3 Y, using training data
pairs generated i.i.d.} according to an unknown probability
distribution P(X,Y)

(X1, Y1), ., (X, Vo) eRY x Y, Y ={0,1}

such that f will correctly classify unseen examples (X,Y).
If the training data only consists of examples from one class
and the test data contains examples from two or more classes,
the classification task is called anomaly detection or novelty
detection. An example of anomaly detection is machine fault
recognition, where only training data containing normal be-
havior is available, as it is difficult or impossible to obtain
abnormal behavior.

From the viewpoint of pattern classification and anomaly
detection, the immune system is a highly dynamic system
which recognizes and classifies many different and unseen
molecules at any given time and therefore has been a rich
source of inspiration for pattern classification [28, 25] and
anomaly detection [4, 22, 18].

This paper is organized as follows: In section 2, we explain
how the immune system discriminates foreign cells from self
cells and is able to recognize possible antigens with a limited
number of antibodies. In-depth immune specific details are
omitted, since they are not relevant to this work. In section
3 and 4, negative selection over two different shape-spaces is
presented and resulting problems are discussed. In section 5,
we propose a straightforward classification method inspired
by the positive selection immune system principle. In sec-
tion 6 we discuss resulting problems and open questions in
the real-valued negative selection algorithm. In section 7,
the Support Vector Machine (SVM) and the modified one-
class SVM variant are introduced. In section 8, we compare
our proposed algorithm to the real-valued negative selection
algorithm proposed by Ji and Dasgupta [18] and to a one-
class SVM.

2. IMMUNE SYSTEM

The main task of the immune system is to defend the
body against disease caused by pathogens. Pathogens are
foreign substances like viruses, fungi, parasites and bacteria

Yindependently drawn and identically distributed



which attack the body and can lead to death in the worst
case. To detect and eliminate pathogens, the immune sys-
tem contains certain types of white blood cells called lym-
phocytes, which can recognize pathogenic patterns, called
antigens. Lymphocytes can be thought of as detectors, as
they carry recognition units (termed antibodies) on their
surface which have the capability to recognize and classify
proteins®, which are produced inside the host (termed self)
and outside the host (termed non-self). To avoid a misclassi-
fication of self proteins by lymphocytes, the immune system
eliminates self reactive lymphocytes in a censoring process
called negative selection. After this censoring process, the
immune system contains lymphocytes which recognize non-
self proteins. Since the amount of lymphocytes at any given
time is limited, lymphocytes which are not involved in a
recognition process (stimulated) are removed by a mecha-
nism called apoptosis (cell death) and new lymphocytes are
added by the immune system. This continual turnover of
new and old lymphocytes enables the immune system to rec-
ognize all possible non-self proteins over time with a limited
number of antibodies. More precisely, the immune system
disposes about 10° different proteins which are randomly
composed from different gene segments. This random com-
position together with the junctional diversity® and the so-
matic hypermutation® achieves a potential repertoire (com-
plete lymphocytes diversity) of about 10** B-lymphocytes
and 10'® T-lymphocytes [17]. Experiments show that each
day approximately 107 new lymphocytes are generated [5].
Since at any given time, only 10® different lymphocytes are
available, and these are turned over a rate of 107 per day,
it will take 10 days to generate a complete new lymphocyte
repertoire and on average it takes 3.5 days to generate a
lymphocyte which matches a specific antigen [5].

As explained above, the negative selection process elimi-
nates self reactive lymphocytes. In addition, the immune
system also performs a positive selection. A cell which is
infected with a virus is not directly detectable by antibod-
ies, because the cell carries no binding information on their
surface. To solve this problem, all cells contain MHC (ma-
jor histocompatibility complex) molecules which are able to
present intruded viral peptides on the cells surface. The
MHC presented information consists of non-self peptides,
but also of self peptides (called self-MHC molecules). The
process of positive selection assures that those lymphocytes
are selected, whose antibodies are capable of recognizing and
binding with self-MHC molecules associated with non-self
peptides. One can say that positive selection allows the im-
mune system to recognize self.

3. NEGATIVE SELECTION PRINCIPLE

The negative selection principle is a mechanism of the
immune system to protect the body against self reactive
lymphocytes. This principle inspired Forrest et al. [22] to
propose a negative selection algorithm to detect data ma-
nipulation caused by computer viruses. The basic idea is to
generate a number of detectors in the complementary space
and then to apply these detectors to classify new (unseen)

?building blocks for antigens and molecules
3Variability in antibodies caused by differences in the exact
crossover point during the joining of gen segments

4The occurrence of a high level of mutation in the variable
regions of antibody building blocks
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data as self (no data manipulation) or non-self (data ma-
nipulation). The negative selection algorithm proposed by
Forrest et al. is summarized in the following steps.

