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ABSTRACT 
This paper presents a novel approach of applying both positive 
selection and negative selection to supervised learning for 
anomaly detection. It first learns the patterns of the normal class 
via co-evolutionary genetic algorithm, which is inspired from the 
positive selection, and then generates synthetic samples of the 
anomaly class, which is based on the negative selection in the 
immune system. Two algorithms about synthetic generation of the 
anomaly class are proposed. One deals with data sets containing a 
few anomalous samples; while the other deals with data sets 
containing no anomalous samples at all. The experimental results 
on some benchmark data sets from UCI data set repertory show 
that the detection rate is improved evidently, accompanied by a 
slight increase in false alarm rate via introducing novel synthetic 
samples of the anomaly class. The advantages of our method are 
the increased ability of classifiers in identifying both previously 
known and innovative anomalies, and the maximal degradation of 
overfitting phenomenon  

Categories and Subject Descriptors: I. Computing 
Methodologies- artificial intelligence.   

General Term:  Algorithm 

Keywords 
Artificial immune system, supervised learning, anomaly 
detection, positive selection, negative selection. 

1. INTRODUCTION 
Learning or detecting rare events from observed data has drawn a 
lot of attention in recent years. Rare events are the events that 
occur very infrequently, i.e. their frequency ranges from 0.1% to 
less than 5%. However, when they do occur, their consequences 
can be quite dramatic and quite often in a negative sense. Such 
rare events are in general called anomalies. They might be 
network intrusions[4][5], financial/telecom fraudulent 
transactions[6] or other risky events in the corresponding 

domains. Detecting such rare events has been investigated via 
either supervised learning or unsupervised learning approaches. 
Unsupervised learning methods, particularly anomaly detection, 
have dominated the research stream. Anomaly-based approaches 
build models based on only the normal data. The advantages are 
that they do not require any prior knowledge about the anomalies 
and can detect innovative ones. However, they tend to either 
create a large number of detectors which cause the efficiency 
problem, or result in excessive false alarms. Supervised learning 
approaches build models for rare events based on labeled data 
(the training data) and use them to predict anomalous event(the 
testing data). The advantage is their efficient prediction of 
previously known anomalies, but the defect is their incapability in 
identifying innovative anomalies. In machine learning domain, 
such supervised learning tasks are remarkably characterized with 
highly class-skewed distribution, generally over 95% of the 
normal data versus less than 5% of the anomalous data. This 
causes classifiers biased to the normal class (the majority) and to 
ignore the anomaly class (the minority), and consequently results 
in a relatively poor performance on identifying anomalies [1]. 

In some domains, the anomalous events keep changing over time. 
New computer virus, new network attacks and new fraudulent 
transactions occur incessantly, frustrating the users in a variety of 
ways due to their significant difference from those samples in the 
observed data. These new samples can be regarded as 
subcategories of the anomaly in a sense and cause classifiers 
ineffective in recognizing new patterns. This problem can be 
solved to some extent by feeding the classifier with artificial 
anomalous examples in the training phase. The artificial 
anomalous samples contain the patterns of potentially innovative 
anomalies.   

An extreme case is that the observed data contains no examples of 
the anomaly class at all. The reason might be the difficulty or the 
very high cost of obtaining anomalous samples, or the extremely 
rare occurrence of the events that are viewed as anomaly. In this 
case, it is reasonable to generate artificial anomalous samples to 
train the learner. The difficulty in this situation is where the 
synthetic samples are located in the data space. 

In this paper, we are motivated to balance the data sets by 
generating synthetic anomalous samples. The strategy of 
generating synthetic samples is inspired from the two regulations 
in the human immune system: positive selection and negative 
selection. The advantage of the immunology-inspired synthetic 
generation of anomalous samples is that it is suitable for data sets 
with or without examples of the anomaly class. If the training data 
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set contains no examples of the anomaly class, it is viewed as the 
extreme case with class skew ratio n:0, where n refers to the 
number of examples of the normal data. The data sets dealt with 
in the paper are categorical/discrete, but this does not mean that 
the immunology-based approach is limited to this sort of data.       

The remainder of the paper is organized as follows: Section 2 
briefly reviews the previous work and anomaly detection via 
classification. Section 3 briefly introduces the two regulations in 
the human immune system. In section 4, a co-evolutionary genetic 
algorithm for evolving patterns of the normal class and two 
algorithms for generating synthetic samples are introduced. In 
section 5, experiments on benchmark data sets are conducted to 
test the effectiveness of our approach. Section 6 provides the 
conclusions. 

