
An Evolutionary Algorithm to Generate Hyper-Ellipsoid
Detectors for Negative Selection

Joseph M. Shapiro, Gary B. Lamont, Gilbert L. Peterson
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management

Air Force Institute of Technology
WPAFB, Dayton, Ohio 45433

{joseph.shapiro,gary.lamont,gilbert.peterson}@afit.edu

ABSTRACT
This paper introduces hyper-ellipsoids as an improvement
to hyper-spheres as intrusion detectors in a negative se-
lection problem within an artificial immune system. Since
hyper-spheres are a specialization of hyper-ellipsoids, hyper-
ellipsoids retain the benefits of hyper-spheres. However,
hyper-ellipsoids are much more flexible, mostly in that they
can be stretched and reoriented. The viability of using
hyper-ellipsoids is established using several pedagogical prob-
lems. We conjecture that fewer hyper-ellipsoids than hyper-
spheres are needed to achieve similar coverage of nonself
space in a negative selection problem. Experimentation val-
idates this conjecture. In pedagogical benchmark problems,
the number of hyper-ellipsoids to achieve good results is sig-
nificantly (v50%) smaller than the associated number of
hyper-spheres.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous; E.1 [DataStructures]: Trees

General Terms
Algorithms

Keywords
Evolutionary computation, artificial immune systems, com-
putational geometry, negative selection

1. INTRODUCTION
The human biological immune system distinguishes be-

tween self and nonself structures with amazing accuracy.
Negative selection is a biological process by which the im-
mune system generates nonself detectors that do not detect
self structures. The biological negative selection process can

Copyright 2005 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

be mapped to the computational domain as a two class pat-
tern classification problem in an artificial immune system
(AIS). Several efforts [9] [4] [5] provide a foundation for neg-
ative selection in an AIS for intrusion detection. This paper
introduces an advance in the negative selection algorithm.
Section 2 defines the problem. Section 3 describes and an-
alyzes the design of the hyper-ellipsoid algorithm. Exper-
imental design is set forth in Section 4. In Section 5 we
analyze experimental results. Section 6 summarizes the pa-
per.

2. BACKGROUND
This section contains a short summary of Artificial Im-

mune Systems (AIS), a symbolic problem description and a
discussion of detector generation using negative selection.

2.1 Artificial Immune System
An (AIS) is an element of the set of bio-inspired algo-

rithms, which include evolutionary algorithms, neural net-
works, swarms, ant colony optimization, and others [14]. An
artificial immune system is inspired by the human biological
immune system (BIS). The BIS boasts an amazing ability to
distinguish self (normally occurring, not harmful to body)
from nonself (abnormal, often harmful to body). This is seen
in the way that the BIS allows beneficial molecules/bacteria/etc.
to work undisturbed while attacking invaders such as viruses.
Negative selection is an important process that facilitates
discrimination between self and nonself.

BIS Negative selection [2] occurs in the thymus, where
new T-cells are semi-randomly generated. During negative
selection, the BIS destroys T-cells that have an affinity for
self structures. The result of negative selection is T-cells
that have an affinity only for nonself invaders. After nega-
tive selection, the T-cells are released from the thymus into
the body, where they take part in the search for nonself. In
the computational domain, negative selection is mapped to
a process which develops detectors (T-cells equivalents) for
a class of data (nonself) by training only on the complement
(self) of that class. Thus, the AIS generates detectors and
then checks each detector to see if it matches any self points.
If a detector matches any self points it is discarded. To sum-
marize, negative selection as mapped to the computational
domain is a two-class classification problem in which only
one class is used for training.

337

2.2 Symbolic Problem Definition
A symbolic problem definition is important because it pro-

vides a mathematical description of the problem that is not
ambiguous. Symbolically, the problem is formulated as fol-
lows: Let F = {f1, f2, ..., fn} be the set of n features in some
data sample. Let P be the set of all possible points in fea-
ture space. Let N ⊆ P be the set of all nonself points. Next,
define the set of all self points: S = P −N . Let A be a set
of antibodies. An antibody matches a subset of P . There
is an isomorphism between an antibody a ∈ A and the set
of points it matches. We let Φ(a) ⊆ P , so that Φ(a) is all
of the points in P that the antibody a matches. A higher
|A| can provide better coverage of nonself space but results
in computational overhead when testing data samples for
membership in N . The goal is to maximize nonself coverage
and minimize self coverage of A. These optimization criteria
are described as:

maximize

∣∣∣∣∣
⋃

a∈A

Φ(a)