Algorithm 1
Given a shape-space U, self set S and non-self set N, where

U=SUN and SNN =0.

1. Define self as a set S of elements of length [ in shape-
space U.

2. Generate a set D of detectors, such that each fails to
match any element in S.

3. Monitor S for changes by continually matching the de-
tectors in D against S.

This original algorithm has some drawbacks, more thor-
oughly discussed in [11]. To summarize, the algorithm is
inefficient, since a vast number of randomly generated de-
tectors need to be discarded, before the required number of
suitable once are obtained — this is a simple random search.
And second, the algorithm is defined over a shape-space as-
sociated with an affinity function which induces additional
problems, discussed in the following section.

3.1 Shape-Space and Affinity

The notion of shape-space was introduced by Perelson and
Oster [21] and allows a quantitative affinity description be-
tween antibodies and antigens. More precisely, a shape-
space is a metric space with an associated distance (affin-
ity) function. In this paper, the Hamming shape-space and
real-valued shape-space are considered, as they are the most
commonly used for negative selection. A detailed overview
of other shape-shapes and affinity functions used in artifical
immune systems is provided in [6].

3.2 Hamming Shape-Space and R-chunk
Matching

The Hamming shape-space Ui is built out of all elements
of length [ over an finite alphabet ¥. In the original nega-
tive selection algorithm proposed by Forrest et al. [22] it
is defined over the binary alphabet ¥ = {0,1}. The r-
contiguous [20] matching rule was applied to determine the
affinity between a detector and an element. Informally, two
elements, with the same length, match if at least r con-
tiguous characters are identical. In succeeding works [2, 12]
the performance of different matching rules over the binary
alphabet are compared and the r-chunk [12] matching rule
achieved the highest matching performance compared to the
other matching rules over the binary alphabet. The r-chunk
matching rule is an improved variant of the r-contiguous
matching rule and is defined as follows :

Given a shape-space U;, which contains all elements of
length [ over an alphabet ¥ and a shape-space DZ.

Definition 1. An element e € U with e = ejes...e; and
detector d € N x DF with d = (p,didz ...d,), for r <1, p <
l—r+1 match with r-chunk rule if e; = d; fori=p,...,p+
r—1.

Informally, element e and detector d match if a position p
exists, where all characters of e and d are identical over a
sequence length r.
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(c) The detector set underfits,
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not recognized by the detec-
tors and therefore are classi-
fied as self.

Figure 1: Holes are necessary to generalize beyond
the training set. Too many holes results in an under-
fitting, whereas, no holes results in an overfitting.

The Hamming shape-space and the affinity functions r-
contiguous and r-chunk are very appealing from a biological
perspective, as they allow for a straightforward mathemat-
ical analysis [7, 9] and provide a simple abstraction of the
binding between antibody and antigen [20].

3.3 Generalization by Holes

All matching rules, including the r-chunk rule investi-
gated in [12], cause undetectable elements (termed holes).
Holes are elements of N or self elements not seen during
the training phase. For these elements no detectors can
be generated and therefore, they cannot be recognized and
classified as non-self elements. The term holes is an im-
proper expression, because holes are necessary, to general-
ize beyond the training set. A detector set which gener-
alizes well, ensures that seen and unseen self elements are
not recognized by any detector, whereas all other elements
are recognized by detectors and classified as non-self (see
Fig. 1(a)). A detector set which covers all non-self ele-
ments and all unseen self elements overfits, because no holes
(no generalization) exists (see Fig. 1(b)). In contrast, a
large number of holes implies that there are a large num-
ber of unseen self elements and non-self elements which are
not covered by the detector set. Therefore the detector set
underfits (see Fig. 1(c)).  Balthrop et al. [2] proposed
a method (termed crossover-closure) to find holes for the
r-chunk matching rule by given parameters [, and S. We
summarize it algorithmically (see algorithm 2) and show (see
Fig. 2) an illustrative example of the construction for a given
set S = {01010, 01110, 10001, 11010, 11011},7 = 5,r = 3.

