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ABSTRACT 
Generalized geometric programming (GGP) is an optimization 
method in which the objective function and constraints are 
nonconvex functions. Thus, a GGP problem includes multiple 
local optima in its solution space. When using conventional 
nonlinear programming methods to solve a GGP problem, local 
optimum may be found, or the procedure may be mathematically 
tedious. To find the global optimum of a GGP problem, a bio-
immune-based approach is considered. This study presents an 
artificial immune system (AIS) including: an operator to control 
the number of antigen-specific antibodies based on an idiotypic 
network hypothesis; an editing operator of receptor with a Cauchy 
distributed random number, and a bone marrow operator used to 
generate diverse antibodies. The AIS method was tested with a set 
of published GGP problems, and their solutions were compared 
with the known global GGP solutions. The testing results show 
that the proposed approach potentially converges to the global 
solutions. 

Categories and Subject Descriptors 
G.1.6 [Numerical Analysis]: Optimization – constrained 
optimization, nonlinear programming

General Terms 
Algorithms 

Keywords 
Generalized geometric programming, artificial immune system, 
nonlinear programming 

1. INTRODUCTION 
An immune system (IS) learns, memorizes, identifies and 
eliminates invading foreign materials such as viruses, pathogens 
and bacteria (called antigens, Ags), protecting the human 

body from disease. The natural IS has inspired an emerging 
computation field called artificial immune systems (AISs) [1]. In 
recent years, AISs have been applied to various function 
optimization problems such as multimodal and constrained 
nonlinear programming (NLP) optimizations [2, 3, 4], concluding 
that AISs work well to function optimization problems. 

Duffin et al., introduced geometric programming (GP) whose 
name originally comes from the arithmetic-geometric mean 
inequality [5]. GP is a class of NLP in which the objective 
function and constraints are termed as posynomials, indicating 
that the formulation of GP is positive polynomial. Significantly, in 
GP the global minimum of the primal minimization problem with 
nonlinear constraints can be determined by solving the dual 
maximization problem with linear constraints. Subsequently, 
generalized geometric programming (GGP) was presented when 
GP formulation failed in many important engineering applications. 
Unfortunately, both primal and dual GGP formulation hold highly 
nonconvex functions, implying that they have multiple local 
optima on a complex constraint surface. To solve GGP problems, 
Maranas and Floudas presented a deterministic global 
optimization method including exponential variable 
transformation; convex lower bounding; variable scaling, and a 
branch and bound framework [6]. Although their optimization 
method yields a global solution to GGP problems, it may be 
mathematically tedious. 

As mentioned above, this study presents an effective and efficient 
AIS approach. This study transforms a constrained GGP problem 
into an unconstrained problem with exterior penalty function, and 
then uses the proposed AIS to yield the optimal solution of the 
unconstrained GGP problem. The quality of proposed AIS 
solution is evaluated by comparing with the published global 
solution [7]. 

2. IMMUNE SYSTEM 
Human immunity is divided into two types: innate and adaptive 
immunities. Innate immunity uses macrophages to ingest and 
digest Ags that invade the human body to provide an immediate 
host defense. The immune response has a feature that cannot be 
altered by repeated exposure to specific Ags, indicating that the 
response has no immunological memory. After innate immunity is 
achieved, adaptive immunity is activated. Conversely, adaptive 
immunity has an immunological memory for specific Ags. The 
adaptive immune response is composed of antigen-specific 
reactions of T and B cells (lymphocytes), which take part in cell-
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mediated and homoral immunities respectively [8]. T cells have 
two types: cytotoix (killer) and helper. Cytotoix cells kill virally-
infected cells. Th1 helper cells secrete cytokine to activate 
macrophages, and Th2 helper cells stimulate and suppress B cells 
to secrete antigen-specific antibodies (Abs) [9]. The Abs are 
receptors located on the B cells’ surface. Each B cell can only 
produce one variety of Abs. T and B cells, which recognize and 
eradicate invading Ags to maintain the health of the host, circulate 
throughout the human body.  