∣∣∣∣∣ (1)

minimize

∣∣∣∣∣

(⋃
a∈A

Φ(a)

) ⋂
S

∣∣∣∣∣ (2)

2.3 Detector Generation
In the negative selection algorithm, new detectors are ran-

domly generated and then compared against every self point.
If a detector matches at least one self point, then it is thrown
out and a replacement is randomly generated. This is, of
course, not computationally efficient. If there are |S| self
points and |N | nonself points and it is desired to create d
good (does not match any self points) detectors then the
time complexity increases exponentially in |S| and linearly
in d [9].

An implementation of negative selection requires a match-
ing function for detectors. Let M be the matching function,
so that M : P ×A → {self, nonself}. Williams uses hyper-
rectangles as a matching function in an AIS [17]. In the
hyper-rectangle matching function, a detector is a hyper-
rectangle. M(p ∈ P, a) returns nonself if p is inside of the
hyper-rectangle associated with antibody a.

Dasgupta et. al. [3] suggest using Euclidean distance for
a hyper-sphere detector. a ∈ A matches p ∈ P if p is inside
of the hyper-sphere associated with a. They introduce an
algorithm that generates hyper-sphere detectors. Dasgupta
et. al. improve upon the hypersphere representation by
using V-detectors, or “variable detectors“ [4]. This differs
from their original hyper-sphere model because they allow
the detectors to have a variable radius. The flexibility of the
variable radius allows the model to cover more nonself space
with fewer detectors at no cost in computational complexity
bounds.

McBride [6] uses an ellipsoid model in a classifier system.
He clusters training points in the same class using a k-means
algorithm. The covariance matrix for each cluster is com-
puted and used to construct an ellipsoid around each cluster.
McBride classifies test data by checking for membership in
the ellipsoids. If a test point is not inside of an ellipsoid, it is
classified according to the nearest ellipsoid. This approach
may be termed a “positive selection” technique.

Our work builds in part upon the ellipsoid model of McBride

and Tee and the hyper-sphere detectors of Dasgupta. Al-
though McBride uses ellipsoids for classification, his ellipsoid
foundation is not sufficient for this task, which is to generate
a set of ellipsoids in nonself space. A unique contribution
of this work is the development of a model for mutation of
ellipsoids. Since hyper-spheres are a specialization of ellip-
soids, it is hypothesized that ellipsoids perform better than
hyper-spheres, since the flexibility of an ellipsoid allows it to
fit more spaces than a hyper-sphere. “Better” means that
ellipsoids can achieve the same nonself accuracy with fewer
detectors. Ellipsoids are more complex than spheres, so the
transition from spheres to ellipsoids is not trivial. The next
section describes a model for ellipsoids and an evolutionary
algorithm that generates ellipsoids to cover nonself space.

3. DESIGN
In this section we describe a design for an ellipsoid model

and for an evolutionary algorithm that evolves a set of el-
lipsoids to cover nonself space.

3.1 Ellipsoid Model
An n-d ellipsoid is defined as follows:

(x− ω)T A(x− ω) = 1 (3)

where A is a real symmetric positive-definite n × n matrix
and ω, an n × 1 matrix, is the center of the ellipsoid. Any
vector x that satisfies Equation 3 is on the surface of the
ellipse. In order to be viable for the current problem, the
ellipsoid model must be able to provide either exact values
or approximations for the volume of an ellipsoid and for
whether or not p ∈ P is inside of an ellipsoid. The following
discussions answer these questions.

Volume of Ellipsoid
Let e be an n-d ellipsoid. Intuitively, an n-d ellipsoid is sim-
ply a sphere that has been stretched along the n orthogonal
semiaxes of the ellipsoid. This indicates that the volume
of an ellipsoid is simply the volume of a unit hyper-sphere
multiplied by the length of each semiaxis. Tee (see Acknowl-
edgements) proves that the volume of an n-dimensional el-
lipsoid is indeed

V = Ωn`1`2 · · · `n (4)

where Ωn is the volume of an n-d hyper-sphere and
`1, `2, . . . , `n are the lengths of the n semiaxes of the ellip-
soid. Smith and Vamanamurthy [12] show that the volume
Ωn of an n-dimensional unit hypersphere is calculable as