Algorithm 2
Given a set S = {S51,S52,...,5,} of self strings, element
length ! and matching length r :
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r—1

010 01 —= 010 = {01010, 11010} = {S1, S1}
\—]—1'7« =
011 111 —= 110 = {01110} = {S5}
100 000 —= 001 = {10001} = {S3}
110 101 010 ={11010, 01010} = {S4, S1}
011 ={01011, 11011} = {H, S5}
Figure 2: Construction to find holes for r = 3

and [ = 5 for the r-chunk matching rule for S =
{01010, 01110, 10001, 11010, 11011}. For element H; =
{01011} it is not possible to generate a detector which
recognizes H; as non-self

1. Cut S; inl — 7 + 1 substrings S;,; := Si[f, ...
fOrj:l’,__’lfr+171:17”.’,”.

7T_1+‘7]

2. Connect substring Si; to Sk j+1 with a direct edge,
if the last » — 1 characters of S; ; and the first » — 1
characters of Sk j+1 are identical, for i = 1,...,n,
k=1,...,nand j=1,...,n— 1.

Traverse and shuffle coincident substrings
Sity...ySii—rt1 for ¢ = 1,...,n to obtain the set of
self strings S and the set H of undetectable elements.

Algorithm 2 shows, that holes arise in commonly occurring
distinct self strings. Therefore, the number of holes increases
with the number of self strings and can be controlled with
parameter r. Esponda et al. [9] presented formulas to ap-
proximate the number of holes by given |S|,1 and r. Using
Esponda’s formulas, the approximation can be simplified as
one term :

Ty

H(|S],l,r) -Ty —|S] (1)

where

2,,_2,,(1_2%)\3\

[27%<172Th—1)4\3\72(<17ﬁ)2\s\7<17QT{Fl)S\S\)}(l—r)

Using the assumption that |S| < |N|, the number of holes
increases exponentially for » — [,...,1. This implies, that
the r-chunk matching rule will underfit exponentially. To
obtain a linear under/overfitting behavior, » must be close
to [. However this makes the detector generation compu-
tationally infeasible, since all proposed detector generation
algorithms® [1, 26] have a runtime complexity, which is ex-
ponential in 7. Therefore, the hamming shape-space and the
r-chunk matching rule are only appropriate and applicable
for anomaly detection problems for small values of [ (e.g.
0<1<32).

T1

T2

4. REAL-VALUEDNEGATIVESELECTION
ALGORITHM

The principle of generating detectors in the complemen-
tary space and using these detectors to classify elements is
adaptable to other shape-spaces. Gonzalez et al. [13, 14]

Sr-contiguous and r-chunk



Figure 3: Real-Valued Negative Selection principle
with variable size detectors for a two-dimensional
space. The non-self space which is covered by the
detectors is pictured as the shaded area. The self
elements are pictured as white circles with a black
center

propose a negative selection algorithm, which operates on
a unitary hypercube [0,1]". A detector d = (¢, rns) has a
center ¢ € [0,1]™ and a non-self recognition radius r,s € R.
Furthermore, every self element s = (¢, rs) has a center and
a self radius rs. The motivation behind the self-radius is to
consider other elements as self, which are close to the self-
center. If an element lies within a detector (hypersphere),
then it is classified as non-self, otherwise as self. An element
e lies within a detector d = (¢, Tns), if the Euclidean distance

dist(c,e) = (30, (ci — 61’)2)1/2 < Tns.

4.1 Variable-Sized Real-Valued Negative
Selection Algorithm

Ji and Dasgupta [18] proposed a real-valued negative se-
lection algorithm with variable size detectors (termed V-
Detector), where the center of a detector is positioned ran-
domly and must not lie within the hypersphere of a self-
element. The radius is dynamically resized to the next self-
element margin (see Fig. 3). The algorithm terminates,
if a predefined number of detectors is generated or a pre-
determined proportion of non-self space is covered. The
classification performance of this algorithm is tested on dif-
ferent data sets, for example Iris Fisher and Biomedical [27],
and is compared to other negative selection algorithms.

5. REAL-VALUED SELF DETECTOR
CLASSIFICATION

In this section, we propose a straightforward classification
method, termed Self Detector Classification, which is in-
spired by the positive selection immune system principle and
the Occam’s Razor principle which states : “Entities should
not be multiplied unnecessarily” or a more useful statement
for scientists : “When you have two competing theories which
make exactly the same predictions, the one that is simpler is
the better”.