2.1 Operation of Adaptive Immune System 
2.1.1 Ab-Ag and Ab-Ab Recognition 
Figure 1 illustrates an Ag and an Ab. The Ag has multiple 
epitopes, which can be recognized by the Ab, on its surface. The 
Ab in figure 1 shows heavy (H) and light (L) polypeptide chains. 
Both chains are composed of variable (V) and constant (C) 
regions. The V-region recognizes the Ag, while the C-region is 
responsible for a variety of effector functions. A portion locating 
on the V-region of an Ab is called a paratope, which can match 
with the epitope of an Ag. The Ab with the Ag has a high Ab-Ag 
affinity when the paratope and the epitope have complementary 
shapes. 
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Figure 1. An Ab and an Ag representation 
The Ab in Figure 1 also has two immunogentic idiotopes 
(antigenic determinants) that can be recognized by other Abs. 
From this perspective, Jerne [10] developed the immune theory of 
idiotypic network, as shown in Figure 2.  
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Figure 2. Idiotypic network hypothesis 
The figure illustrates that B-cells are not isolated, instead the 
different Abs interact with each other to form an idiotypic 
network. For example, the epitope of the invading Ag matches 
with paratope 3 of Ab 3 on the B cell 3 surface, and then the 

idiotope 3 of Ab 3 stimulates (solid line in the figure) B cell 1 
through paratope 1 of Ab 1, while B cell 1 simultaneously 
suppresses (dashed line in the figure) B cell 3 with the paratope 1 
of Ab 1, and so forth. After Jerne presented his differential 
equation to describe the dynamics of a set of identical B cells, 
Perelson [11] reviewed and developed a general network 
described by: 

RDBRIP +−=                                    (1) 
where  

RIP  = rate of increase of B cells population  

B = influx from bone marrow 

D = death rate of unstimulated B cells 

R = reproduction rate of stimulated B cells 

The last term in Eq. (1) involves Ab-Ag and Ag-Ag recognition 
information. The equation maintains the number of diverse Abs 
and is used in this study. Additionally, this study considers an Ab 
as equal to a B cell.  

2.1.2 Clonal Selection 
Clonal selection is based on the description of basic principles of 
an adaptive immune response to an antigenic stimulus. Figure 3 
depicts the clonal selection principle [4].  
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Figure 3. Clonal selection principle 

As seen from Figure 3, the antigen-specific Ab 3 with invading 
Ag has high Ab-Ag affinity, activating the antigen-specific B cell 
3. By contrast, antigen-specific B cells (B cell 1 and 2 in the 
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figure) with low Ab-Ag affinity gradually die in the IS. The 
antigen-specific B cell 3 activated gets into the germinal centers of 
lymphoid follicles to undergo proliferation and differentiation. 
The antigen-specific B cell has two differentiation pathways: 
plasma and memory cells, as described below. 

(1) Plasma cell: The antigen-specific B cells are transformed into 
effector cells such as plasma cells that can secrete a large number 
of antigen-specific Abs to destroy specific Ags.  

(2) Memory cell: The antigen-specific B cell in the germinal 
centers undergoes an Ab-Ag affinity maturation process through 
somatic hypermutation to increase affinity for specific Ags. The 
somatic hypermutation can be achieved with the single-point 
mutation operations within the V-region of the antigen-specific 
Ab. The single-point mutation performs the local exploration. 
Additionally, the receptor editing has been presented to the Ab-Ag 
affinity maturation process to decrease the possibility of trapping 
into local optima on a very rough Ab-Ag affinity landscape. As 
discussed above, the hypermutation and the receptor editing play 
complementary roles in the Ab-Ag affinity maturation of Abs [12]. 
These antigen-specific B cells with high Ab-Ag affinity become 
memory cells in the human IS. The memory cells are transformed 
into plasma cells to secrete many antigen-specific Abs when the 
same or similar specific Ags invade the human body again. The 
immune response (secondary response) is stronger and faster than 
the primary response when the antigen-specific Abs first 
encounter the Ags. 

2.1.3 Generation of Diverse Abs 
In the human, bone marrow is an important organism for 
generating new Abs to maintain the number of Abs in the IS. Each 
Ab has two identical H and L chains, as defined in Session 2.1.1. 
The H chain’s V-region consists of gene segments of variable VH, 
diverse DH and joining JH, while the L chain’s V-region is 
composed of gene segments of variable VL and joining JL [13]. 
These gene segments are individual libraries that generate diverse 
Abs. The paratope of Ab is formed by recombining VH DH JH and 
VL JL. The metaphor of gene segment rearrangement has inspired 
development of a bone marrow operator in this study. 