Ωn =
πn/2

Γ(1 + 1
2
n)

(5)

The Γ function is a mathematical extension of the factorial
function from positive integers to real numbers. Weisstein
[16] provides a definition and discussion of the Γ function.
For implementation, we use Java source code for computing
the Γ function from the PAL Project [15]. Evaluation of
Equation 4 also requires `1, `2, ...`n, the lengths of the semi-
axes. The lengths of the semiaxes are easily derived from
Equation 3. Since A is positive definite, it can be decom-
posed into the form A = VΛVT , where V is a n×n matrix
whose columns are orthonormal eigenvectors of A and Λ is
a diagonal matrix whose diagonal entries are the eigenvalues

338

associated with the eigenvectors in V [13]. Substituting for
A in Equation 3 results in

(x− ω)T VΛVT (x− ω) = 1 (6)

Further algebraic analysis shows that the diagonal entries in
Λ are the inverses of the squares of the lengths of the semi-
axes of the ellipse defined by Equation 3. That is, letting
Λi,i, 1 ≤ i ≤ n be the diagonals of Λ, then the length of the
ith semiaxis is defined by

`i = 1/
√

Λi,i (7)

Membership of a Point in an Ellipsoid
Let p be an n-d point and let e be an n-d ellipsoid as defined
in Equation 3. Kelly et. al. [8] report that the Mahalanobis
distance (left side of the inequality in Equation 8) can be
used to determine whether or not p lies inside of e. p is
inside of e if and only if the inequality in Equation 8 holds.

(p− ω)T A(p− ω) < 1 (8)

3.2 Evolving a Set of Ellipsoids
With a good ellipsoid model, the next step is to produce

a set of ellipsoids optimized according to Equations 1 and
2. An algorithm to solve this problem is unknown. Also,
an exhaustive search for this problem has time complexity
O(α2n+1n2) [11], where α is the number of discretized sec-
tions on each axis and n is the number of dimensions. For
these reasons, we use an evolutionary algorithm (EA) to
“evolve” good sets of ellipsoids. This section addresses the
mapping of the ellipsoid model to representation, crossover,
mutation, and objective function in the evolutionary algo-
rithm domain.

Individual Representation
One of the first decisions that must be made in order to
implement an EA is the representation of an individual and
a population. Since a classic EA finds an optimal individ-
ual, the intuitive decision is to let an individual be a set
of ellipsoids. Then, the individual (set of ellipsoids) that
covers the most nonself space is chosen as the optimal so-
lution. However, the cost of ellipsoid computations means
that maintaining an entire population of sets of ellipsoids
is a computational bottleneck. For this reason, we let an
individual be one ellipsoid. The solution is all (or a subset)
of the individuals in the population. The EA described in
the following sections reflects this design decision.

Crossover With Ellipsoids
The chosen ellipsoid representation, however, does not lend
itself to crossover. Crossover works well when an EA evolves
a population of individuals, each representing a complete so-
lution, and chooses the best individual when the algorithm
finishes. In the ellipsoid detector generation problem, an
individual could be a set of ellipsoids. Crossover is be per-
formed by “trading” ellipsoids between different individuals.
We do not use this pure EA method for the reasons cited in
the previous paragraph.

Instead, we maintain only one set of ellipsoids. The fi-
nal solution is a subset of the population when the algo-
rithm has run to completion. Since only one complete in-
dividual is maintained by the EA, crossover does not make
sense. Crossover in this case would be similar to choosing
two portions of the representation of the same individual

and switching them. Figures 1 and 2 illustrate the prob-
lems with crossover when an individual does not represent a
complete solution. As a result, crossover is not used in this
research.

Figure 1: The two individuals on top are the par-
ents. Each parent is a set of two ellipsoids. The
obvious optimal solution to this problem is two ellip-
soids. The arrows show how two “building blocks”
(a “building block” is an ellipsoid) can be combined
through crossover to produce a good child, which is
the optimal solution.

Mutating an Ellipsoid
Evolutionary algorithms employ mutation as a variation op-
erator that searches the solution space. There are two design
goals for mutation. First, any valid ellipse can be mutated
into any other valid ellipse through a finite series of muta-
tions. Second, the mutation should be random but should
also not be too far from the unmutated ellipse. If a mutation
is too far, then mutation works like a random search, instead
of an opportunity to improve on good ellipsoids. “Too far”
is, of course, a subjective term. For lack of a better defini-
tion, the following is used: The mutated ellipsoid overlaps
“most” of the unmutated ellipsoid.