The self detector classification operates on a unitary hy-
percube [0, 1]". Self-elements are considered as self-detectors
with an a-priori given self-radius® r,, which is determined
in the training phase by means of the ROC analysis. An ele-
ment is classified as self, if it lies within a self-detector, oth-
erwise as non-self. The self-detector classification method is

Swhich is also necessary in the real-valued negative selection
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Figure 4: Real-Valued Self-Detector Classification
for a two-dimensional space. The covered non-self
space is pictured as the shaded area. The self ele-
ments are pictured as grey circles with a center and
a self-radius r,

Actual

Classifier Predict

Figure 5: General Confusion Matrix

illustrated geometrically in figure 4 and summarized in the
following steps :

Algorithm 3

1. For training examples S C S generate self detectors
dg with rs = 0.

2. Perform (Ad)~! training classification runs over U C U
and find rs, which yields the minimum error (see Eq.

(2))

3. Classify new examples x € U as self, if Euclidean
dist(dg, x) < rs, otherwise as non-self.

In the following section we motivate the use of ROC anal-
ysis and propose a method to find an optimal self-detector
radius.

5.1 ROC Analysis

ROC (Received Operating Characteristic) analysis is used
in signal detection theory to describe how well a receiver can
distinguish a signal from noise or more generally, depict a
tradeoff between hit rates and false alarm rates of classifiers.
To motivate the ROC analysis, we give a simple example of
a binary classifier and the resulting evaluation problems.
Given a data set of 100 elements, where 99 are non-self and
1 is self. Let ¢; be a classifier that always predicts non-self
(trivial classifier). The error-rate of ¢; is therefore 1 % and
it seems to be a very good classifier. Given a different data
set which contains 100 elements, but 99 of them are self and
1 is non-self. In this case, the classifier has an error rate of
99 % and is inapplicable. This problem arises because we
do not know the class distribution and the context or skew
which determines the goodness of a classifier. To measure
the real performance of classifiers the ROC analysis is an ap-
propriate method. Given a classifier and an example, there



are four different outcomes. If the example is non-self and
it is classified as non-self, it is counted as a true positive; if
it is classified as self, it is counted as a false negative. If the
example is self and it is classified as self, it is counted as a
true negative; if it is classified as non-self, it is counted as a
false positive. Given a classifier and a set of test examples,
a 2 X 2 confusion matriz can be constructed representing
the dispositions of the set of examples (see Fig. 5). Us-
ing the matrix values, the detection rate (true positive rate)
and the false alarm rate (false positive rate) of a classifier is
calculated as :

detection rate — non-self correctly classified _ TP
total non-self TP+FN
false alarm rate — self incorrectly classified _ FP
total self FP+TN

The trivial classifier ¢; has a detection rate of 100%, but
a false alarm rate of also 100%. To compare the classifi-
cation performance of several classifiers, the detection rate
and false alarm rate is plotted on a two-dimensional graph
(ROC space), where the detection rate is plotted on the or-
dinate and the false alarm rate on the abscissa. Informally,
one point in the ROC space is better than another if it is
northwest (detection rate is higher, false alarm rate is lower,
or both) of the first. A point at (0,1) represents a perfect
classifier (100% detection rate and 0% false alarm rate).

5.2 Determine Optimal Self-Radius

The ROC analysis provides a technique to evaluate the
classification performance of classifiers. To find a self-detector
radius rs which yields the overall best balance between de-
tection rate and false alarm rate, rs is initialized with a
small start value (e.g. 0.01) and increased after one train-
ing classification run by rs = rs + A¢ until r; > max (e.g.
max = 1.0). For every As step, the resulting false alarm rate
fi and detection rate d; yield a point p; in the ROC space,
which results in a ROC curve. Then a radius 7 is chosen
which yields the minimum error, this results in an overall
best balance between detection rate and false alarm rate.

min (1 — (d; — fi)), (2)

6. REVIEW OF REAL-VALUEDNEGATIVE
SELECTION

From a geometrical point of view (compare figure 3 and 4),
the real-valued negative selection method first fills the space
with detector-circles” (shaded area) and considers elements
as non-self if they lie within a detector-circle. In contrast,
the self-detector classification method considers the com-
plete space as non-self, with exception of elements which
lie within a self-detector-circle.