2. DETECTING ANOMALIES VIA SUPER-
VISED LEARNING 
In this paper, we treat the problem of anomaly detection 
equivalent to supervised learning from class-imbalance data sets 
(see Figure. 1). The problem has been investigated in a number of 
ways in the domain of machine learning. In general, the methods 
fall into two categories: at data level and at algorithm level. At 
data level, work in the past mainly focused on re-sampling 
strategies[1][2]. There are three resampling strategies: under-
sampling the normal class, over-sampling the anomaly class and 
their combination. Balancing a class-skewed data set by over-
sampling the anomaly class is beneficial in detecting potentially 
new anomalies because the novel synthetic samples can be 

viewed as new anomalies in a sense. However, oversampling can 
also result in ovetfitting which is prone to generating more and 
longer classification rules. Under-sampling normal samples may 
remove some important examples, resulting in the loss of 
information. Therefore, intelligent over-sampling methods can 
generate valid samples of the anomaly class and in the meanwhile 
maximally degrade overfitting. 

SMOTE[3], standing for Synthetic Minority Over-sampling 
TEchniques, is a representative of over-sampling strategy in 
machine learning community. It generates synthetic samples by 
operating the “feature space” rather than “data space”. It over-
samples the minority (anomaly) class by taking each minority 
class sample and introducing synthetic examples along the line 
segment joining any/all of the k minority class nearest neighbours. 
It is claimed that a combination of SMOTE and under-sampling 
can achieve better classifier performance than only under-
sampling strategy. In [7], artificial anomalies are regarded as 
potential network intrusions and used to feed the inductive learner 
to learn the boundary between the normal and the anomaly class. 
The only work using immunology-inspired strategy to generate 
synthetic samples of the anomalous data is from Gonzalez, 
Dasgupta and Kozma[8]. They use negative selection algorithm to 
generate non-self samples, and then apply a classification 
algorithm to generate the characteristic function of the self (or 
non-self). However, it faces the efficiency problem of generating 
a large number of valid samples when the amount of self data is 
large. And it does not avoid the overfitting problem.

The performance of a classifier for anomaly detection can be 
evaluated by the following two measures:  

TNFP
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RateFP

TPFN
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where TP_rate is equivalent to the detection rate and FP_rate 
corresponds to the false alarm rate in anomaly detection systems.  

With regard to anomaly detection via supervised learning, we also 
are concerned with the ability of a classifier to identify innovative 
anomalies. A formal definition of innovative anomaly is defined 
as follows: 

 

 
Figure 1. Diagram of immunology-based re-sampling strategy for anomaly detection 
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Definition 1. An innovative anomaly is defined as a group of 
anomalous samples which can not be covered by any patterns 
which are learnt from existing examples of the abnormal class. 

Let RA=R1 R2 denote the set of rules about the abnormal class 
learnt from a synthetically balanced dataset, where R1 cover (but 
not limit to) the non-synthetic anomalous examples whilst R2 
cover only the synthetic anomalous examples. |R2| and |RA| 
represent the number of rules, respectively. The ability of a 
classifier in identifying innovation anomalies are calculated as: 

PR

QR
r

A

2  

where Q is the number of synthetic anomalous samples covered 
by R2 and P is the total number of examples of the abnormal 
class.  

The main problem of supervised learning for anomaly detection is 
the deficiency of anomalous examples in the training phase, 
which causes the classifier unable to discover the boundaries 
between the two classes. The natural way to solve the problem is 
to generate artificial anomalous samples to feed the learner and 
the objective of doing this is to form an as large decision region as 
possible for the anomaly class. The flaw of SMOTE is that for 
each minority class sample it generates synthetic samples only 
within a convex polygon with the neighbors as vertexes, and as a 
whole, it also generates synthetic samples within a bigger a 
convex polygon circumscribed by the seed anomalous examples. 
This restricts its ability of generating novel anomalies.  