One method for mutating a ellipsoid might be to sim-
ply randomly change the covariance matrix. However, the
covariance matrix is subject to the constraint that it is sym-
metric positive-definite and must remain so after mutation.
The best way to guarantee that the covariance matrix re-
mains symmetric positive-definite is to use the decomposi-
tion in Equation 6. This decomposition provides insight into
three independent ways of mutating an ellipsoid: orientation
by manipulating V, center by manipulating ω, and semiaxis
lengths by manipulating Λ. In the following, let e be an
ellipsoid defined by Equation 3.

Orientation Mutation: The orientation of an ellipsoid
is the directions of the semiaxes. Shapiro [11] shows that the
columns of V are the orthonormal semiaxes of e. Hence, the
EA can mutate e by manipulating V. The only constraint is
that the EA mutation operator must return an n×n matrix
with orthonormal columns.

339

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(a) self

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(b) nonself (c) results

Figure 3: Data set Val1. (a) is a data set with with two elliptical holes. The ellipsoids are oriented differently
and are different sizes. (b) is its associated test data set. (c) is the ellipsoids found by the ellipsoid algorithm.

−60 −40 −20 0 20 40 60 80 100
−60

−40

−20

0

20

40

60

80

100

(a) self

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(b) nonself (c) results

Figure 4: Data set Val2. (a) has points inside of two ellipsoids. (b) is its associated test data set. (c) is the
ellipsoids found by the ellipsoid algorithm.

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(a) self

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(b) nonself (c) results

Figure 5: Data set Val3. In (a), the optimal solution is obviously two ellipsoids in a cross formation. (b) is
its associated test data set. (c) is the ellipsoids found by the ellipsoid algorithm.

340

(a) Center

(b) Orientation

(c) Semiaxis Lengths

Figure 2: Crossover problems when an individual in
the population is an ellipsoid and not a set of el-
lipsoids. ω, Λ, and V retain their definitions from
Equation 6. P1 and P2 denote “parent 1” and “par-
ent 2”, respectively. “C” labels the bold ellipsoid it
is inside of, and is the child. The labels ω, Λ, and V
on the arrows denote the “building blocks” coming
from each parent.

The EA accomplishes orientation mutation by rotating
the ellipsoid in a 2d plane. Let s1 and s2 be the vectors of
two semiaxes that are chosen at random from the n semi-
axes of the ellipsoid. That means that s1 and s2 are two
of the columns from the matrix V (see Equation 6). In the
following discussion, it is important to note that V is or-
thonormal so ||s1|| = ||s2|| = 1. A plane η is defined by all
points that are a linear combination of s1 and s2. s1 and s2

are orthogonal to each other because they are semiaxes of
an ellipse. s1 and s2 are mutated so that they stay in plane
η and are still orthogonal to each other after the mutation.
Let sm

1 and sm
2 be s1 and s2, respectively, after having un-

dergone mutation. sm
1 and sm

2 are orthogonal to the n − 2
unchosen semiaxes because the n− 2 unchosen semiaxes are
orthogonal to η and sm

1 and sm
2 are in η after the mutation.

This can also be shown mathematically. Let
sm
1 = α1s1 + β1s2 and let sm

2 = α2s1 + β2s2 where αi and
βi are coefficients in a linear combination. Let u be any one
of the n−2 unchosen semiaxes. Two vectors are orthogonal

if and only if their product is 0. uT s1 = 0 and uT s2 = 0
because u is orthogonal to s1 and s2. u is orthogonal to sm

1

and sm
2 because the dot products uT sm

1 and uT sm
2 are equal

to 0.
To accomplish the rotation, a small angle θ is chosen from

a Gaussian distribution with mean µ = 0 and standard de-
viation σ = π

2
radians. The vectors that represent the ran-

domly chosen semiaxes, s1 and s2, are both rotated by θ
to produce new semiaxes, whose vectors are sm

1 and sm
2 .

As implemented, the orientation mutation has a parameter
that increases or decreases the standard deviation. The EA
computes sm

1 and sm
2 :

sm
1 = cos(θ)s1 + sin(θ)s2 (9)

sm
2 = − sin(θ)s1 + cos(θ)s2 (10)

The dot product of sm
1 and sm

2 is 0, (i.e.((sm
1)T sm

2) = 0,
so sm

1 and sm
2 are orthogonal to each other.