3. GENERALIZED GEOMETRIC     
PROGRAMMING 

The mathematical formulation of a primal GGP is described as 
follows: 
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)(0 xg =GGP objective function 

N = number of decision variables 

=x [ ,,,, 21
T

Nxxx L ]  decision variables 

M = number of inequality constraints 

mT = number of terms in mth constraints 
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Traditionally, two approaches in solving GGP problems are 
general: posynomial condensation [14] and pseudo-duality [15]. 
Posynomial condensation condenses the multiple polynomial 
terms of GGP to a posynomial with a single term and obtains 
optimal solution by iteratively calculating a sequence of 
posynomial approximations. In pseudo-duality, a weaker duality 
theory is applied to this class of NLP. These two approaches 
guarantee convergence to local minima at best. 

4. PENALTY FUNCTION METHODS 
Penalty functions are popularly used in evolutionary algorithms, 
such as evolution strategy and genetic algorithms (GAs), to solve 
constrained optimization problems. A survey to penalty function 
techniques can be found in [16]. A general constrained NLP 
formulation can be written as follows: 

)(ˆMinimize 0 xg                                                       (5) 

Mmgm ,,2,1,0)(ˆtosubject K=≤x                    (6) 

Kkhk ,,2,1 ,0)(ˆ K==x                       (7) 
where 

)(ˆ0 xg = objective function 

K = number of equality constraints 

Exterior and interior penalty functions are the two most common 
penalty functions for handling the constraints of an NLP problem. 
These two penalty functions work by obtaining a pseudo-objective 
function with the original NLP objective function and constraints 
and penalize the pseudo-objective function when the constraints 
are violated. Table 1 compares the exterior with the interior 
functions. The exterior penalty function is employed in this study, 
since it does not require a feasible starting point and is 
conceptually easy to understand. 

Table 1.  Comparison of the exterior with the interior penalty 
function 
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5. METHOD 
This section presents an AIS scheme including several IS 
operators for solving primal GGP problems, as shown in Figure 4 
and described below. 
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 Figure 4. AIS scheme 
Step 1: Ag Recognition 

Figure 5 illustrates an Ag and an Ab representation used in the 
proposed AIS. The Ag epitope in the figure denotes the 
parameters , , mtc mtna mtσ  and mσ  of a GGP problem; both the 
paratope and idiotope of the Ab describe the GGP decision 
variables. Because a GGP problem is a continuous optimization 
problem, using real numbers to represent its decision variables 
may yield a more accurate solution than obtained using binary 
encoding. Therefore, real numbers are used to represent Ag and 
Ab. 
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Figure 5. An Ab and Ag representation 

 
 

Step 2: Available Ab Repertoire 

An available Ab repertoire is formed from repertoire size ( ). 

Each Ab in the repertoire is created within [ ], where  

and  are respectively the lower and upper bounds of the 
decision variable . Like the population size in GAs, the Abs in 
a repertoire converges prematurely when rs  is too small, while 
the computation time increases when rs  is too large. This study 
found that 

rs
u
n

l
n xx   , l

nx
u
nx

nx

100=rs worked well. The level of constraint violation 
of the Abs in the created repertoire is computed by: 

[ ] rsjgvio
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m
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x              (8) 

and then sorted in ascending order by the . The Ab with the 
smallest constraint violation level is selected as a starting point. 

jvio

Step 3: Ab-Ag Affinity Evaluation 

A pseudo-objective function is obtained by exterior penalty 
function, as follows: 

[ ]{ }
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Equation (9) is then applied to evaluate Ab-Ag affinity in this step. 
This study determined that each constraint of the best AIS solution 
obtained from a testing GGP problem must be accurate by up to 
five decimal places. To yield the resolution,  was found. 

Referring to Eq. (9), can significantly penalize a solution 
obtained from an infeasible region and can provide a high-quality 
feasible solution.  

910=ρ
910=ρ

After the Ab-Ag affinities of Abs in the Ab repertoire of current 
generation  are measured, the Ab with the highest Ab-Ag 
affinity is selected to undergo clonal selection in Step 5. The best 
Ab at G is defined by  

)(G

.,,2,1),  ,( NnGxn K=*Ab

Step 4: Termination 

The proposed AIS uses the maximum number of generations 
as its termination criterion. If the termination is met, then 

the AIS stops and an optimal solution in the form of the Abs is 
obtained; otherwise, the diverse Abs is developed in Steps 5-6. 