The main parameter which influences the classification per-
formance and enables the learning capability (generaliza-
tion) is the self-radius rs, which is used in both methods.
From the paper [18], it is not clear how to determine the
self-radius 7, with a training set which contains only self el-
ements, without any techniques (probabilistic or determinis-
tic) to obtain information about the other class. In [18] the
self-radii 7s = 0.1 and s = 0.05 are used without any ex-
planation. The radius rs strongly depends on the probability
density function of the data set, which is unknown a-priori.

minimum error = Vi

"hyperspheres for higher dimensions
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An improper chosen radius rs consequently results in a weak
classification performance. To estimate a proper radius by
only been given training data from one class, a coherence
between estimated probability density function and radius
must be found.

Another problem is how to find an optimal distribution of
the detectors, i.e. the minimum number of detectors cov-
ering the maximum possible non-self space. This is a hard
combinatorial problem, which is solved in [14] with the simu-
lating annealing technique. As a consequence, a vast amount
of time is needed to generate and to position the detectors
to cover the non-self space. One must raise the question
of whether this real-valued negative selection algorithm is
an appropriate approach for anomaly detection. From our
point of view, it is an approach which requires two classes
in the learning phase in order to determine the self-radius.
In addition, it has a high runtime complexity to find the
optimal distribution of the detectors.

7. SUPPORT VECTOR MACHINE

For comparative purposes, we briefly introduce the princi-
ple of Support Vector Machines, but omit some mathemati-
cal details. For an in-depth introduction see [19, 23]. A Sup-
port Vector Machine (SVM) is a machine learning paradigm
for a two-class classification problem. In this paradigm,
the input data is mapped into a higher-dimensional fea-
ture space through an a-priori chosen non-linear mapping?®,
where a linear decision region is constructed. This decision
region when mapped back into the original feature space
can take a non-linear form. Loosely speaking, the SVM al-
gorithm looks for the separating hyperplane with the largest
margin, where the hyperplane only depends on a subset of
training examples, called support vectors. More precisely,
given training data {z;,y;},7 = 1,...,, z; € R™ Jy; €
{£1} and a nonlinear mapping in the feature space F

o:RY — F
x — P(z)

SVM classifiers are based on the class of hyperplanes :
f(z)

corresponding to decision functions :
f(z) = sign((w - z) + b)

Perfect separating hyperplanes, which classify without train-
ing error in F are :

yi((w - ®(z;)) +b) > 1,

(w-x)+b weR™ beR

i=1,...,1

Introducing Lagrange multipliers a; > 0,¢ = 1,...,1 this
can be formulated as the dual quadratic optimization prob-
lem :

l l

1
max Z =g Z oYYk (i, vi)
“ i=1 ig=1
subject to a; >0,i=1,...,1

l
ZO@ Yi =0
i=1

8the kernel function k




And one obtains the nonlinear decision function :

l
sgn (Z yic; (®(z) - D(x5)) + b)

!
sgn (Z yiaik(z, ;) + b)

f(z)

i=1

To avoid overfitting effects, slack-variables are used to relax
the hard-margin constraints:

yi((w- @(x;)) +b) > 1 =&,

With the slack-variables a classifier can be constructed, which
generalizes well.

7.1 One-Class Support Vector Machine

Scholkopf et al. [24] propose a method (termed one-class
SVM) to adapt the SVM methodology to a one-class learn-
ing system, that means only examples from one class are
required. The one-class SVM first maps the input data into
a higher-dimensional feature space via a kernel function and
treats the origin as the only member of the second class. In
addition, a fraction of “outliers” are allowed, which lie be-
tween the origin and the hyperplane, while the hyperplane
has maximum distance to the origin. In other words, the
one-class SVM algorithm returns a function f that takes
the value +1 in a region where the density “lives” and —1
elsewhere and therefore, for a new point x, the value f(x)
is determined by evaluating which side of the hyperplane it
falls on in feature space.

More precisely, it can be formulated also as a dual optimiza-
tion problem :

&>0, i=1,...,1

min
«@

l
1
3 D ciosk(wi,yi)

ig=1
0<a; <1/(vmn),i=1,...
l

ZOL»;ZI

i=1

subject to 1

Obtaining the decision function

l
sgn (Z aik(z, ;) + p)

f(@)

i=1

which will be positive for most examples z; in the train-
ing set. The value of p can be recovered by exploiting the
fact, that for any Lagrange multipliers o, the corresponding
pattern z; satisfies

p= (u) . CI)(J:,L)) = Z ajk(mj, fL’z)