The described orientation mutation fulfills the two design
goals. It is possible to achieve any orientation through a
series of 2-d rotations and the mutation is small by virtue
of the Gaussian distribution.

Center Mutation: The center point of e is ω. Hence,
the EA center mutation operator must simply return any
n-d vector. However, accomplishing the second design goal
requires that the mutated center remain near the unmutated
center.

The EA center mutation operator mutates each of the n
components of ω individually. Let ωm be ω after mutation.
The center mutation operator chooses ωm

i from a Gaussian
distribution with mean µ = ωi. The standard deviation
for the Gaussian distribution is a parameter that can be
changed.

The described center mutation fulfills the design goals be-
cause there is a nonzero probability of returning any point
when mutating ω. Also, the Gaussian distribution guaran-
tees that the mutated center usually keeps the center point
near its original location.

Semiaxis Length Mutation: The third type of muta-
tion, semiaxis length, results when Λ is manipulated. The
only constraint on the output of the semiaxis length muta-
tion operator is that Λm, the mutated Λ, must be diagonal
with positive entries. However, fulfillment of the second mu-
tation design goal requires that the change in the lengths of
the semiaxes should be relatively small.

The EA semiaxis length mutation operator mutates each
of the n semiaxis lengths individually. Let `m

i be `i after
mutation. The semiaxis length mutation operator chooses
`m
i from a Gaussian distribution with mean `i. The standard

deviation is a parameter value that can be set to reflect
the desired variability of the mutation. The algorithm also
performs a check to ensure that `m

i > 0.
This semiaxis length mutation fulfills the design goals be-

cause there is a nonzero probability of returning any valid Λ
and the Gaussian distribution guarantees that the mutated
semiaxis lengths are usually close to the unmuated lengths.

3.3 Objective Function
In an EA, the objective function evaluates the quality of

the individuals in a population. The output of the objec-
tive function affects whether or not the EA perpetuates an
individual to the next generation. For this reason, the ob-
jective function should reflect as accurately as possible the

341

true objective of the problem, which is to cover as much
space as possible while covering as few self points as possi-
ble. This objective divides naturally into a reward function
and a penalty function. The reward function rewards el-
lipsoids for covering space. The penalty function penalizes
ellipsoids for covering self points. The objective function is
the difference of a reward function and a penalty function.

Reward Function
The reward function should encourage maximum coverage
of space with a minimum number of ellipsoids. Since the so-
lution to this problem is a set of ellipsoids, the reward value
of each individual ellipsoid should reflect its contribution to
the performance of the set of ellipsoids. The cumulative re-
ward value of the population should be proportional to the
amount of nonself space covered. Let E be a population
of ellipsoids. Let REWARD : {π|π is a set of ellipsoids }×
E → [0.00, 1.00] be the reward function.∑

e∈E REWARD(E, e) should be proportional to the area
covered by the E. This means that when two or more ellip-
soids in E overlap, only one of the ellipsoids should receive
a reward for covering that area. This presents a difficult
problem: computing the total area covered by a set of el-
lipsoids. Also, in order to make decisions about which el-
lipsoids should perpetuate to future generations, the total
area covered by a set of ellipsoids must be divided among
the ellipsoids.

We accomplish this in the following manner: First, E is
sorted by volume using Equation 4. The algorithm then iter-
ates through all of the ellipsoids to assign rewards, beginning
with the largest volume. Each ellipsoid receives a reward for
area that it covers and is not covered by any larger ellipsoid.
The only remaining issue is how to compute how much area
an ellipsoid covers that is not covered by a larger ellipsoid.
To achieve this, we employ a 2n-way tree data structure.

A 2n-way tree [10, p.336-7] is a data structure that has its
roots in computational geometry. A 2n-way tree partitions
a n-d space into 2nk hyper-rectangles, where k is the num-
ber of levels of the tree. In this application, the algorithm
rewards the ellipsoids by inserting them into a 2n-way tree,
largest ellipsoid first. Each node in the 2n-way tree main-
tains a value c ∈ [0, 1.00] that represents the fraction of the
node that has not been covered by previously inserted ellip-
soids. Several approximations are used to decide how much
of a node a hyper-rectangle covers. If c = 1.00 or an el-
lipsoid does not overlap a node at all, the ellipsoid receives
no reward and returns to the node’s parent. If an ellipsoid
covers all of a node, it receives a reward and c is updated
to 1.00. Otherwise, the ellipsoid traverses all children of
a node and then returns to the node’s parent. The 2n-way
tree insertion algorithm assigns a reward to each ellipsoid in-
serted. Although the 2n-way tree algorithm is approximate,
it is statistically successful in fulfilling the design goals of
the reward function [11].