 

 

 

 

Figure 2. The way of SMOTE generating synthetic samples 

However, randomly generating synthetic samples tends to result 
in overfitting, especially when the anomaly class is rare cases. 
Overfitting here is caused by inserting synthetic anomalous 
samples into the regions of the normal class, breaking the purity 
of the regions, and consequently results in more and longer 
classification rules which are error prone in prediction. 
Overfitting is considered as one of the evaluation criteria of 
resembling strategy. In decision tree, overfitting is eliminated by 
post-pruning the tree. Therefore, the tree size and the number of 
instances pruned can be used to measure the degree of overfitting 
caused by over-sampling the anomaly class. Figure 2 shows the 
way of SMOTE generating synthetic samples. In figure 3, a 
number of synthetic examples are appropriately generated. 

In the extreme case that no anomalous examples obtained in the 
training phase, synthetic anomalous data are generated based on 
the regularity of negative selection in the immune system. That is, 
the randomly generated instances are checked to avoid colliding 
with the patterns of the normal class.  

 

 

 

 

Figure 3.   Generating appropriate anomalous samples 

3. INSPIRATION FROM HUMAN MMUNE 
SYSTEM 
In the natural immune system, when an antigen presenting cell 
(APC) roams the body, T-cells, which have receptor molecules 
that enable each of them to recognize a different peptide-MHC 
combination, are activated and emit chemical signals to other 
immune cells. The B-cells, which also have receptor molecules of 
a single specificity on their surface, then respond to those signals. 
When activated, the B-cells divide and differentiate into plasma 
cells that secrete antibody proteins. By binding to the antigens 
they find, antibodies can neutralize them or precipitate their 
destruction by scavenging cells. Some T-cells and B-cells become 
memory cells that persist in the circulation and boost the immune 
system’s readiness to eliminate the same antigen if it presents 
itself in the future.  

From the viewpoint of pattern recognition, the most important 
feature of the immune system is that B-cells and T-cells have 
receptors on their surfaces. These receptors can recognize non-
self antigens at the molecular level and based on the shape 
complementary between the binding site of the receptor and a 
portion of the antigen called an epitope.  

Negative selection: T-cells undergo a process called negative 
selection before they develop into mature immune cells. During 
the process of negative selection, immature T–cells in the thymus 
are tested to see if they bind to self antigens. If the T-cells bind to 
any self antigens they are eliminated, otherwise they become 
mature and then distributed to lymph notes for detecting non-self 
antigens. Negative selection make mature T-cells have the feature 
of self tolerance.  

Positive selection: Non-self antigens presented to T-cells for 
binding are carried by Antigen Presenting Cells(APCs). APCs are 
special cells that engulf non-self antigens distributed throughout 
the body and convey engulf antigens to a specific form that allow 
T-cells to bind them. The MHC molecules of APCs perform a key 
role in this transformation. Positive selection selects only those T-
cells that bind to self-MHC/peptide binding on APCs in the 
thymus. The T-cells which do not bind self–MHC/peptide are 
eliminated.    

Although the results of positive selection are some specific T-
cells, MHC/peptide plays the key role in positive selection, which 
inspires us to find out them in an artificial immune system. We 
think that, in artificial immune systems, MHC/peptide refers to 
the boundary between the normal class and the anomaly class. 
The boundary is determined by the patterns of the normal data. 
Learning self- MHC/peptide in an artificial immune system is 
implemented by learning the patterns of the normal class.   
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Figure 4. MHC/Peptide bind to TCR 

4. GENERATING SYNTHETIC ANOMA-
LOUS SAMPLES 
4.1 Co-evolving Patterns of the Normal Class 
Immunology-based synthetic generation of anomalous samples 
includes two separate phases: learning patterns of the anomaly 
class via co-evolutionary genetic algorithm and generating 
synthetic samples of the anomaly class based on the regulation of 
negative selection.  

A pattern (schema) in a n-dimensional symbolic space refers to a 
region filled with examples of one class. In genetic algorithm, a 
schema is defined as a hyperplane.  For instance, a number of 
patterns in a 5-dimensional symbolic space are represented as 
follows:   

                                          A1 * C3D4E5 
                                          A1 ** D4E5 
                                          A1 *** E5 
                                          A1 **** 

The symbol “*” in the above expressions represents the 
irrelevance of the corresponding attribute to the schema. The 
order of a schema is defined as the number of symbol “*” the 
pattern contains. 