For our experiments, we used the one-class SVM implemen-
tation LIBSVM 2.6 [3, 16]. LIBSVM is a program, which
provides several SVM algorithms for classification and re-
gression, including Schélkopfs proposed one-class SVM. The
default kernel (radial basis function), v = 0.05 and the de-
fault values of the parameters for the one-class SVM are
used.
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8. CLASSIFICATION RESULTS AND
COMPARISON STUDY

8.1 Data Setsand Experimental Settings

In line with previous work [18], we perform our experi-
ments on the Iris-Fisher and Biomedical data sets, which
can be downloaded from [27]. The Iris Fisher data set con-
tains 3 classes of 50 instances, where each class refers to a
type of iris plant. The Biomedical data set contains 209 ob-
servations (134 for “normals” and 75 for “carriers”) of blood
measurements to identify carriers of a rare genetic disorder.
Each blood sample consists of four measurements and a la-
bel (normal or carrier). Both data set are normalized in the
unitary hypercube [0, 1]™ using the min-maz normalization.
The Biomedical data set contains 15 data vectors which con-
tain undefined points — we omit these data vectors.

In the first experiment, the classifiers are trained with

100% of one class (considered as self), where the remaining
classes are considered as non-self. In the test phase, all el-
ements in the data set must be classified, either as self or
non-self. As the goal of learning is to be able to classify
unseen data, the classifiers are trained in the second experi-
ment with 50% and 25%° of randomly drawn elements from
one class. In the test phase, all elements in the data set
are presented to the classifier and must be classified. Each
run is repeated 100 times and the results are averaged. The
experiments were performed for each class of the Iris-Fisher
and Biomedical data set. In the Biomedical data set, only
non-carriers were considered as self elements.
In order for our results to be comparable to Ji’s and Das-
gupta’s [18] results, we performed the same experiments and
used the same radius length rs = 0.1 for the Iris-Fisher data
set and radii length rs = {0.05,0.1} for the Biomedical data
set. Additionally, we perform classification runs with ra-
dius rs, which gives the minimum error for 50% Iris Fisher
training data (rs = 0.15) and 25% Biomedical training data
(rs = 0.09), obtained by Eq. (2). By increasing the ra-
dius, it is possible to achieve a lower false alarm rate, but
this will consequently decrease the detection rate. This is
demonstrated using rs = 0.13 on the Biomedical data set.

8.2 Resaults

It is difficult to analyze the classification results done
in [18] from an anomaly detection point of view, because it is
not clear how the self-radius is determined. Furthermore, a
one-class classifier, when compared to a two-class classifier,
has a smaller amount of information available, in order to
build up the mapping function and therefore a comparison is
difficult as well. As shown in Table 1, the self-detector clas-
sification method outperforms the real-valued negative se-
lection in all classification tests for all chosen radii for 100%
training data. For 50% training data, the self-detector clas-
sification with radius rs = 0.1 outperforms the real-valued
negative selection in the detection rate, but it has a higher
false positive rate. With radius rs = 0.15, it performs better
for both rates, except the false alarm rate in the setosa class
which differ by 0.56%. Similar results are obtained for the
Biomedical data set (see Table 2), but with the exception
that the false positive rate is higher. With radius rs = 0.09
the overall classification performance is higher. The ROC
analysis shows, that our results outperform negative selec-

only Biomedical data set



Table 1: Classification Results for Fisher Iris data
set

Training Algorithm Detection | False Alarm
Data Rate Rate
Mean | SD | Mean | SD
V-detector™ =01 99.98 [ 0.14|0.00 |0.00
Setosa 0cSVM 100 | 0.00|4.00 |0.00
100 % | Self-Detector™=%! {100 |0.00{0.00 |0.00
Self-Detector™%® [ 100 |0.00{0.00 |0.00
V-detector"=%T [99.97 [0.17]1.32 [0.95
Setosa 0cSVM 100 |0.00|5.56 |4.88
50 % Self-Detector™ %! [100 [0.00|9.98 |3.18
Self-Detector™%® [ 100 [0.00|1.88 |1.73
V-detector™=%T [85.95 [2.44|0.00 |0.00
Versicolor 0cSVM 90.00 | 0.00 | 8.38 |1.60
100 % | Self-Detector™=%1 | 98.00 | 0.00 | 0.00 |0.00
Self-Detector™%1° [ 87.00 | 0.00|0.00 |0.00
V-detector™=%1 [88.3 [2.77]8.42 [2.12
Versicolor ocSVM 90.57 [2.92|7.72 3.84
50 % Self-Detector™ %! [99.03 |0.99 | 15.72 | 3.55
Self-Detector™%1® [ 92.02 | 3.06 | 3.78 |3.04
V-detector™ =01 81.87 [2.7810.00 |0.00
Viginica 0cSVM 75.00 [0.00 | 5.28 |0.96
100 % | Self-Detector™=%! [99.00 |0.00{0.00 |0.00
Self-Detector™=%® [ 91.00 | 0.00|0.00 |0.00
V-detector™=%1 [93.58 [2.33]13.18 [ 3.24
Viginica ocSVM 78.42 1 8.35]9.36 |4.04
50 % Self-Detector™%! [99.09 |0.30 | 26.36 | 4.23
Self-Detector™%1° [ 93.72 | 2.28|9.98 |3.76