Penalty Function
The penalty function discourages ellipsoids from covering
self points. If an ellipsoid e covers β self points, its penalty
function is

PENALTY (e) = 1.00− (REWARD(E, e)/(2β + 1)) (11)

Evaluation of Equation 11 requires β, the number of self
points that e covers. A naive approach for obtaining β is

to check the ellipsoid against every point using the Maha-
lanobis distance, as described in Section 3.1. However, this
quickly becomes a computational bottleneck as the number
of points is increased. We employ a 2n-way tree again. The
algorithm inserts all of the self points into the 2n-way tree
so that each self point resides in a leaf node. Each node
maintains z, the number of self points in its descendents.
The algorithm obtains β by inserting e into the 2n-way tree.
Traversal is similar to the traversal described for the reward
function. Heuristic tests are used so that e does not need to
traverse every node in the 2n-way tree. In this manner, the
Mahalanobis distance is computed only for a subset of self
points. Reference [11] provides full details of this algorithm.

We thus define the objective function,

OBJECTIV E(E, e) = REWARD(E, e)−PENALTY (e).
(12)

Note on Ellipsoid Comparison
Since a 2n-way tree approximates the area that an ellipsoid
covers, it is inappropriate to use an exact comparison oper-
ator when selecting ellipsoids for the next generation. We
apply a statistical comparison operator that uses a Gaus-
sian distribution so that there is a nonzero probability of
choosing an ellipsoid with a lower objective value as a bet-
ter individual.

3.4 Algorithm Summary
The time computational complexity of generating ellip-

soids using this algorithm is O(2n+nα ∗n2 ∗genMax), where
n is the number of dimensions, α is the depth of the 2n-way
tree, and genMax is the maximum number of generations
for the EA. The space complexity is O(popSize+2n∗2nα) =
O(2n+nα), where n is the number of dimensions and α is the
depth of the 2n-way tree. The reason for the space complex-
ity is that each node in the 2n-way tree maintains a list of
its 2n corner points.

A detection generation algorithm must also determine the
number of detectors to be used. This issue is left for future
research. For the research described in this paper, the num-
ber of detectors is chosen a priori, based on problem domain
knowledge and experience. This issue should be the first ad-
dressed in future research.

4. EXPERIMENTAL DESIGN
Experiments should test the ellipsoid model by answer-

ing these questions: Can an evolutionary algorithm evolve
a set of ellipsoids to fill nonself space? How does the ellip-
soid method compare with other geometric shapes, such as
spheres? The above questions are first answered on peda-
gogical benchmark problems to validate the model. Then, a
real world data set is used.

4.1 Pedagogical Data Sets
Pedagogical problems provide a proof of concept by vali-

dating that an algorithm produces expected results on prob-
lems with known characteristics. Such pedagogical problems
also afford an opportunity for visualization techniques be-
cause they can be smaller and lower dimension. The intent
is to generate a set of pedagogical self/nonself data sets that
form various benchmark types based upon structural param-
eters. Such parameters include space dimensionality, space

342

Training Data Algorithm
Detection Rate False Alarm Rate

Detectors
Mean SD P-Val Mean SD P-Val

Pedagogical 1 Sphere 93.40 2.77
0.00

0 0
1.00

16

Ellipse 99.82 0.32 0 0 2
Pedagogical 2 Sphere 95.57 0.53

0.00
0 0

1.00
20

Ellipse 97.53 0.28 0 0 12
Pedagogical 3 Sphere 94.39 1.57

0.01
0 0

1.00
20

Ellipse 99.48 0.14 0 0 2
Setosa Sphere 99.80 0.14

0.05
0.20 0.10

0.38
1

Ellipse 99.20 0.34 1.20 0.24 1
Versicolor Sphere 90.90 0.95

0.83
33.60 1.08

0.00
34

Ellipse 90.80 1.00 17.00 0.83 10
Virginica Sphere 98.00 0.40

0.87
33.80 1.06

0.00
36

Ellipse 98.00 0.43 30.00 0.90 20

Table 1: Comparison of spherical and elliptical detectors. P-Val is the p-value, computed using a two-sided
t-test to determine whether the ellipsoid and sphere samples could have the same mean.

geometry (ellipsoid, sphere, rectangle, etc.) and test point
density.