)( maxG

Step 5:Clonal Selection 

In this step, the  selected in Step 3 plays the role of a 

specific Ag. The  is recognized by other Abs in the 
repertoire of G . This study presents a so-called idiotypic network 
operator based on the idiotypic network hypothesis [10] to control 
the number of antigen-specific Abs. The operator is defined by: 
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jrp = rate of recognition, within 0 and 1 

) ,( GxnjAb = the jth Ab of representing decision variables  in 
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nx

A large value of means that the  can effectively 

recognize the . To determine the degree of the Ab-Ab 
recognition, a predetermined threshold value  is used in the 
proposed AIS. These Abs with which are equal to or larger 

than the  is promoted, whereas others are suppressed. This 
study uses a high  to eliminate inferior Abs, the = 0.999 is 
employed.  

jrp ) ,( GxnjAb
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Subsequently, the promoted Abs is divided into two subsets based 
on a somatic hypermutation probability ( ). To generate a 
uniform random number for each promoted Ab, the promoted Abs 
are performed somatic hypermutation when their random number 
is equal to or smaller than a predetermined  value, while 
other Abs undergo receptor editing. The operators of somatic 
hypermutation and receptor editing are described below. 

hmp

hmp

(1) Somatic hypermutation 

This study uses multi-non-uniform mutation [17] as the somatic 
hypermutation operator, which can be expressed as follows: 
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nx = decision variable found in the solution space 

nx̂  = perturbed decision variable 

)1 ,0(U and = uniform random number )1 ,0(1U

=b shape parameter, often is b = 2 

The hypermuation has two tasks, uniform search and local fine-
tuning. 

(2) Receptor Editing 

The random number of a standard Cauchy distribution  is 
used to implement receptor (Ab) editing, since it can create a large 
(“strong”) perturbation to let the current points escape from a local 
Ab-Ag affinity landscape. The proposed Cauchy receptor editing 
is defined by: 

)1 ,0(C

[ ] [ ]{ } [ ]number random   )1 ,0(1)1 ,0(ˆ 32 1)C(0,xx ×−×+= αUU  (13) 
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)1 ,0(2U  and  = uniform random number )1 ,0(3U

α = a nonnegative exponent constant, often is 2 

The receptor is responsible for performing local fine-tuning and 
large perturbation. 

Step 6: Generation of Diverse Abs 

The paratope of an Ab can be created by recombining VH DH JH 
with VL JL. Thus, this study presents a bone marrow operator 
based on the metaphor of gene segment rearrangement to 
synthesize diverse Abs to recruit the number of Abs eliminated in 
Step 5. The operator randomly selects two Abs from the promoted 
Abs and randomly chooses a recombination point from gene 
segments of the paratope of selected Abs. These two chosen gene 
segments are each given a random number from a standard normal 
distribution  and are exchanged to create two new Abs. 
The gene segments of the idiotopes corresponding with selected 
Abs are also exchanged. Finally, to increase diversity, the receptor 
editing operation is performed on the two new Abs. 

)1,0(N

Step 7: Update of Ab repertoire 

A new Ab repertoire is created based on Eq. (1), consisting of the 
Abs generated from Steps 5 and 6. This step computes the Ab-Ag 
affinities of Abs in generated Ab repertoire and sorts them in 
descending order. If the highest Ab-Ag affinity in the sorted Ab 
repertoire is larger than the best Ab-Ag affinity at G , then half of 
the Abs in the sorted Ab repertoire are selected to create an Ab 
repertoire based on rs . The Ab repertoire becomes the Ab 
repertoire of the next generation. Conversely, if the highest Ab-
Ag affinity in the sorted Ab repertoire is smaller than the best Ab-
Ag affinity at , then the Ab repertoire at G  remains in the next 

generation. This process not only keeps the Ab  but also 
allow some secondary Abs to survive. 

G

)  ,(xn G*

Steps 3-7 are repeated until the termination criterion is met. 