Table 2: Classification Results for Biomedical data

set

Training Algorithm Detection | False Alarm

Data Rate Rate

Mean | SD Mean | SD
V-detector’ =% [40.51 [3.92 [0.00 [0.00
V-detector™ %1 [30.61 [3.04 |0.00 |0.00
0cSVM 40.30 | 0.00 |5.43 |0.59
Normals | o1t Detector™0% | 88.05 | 0.00 |0.00 |0.00
100 % | Self-Detector™% | 67.16 | 0.00 |0.00 |0.00
Self-Detector™%! [ 59.70 | 0.00 |0.00 |0.00
Self-Detector™%13 | 44.77 | 0.00 |0.00 |0.00
V-detector™= %% [42.89 [3.83 [1.07 [0.49
V-detector™ %1 [32.92 [2.35 |0.61 |0.31
0cSVM 40.27 [12.2216.24 |2.53
Normals | goif Detector™0% [ 91.17 | 1.60 | 23.78 | 2.57
50 % | Self-Detector™=% [ 72.39 | 2.30 |4.60 |1.76
Self-Detector™%! | 66.29 | 2.49 |3.39 |1.43
Self-Detector™%! | 50.70 | 3.36 |1.86 |0.88
V-detector™=%% [57.97 [5.86 [2.63 [0.77
V-detector™=%1 [43.68 [4.25 |1.24 |0.50
0cSVM 45.18 | 14.73 8.36 | 4.16
Normals | o1 Detector”™0%% | 93.87 | 1.65 |48.44 | 3.36
25% | Self-Detector™=% | 78.10 | 3.67 |14.93 |3.48
Self-Detector™ %! | 72.85 | 3.50 |11.10 | 2.74
Self-Detector™% 12 | 59.37 | 4.76 |5.05 |2.12
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tion on overall classification accuracy. The low classification
accuracy of the one-class SVM can be explained by the fact,
that the SVM was trained with too fews examples. In our
experiments the value v = 0.05 characterizes the fraction of
support vectors and outliers. This value was derived from
Theorem 7 (see [24], page 10), which gives some confidence
in a probabilistic sense, but depends on the number of train-
ing examples.

9. CONCLUSION

We have briefly introduced pattern classification and ano-
maly detection and have shown the connection to artificial
immune systems. Additionally, we described the fact, that
the immune system is able to detect all possible non-self
proteins with a limited number of antibodies by perform-
ing a continual turnover of new and old lymphocytes and
negative selection. This principle motivated computer sci-
entists to develop immune inspired algorithms, which work
in a similar way. We have shown that the negative selec-
tion algorithm, defined over the hamming shape-space, is
not well suited for real-world anomaly detection problems.
The generated detector set underfits exponentially for small
values of r. To avoid this underfitting behavior, the match-
ing threshold value r must lie near [, but this makes the
detector generation infeasible, since all proposed detector
generating algorithms have a runtime complexity which is
exponential in . Moreover, we have critically compared the
real-valued negative selection algorithm with variable-sized
detectors to a proposed straightforward self-detector classi-
fication method, inspired by the immune system principle of
positive selection. Our results reveal, that the classification
performance of both methods depend crucially on the self-
radius. From our point of view a proper self-radius can only
be determined, when examples from the anomalous class are
available. In addition we compared the classification perfor-
mance of both approaches and obtain results which question
the appropriateness of the real-valued negative selection ap-
proach. The real-valued negative selection was proposed to
overcome the complexity problems of the hamming shape-
space. It is currently an open question, how this approach
works in high dimensional spaces, where for instance the
one-class SVM provides good results.
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