The three artificial data sets selected are referred to as
Val1, Val2 and Val3. Figures 3 and 5 present Val1 and
Val3, two self data sets for which the optimal solution is
two ellipses. Val3 tests whether the algorithm can find an
optimal solution when overlapping ellipsoids are required.
Val2, presented in Figure 4, is an inverse problem. It tests
how well the algorithm can find a set of ellipsoids to fill in a
space that is not elliptically shaped. Although the optimal
solution is not known for Val2, a visual inspection of the re-
sults and analysis of test data provide a good approximation
as to how well the algorithm performs.

After the algorithm has generated ellipsoids for Val1-Val3,
a set of nonself points is needed for testing. We produce test
data by generating random points in the inverse of the self
area in each data set. We generate a large number (10,000)
of test points for each data set so that test results accurately
reflect the performance of the generated ellipsoids. Part
(b) of Figures 3 - 5 shows that 10,000 points provides good
coverage of the nonself region. The algorithm is run ten
times on each dataset for statistical analysis.

4.2 Real-World Test Data Sets
We select a known real-world data set to continue al-

gorithm validation because it is used by other researchers.
Note that we are not attempting to determine the best fea-
tures for classification, but only to reduce the error of clas-
sification (detection rate, false alarm rate), given the best
features. The iris data set is obtained from the Univer-
sity of California at Irvine Machine Learning Repository [1].
The iris database originates from a classic taxonomy paper
describing three different types of iris plants: Iris-Setosa,
Iris-Versicolour, and Iris-Virginica. Each data base instance
represents a plant belonging to one of these three classes.
The database contains 50 instances of each class, for a to-
tal of 150. Each instance has four real-valued attributes:
sepal length, sepal width, petal length, and petal width. Of
the three classes, one class is linearly separable from the
other two, but the other two are not linearly separable from
each other. The iris data set is well-suited for validation

because it is moderately sized in dimensionality (four fea-
tures) and data cardinality (50 points in each class). We
use 90/10 cross-fold validation [7] for testing. In 90/10 cross
fold validation, the data from the train class is randomly or-
dered and then divided into 10 equally sized sets. The two
test classes are also randomly reordered and divided into 10
equally sized sets. 10 tests are performed. For the ith test
the algorithm trains on the complement of the ith subset of
the train class while the ith subsets of R, J , and K are used
for testing.

5. RESULTS AND ANALYSIS
Subfigure (c) in Figures 3-5 shows the results of running

the ellipsoid algorithm against the corresponding self data
sets. From a visual perspective, the algorithm is very suc-
cessful. It finds the known solutions, covers non-elliptically
shaped nonself space well, and even finds the optimal so-
lution when it requires overlapping. When tested against
the nonself test data shown in subfigure (b) of Figures 3-
5, the algorithm also performs successfully. The ellipsoid
algorithm covers all of the nonself test points in Figure 3
and about 95% of the nonself test points in Figures 4 and 5.
These results are impressive, especially in Figure 4, since the
ellipsoids must cover and area in the shape of inverted ellip-
soids. The detection rate P Values in Table 1 show that the
ellipsoids attain a better detection rate with fewer ellipsoids
for the examples.

Table 1 shows the results for the Iris experiments. When
training on class Setosa, the ellipsoids and spheres perform
similarly. This result is expected because Setosa is lin-
early separable from the other two classes. The results are
more interesting when training on Versicolor and Virginica.
We expect the ellipsoids to achieve comparable performance
with the spheres, but with a smaller number of detectors.
This is because Versicolor and Virginica are not linearly sep-
arable. Hence, filling nonself space requires more flexibility,
which is a strength of ellipsoids when compared to spheres.
Table 1 shows the strength of ellipsoid model, which uses
70% and 44% less detectors than the sphere model for Ver-
sicolor and Virginica, respectively.