5.1 Comparison 
This study combines the metaphor of clonal selection with the 
idiotypic networks hypothesis to design the AIS approach, as 
presented in Section 5. Although these two theories contradict 
each another, they are useful in developing a function 
optimization tool. Table 2 compares the existing AIS with the 
proposed AIS in this study. 

Table 2. Comparison of AIS 
Methods

Features 

CLONALG 

 [4, 18] 

AiNet   

[2] 
The proposed 

AIS 

Metaphor Clonal 
selection 

Clonal 
selection and 

idiotypic 
network  

Clonal 
selection and 

idiotypic 
network 
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Table 2. Comparison of AIS (cont.) 
Methods 

Features 

CLONALG 

 [4, 18] 

AiNet   

[2] 
The proposed 

AIS 

Representation Binary Real value Real value

Selection of Abs with high 
Ab-Ag affinity Yes Yes Yes 

Ab-Ab recognition 

(suppression/stimulation) 
No Yes Yes 

Hypermutation Yes Yes Yes 

Receptor editing Yes No Yes 

Introduction of diverse Abs Randomly 
generated 

Randomly 
generated 

Bone marrow 
operator 

Application 
Multimodal 

function 
optimization 

Multimodal 
function 

optimization 

Nonconvex 
function 

optimization 

6. RESULTS 
The proposed AIS described in the previous section was applied to 
three testing GGP problems taken from Floudas and Pardalos [7]. 
Maranas and Floudas [6], who presented a deterministic global 
optimization method based on the convex relaxation and branch 
and bound on a hyper-rectangle region, reported the global 
solution of these three GGP problems. The best solution of the 
proposed AIS was compared with the known global solution. The 
AIS software was written in MATLAB and executed on a Pentium 
4 (2.4 GHz) PC. Five  were used to test each GGP problem. 
Different starting points were generated from 50 available Ab 
repertoires, and the proposed AIS was run 50 times with these 
starting points for each . The following parameters were used 
in all evaluations: 

shmp

hmp

rs = 100, =2, ,  b 109=ρ α = 2 and = 0.999. rtp

6.1 Test Problem 1 
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According to Eq. (9), the Ab-Ag affinity can be expressed by: 
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 In solving test problem 1, the proposed AIS takes the values 
where  indicates that the 

promoted Abs only edits the receptor and  means that the 
promoted Abs performs only somatic hypermutation. Table 3 
presents numerical results, including the best, the mean, the worst, 
and the standard deviation (SD). The best AIS solution was found 
at  and 0.5, indicating that neither receptor 
editing alone nor somatic hypermutation can yield the best 
solution. This study prefers the small  (

{ },1,5.0,1.0,05.0,0=hmp 0=hmp
1=hmp

1.0=hmp =hmp

hmp 1.0=hmp ) when 
 and  obtain similar results. Additionally, 

Table 4 presents the analysis of variance of the parameter .  
The table shows that the F of 10.59 for s was statistically 
significant at the P < 0.05 level, resulting from differences in the 
means of AIS solutions. Table 5 compares the known global 
solution with the best solution to test problem 1 obtained from the 
proposed AIS. The table indicates that the AIS took 4.406 seconds 
of CPU computation time to yield the best solution. The best AIS 
solution

1.0=hmp 5.0=hmp

hmp

hmp

2497.83)(0 −=xg  is worse than the known global 
solution 2535.83)(0 −=xg , but the precision of constraint of the 
AIS solution is more precise than that of the known global 
solution, meaning that the AIS solution still has specific 
applications. 

Table 3. Numerical results from test problem 1 

hmp 0 0.05 0.1 0.5 1 

Best -83.2495 -83.2496 -83.2497 -83.2497 -83.2496

Mean -83.2291 -83.2389 -83.2460 -83.2469 -83.2450

Worst -83.1479 -83.1133 -83.2253 -83.2259 -83.2207

SD 0.0265 0.0226 0.0051 0.0040 0.0066

Table. 4 Analysis of variance of the parameter  from test 
problem 1 

hmp

Source DF Seq SS Adj SS Adj MS F P 

hmp s

Error
Total

4 
245
249

0.011048
0.063896
0.074944

0.0110482 
0.0638962 

 

0.0027621
0.0002608

 

10.59
 
 

0.000
 
 

Table 5. Comparison of the know global solution with the best 
AIS solution from test problem 1 

The Best AIS Solution 

GGP Solution  1.0=hmp  

=maxG 1000 

1x = 88.2890 

2x = 7.7737 

3x = 1.3120 

)(0 xg = -83.2535 

1x = 88.35549473 

2x = 7.673224397 

3x = 1.315935336 

)(0 xg = -83.2497 

CPU time = 4.406 sec. 