343

6. CONCLUSION
If AIS is to be applied to a detection problem, it is im-

portant to generate accurate and efficient detectors. Accu-
rate means that the detectors correctly differentiate self from
nonself. Efficient means that there are few detectors, since
fewer detectors means less computation to decide whether
test points are self or nonself (a test point must be compared
against all detectors until it matches one). Ellipsoids gen-
erated by an evolutionary algorithm are a considerable im-
provement over other geometric shapes that have been pre-
viously investigated. They are more efficient than spheres
and they achieve similar accuracy. Note that the ellipsoid
algorithm has also achieved good results (92% detection,
0% false alarm rate) using the MIT intrusion data [11]. Fu-
ture work may investigate crossover as a variation opera-
tor in the EA, additional mutation operators/parameters,
the problem of over-training, and ways to improve upon the
computational complexity of the ellipsoid model. Also, test-
ing on additional pedagogical data sets and real world data
applications is important to further validate our approach.

7. ACKNOWLEDGMENTS
Dr. Garry J. Tee of the Department of Mathematics, Uni-

versity of Auckland in Auckland, New Zealand provided a
good starting point for the mathematics behind ellipsoids
(tee@math.auckland.ac.nz).

This work represents the views of the authors and does not

represent the views of the U.S. government or U.S. Air Force.

8. REFERENCES
[1] C.L. Blake and C.J. Merz. UCI repository of machine

learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[2] Leandro Nunes de Castro and Jonathan Timmis.
Artificial Immune Systems: A New Computational
Intelligence Approach. Springer, London, England,
first edition, 2002.

[3] Fabio A. Gonzalez and Dipankar Dasgupta. Anomaly
detection using real-valued negative selection. In
Proceedings of Genetic Programming and Evolvable
Machines 2003, pages 383–403. Kluwer Academic
Publisher.

[4] Zhou Ji and Dipankar Dasgupta. Real-valued negative
selection algorithm with variable-sized detectors. In
Proceedings of GECCO 2004, LNCS 3102, Berlin.
Springer-Verlag.

[5] Jungwon Kim and Peter J. Bentley. An evaluation of
negative selection in an artificial immune system for
network intrusion detection. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO-2001), September.

[6] Brent McBride. A hyper-geometric data classifier for
blind detection of novel steganography. Master’s
thesis, Air Force Institute of Technology,
Wright-Patterson AFB, OH, March 2004.

[7] D. Michie, D.J. Spiegelhalter, and C.C. Taylor,
editors. Machine, Neural and Statistical Classification.
Ellis Horwood, 1994.

[8] Don R. Hush Patrick M. Kelly and James M. White.
An adaptive algorithm for modifying hyperellipsoidal
decision surfaces. Journal of Artificial Neural
Networks, 1:49–480, 1994.

[9] Stephanie Forrest Patrik D’haeseleer and Paul
Helman. An immunological approach to change
detection: Algorithms, analysis and implications. In
Proceedings of the 1996 IEEE Symposium on
Computer Security and Privacy, pages 110–119, 1996.

[10] Franco P. Preparata and Michael Ian Shamos.
Computational Geometry: An Introduction. Texts and
Monographs in Computer Science. Springer-Verlag,
1985.

[11] Joseph M. Shapiro. An evolutionary algorithm to
generate hyper-ellipsoid detectors for negative
selection. Master’s thesis, Air Force Institute of
Technology, Wright Patterson Air Force Base, Ohio,
2005.

[12] David J. Smith and Mavina K. Vamanamurthy. How
small is a unit ball. Mathematics Magazine,
62(2):103–107, April 1989.

[13] Gilbert Strang. Introduction to Linear Algebra.
Wellesley-Cambridge Press, 2 edition, 1998.

[14] Jonathan Timmis Susan Stepney, Robert E. Smith
and Andy M. Tyrrell. Towards a conceptual
framework for artificial immune systems. In
Proceedings of International Conference on Artificial
Immune Systems (ICARIS 2004), pages 53–64, 2004.

[15] PAL Core Development Team. Pal project: Gamma
function, October 2004.

[16] Eric W. Weisstein. Gamma function. From
Mathworld–A Wolfram Web Resource,
http://mathworld.wolfram.com/GammaFunction.html.

[17] Paul Williams, Kevin Anchor, John Bebo, Gregg
Gunsch, and Gary Lamont. Cdis-towards a computer
immune system for detecting network intrusions. In
Proceedings of Recent Advances In Intrusion
Detection, 2002.

344