GGP Constraints  )(xmg AIS Constraints )(xmg

)(1 xg = 1.000058 1≤  )(1 xg = 1.000000 1≤  

Figure 6 plots the Ab-Ag affinity against the number of 
generations. It shows that the Ab-Ag affinity increases with the 
number of generations. The AIS converges after the 900 
generations. 
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Figure 6. Ab-Ag affinity convergence through generations of 
test problem 1 

6.2 Test Problem 2 
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Table 6 compares the known global solution with the best AIS 
solution, it demonstrating that the best AIS solution 

 is the same as the known global solution; 
moreover, AIS solution yields a more precise constraint  
than the known global solution. Furthermore, the AIS took 19.328 
seconds of CPU computational time to solve the problem. 

7398.5)(0 −=xg
)(2 xg

Table 6. Comparison of the know global solution with the best 
AIS solution from test problem 2 

The Best AIS Solution 

GGP Solution 01.0=hmp  

=maxG 3000 

1x = 8.1267 

2x = 0.6154 

3x = 0.5650 

4x = 5.6368 

)(0 xg = -5.7398 

1x = 8.12860927 

2x = 0.61371722 

3x = 0.56445552 

4x = 5.63650100 

)(0 xg = -5.7398 

CPU time = 19.328 sec.

GGP Constraints  )(xmg AIS Constraints )(xmg

)(1 xg = 0.999999  1≤

)(2 xg = 1.000007  1≤

)(1 xg = 0.999999 1≤  

)(2 xg = 0.999999 1≤  

6.3 Test Problem 3 
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Table 7 lists the analytical results of the problem, showing that the 
AIS took 18.671 seconds to obtain the best solution. The best AIS 
solution 4782.10122)(0 =xg  is better than the known global 
solution .6964.10122)(0 =xg The precision of the fifth 
constraint  is also higher in the AIS solution than in the 
known global solution. 

)(5 xg

Table 7. Comparison of the know global solution with the best 
AIS solution from test problem 3 

The Best AIS Solution 

GGP Solution  01.0=hmp  

=maxG 3000 

1x = 78 

2x = 33 

3x = 29.998 

4x = 45 

5x = 36.7673 

)(0 xg = 10122.6964 

1x = 78 

2x = 33 

3x = 29.99568144 

4x = 44.99999986 

5x = 36.77538548 

)(0 xg = 10122.4782 

CPU time = 18.671 sec.

GGP Constraints  )(xmg AIS Constraints )(xmg

)(1 xg = -0.309978 1≤  

)(2 xg = 0.999826 1≤  

)(3 xg = -0.021419 1≤  

)(4 xg = 0.621349 1≤  

)(5 xg = 1.000062 1≤  

)(6 xg = 0.681496 1≤  

)(1 xg = -0.309991 1≤  

)(2 xg = 1.000001 1≤  

)(3 xg = -0.021379 1≤  

)(4 xg = 0.621402 1≤  

)(5 xg = 1.000002 1≤  

)(6 xg = 0.681516 1≤  

6.4 Summary of Results 
The performance of the proposed AIS is summarized as follows: 

(1) Effectiveness: The AIS can yield a potential global solution 
that each constraint is accurate up to five decimal places (as 
shown in Tables 5-7). 
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(2) Efficiency: The AIS requires only a short CPU computational 
time (as shown in Tables 5-7). 

(3) Simplicity: The AIS implementation is much simpler than 
most conventional GGP algorithms, since it has no complex 
differential calculation. 

7. CONCLUSIONS AND FUTURE WORK 
This study presented an AIS that involves several operators, 
inspired by bio-immune metaphor. The performance of the 
proposed AIS was measured by testing GGP problems. Numerical 
results indicate that the proposed method worked well. Future 
work should solve high-dimensional GGP problems and compare 
the computed results with those obtained using approaches that 
involve GAs and simulated annealing. 
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