In this paper, we exploit a co-evolutionary genetic algorithm to 
evolve a number of patterns about the normal class. The 
population consists of a number of non-interbreeding 
subpopulations of species. Each represents only a part of the 
problem, and there is neither cooperation nor competition among 
subpopulations. Although nothing explicitly prevent multiple 
subpopulations from containing the identical schema, in practice, 
each subpopulation tends to be dominated by one species. In our 
work, each subpopulation is randomly initialized with a species 
which will converge on a specific schema after some generations 
of evolution. All the schemas together form the decision boundary 
of the normal class, analogous to self MHC/peptide in the natural 

immune system. This approach has been applied to concept 
learning[12] and Web document classification[13]. 
 

Algorithm_1: Co-evolve patterns of the normal data 

Input :  A data set  and a number of parameters. 
Output: A group of patterns 

1 Encode the data set into binary strings;  
2 Initialize the first subpopulation;  
3 While the number of patterns is less than the threshold   
4      For each subpopulation 
5           calculate the fitness of each individual; 
6           do selection, crossover and mutation; 
7      endfor 
8      calculate the total fitness of the N populations; 
9      if the total fitness fails to increase for a number of 

consecutive generations  
10           remove the individuals in that do not contribute to 

the total fitness;  
11           add a subpopulation with a new species; 
12      endif        
13 endwhile 

 

Figure 6.  Algorithm of co-evolving patterns of the normal data 

 
Individuals are designed to consist of four sections (see Figure 5). 
Each attribute in data sets is encoded as three binary bits, which 
can encode 8 different values. Both the gene section and the mask 
section have 3 times bits as many as the number of the attributes. 
The schema is obtained by replacing the consecutive three bits 
with *** if the corresponding three bits in the mask section are 
000. The order is obtained by converting the binary value into a 
decimal one and then divided by 3. The first bit in fitness section 
is a sign, 1 for negative and 0 for positive, the rest 15 bits encode 
the decimal value which could be either positive or negative.  

The two fitness functions in the above algorithm are designed as 
follows 
 

 
where k is the number of examples of the normal class covered by 
the individual and  is a punish factor which is big enough to lead 
to a negative value if an individual covers any samples of the 
anomaly class 

:   
                                             fitness                            genes                               mask                         order 

0000000110001000 110001101010100001 111000111000000111 00001001 

 
     0.462   110***101******001          3 

Figure 5.  Encoding scheme 
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Within a subpopulation, genetic operations include selection, 
crossover and mutation. Children are created by selecting two 
parents from the same species via fitness-proportionate selection 
with balanced linear scaling and then using uniform crossover and 
bit flipping mutation. The subpopulation tends to maintain the 
schema once it find and also has the ability of evolve out a new 
schema. In our experiments, subpopulation size = 100, crossover 
rate= 0.65, mutation =0.15 for each data set.  

4.2 Synthetic Generation of Anomalous Samples 

4.2.1  Synthetic Generation with Seed Examples  
The algorithm starts with collecting all the vacant neighbours of 
the examples of the anomaly class, leading to a candidate set C of 
synthetic anomalous samples. In a n-dimensional space, a data 
point maximally has 2 neighbours in each dimension, thus 2n 
neighbours in the space. A vacant neighbour means the neighbour 
is neither an instance of the normal class nor an instance of the 
anomaly class. If a neighbour is empty, then label it as a synthetic 
sample of the anomaly class and store it in set C as a candidate. 
The algorithm then checks each candidate sample in C to see if it 
is covered by any schema of the normal class. Those candidate 
samples covered by patterns of the normal class are removed. The 
algorithm probabilistically removes some synthetic samples 
which are not covered by any patterns of the normal class at all. 
This operation avoids the situation that, for some data sets of high 
dimensionality or/and small sample size, the synthetic samples are 
prone to being generated by only a few examples of the anomaly 
class. If the number of the synthetic samples is less than the 
required number for balancing the data set, repeat this process 
until the data set is balanced. The algorithm is described as 
follows: 

 

    Algorithm_2:  Synthetic generation with seed examples 

Input:  a set S of patterns, a set A of examples of the 
anomaly class and N   
Output :  a set E of synthetic samples of the anomaly class 
1. E=A; count=0; 
2. while count < N     
3.       C =Valid_neighbour (A );  
4.       for each element c in C 
5.             for each s in S 
6.                 Match(c, s ); 
7.            endfor 
8.            if  c matches any s then  
9.                 remove c;  
10.            else  
11.                 remove c  probabilistically;                          
12.            endif 
13.       endfor 
14.       count = count + |C| ; 
15.       E=E  C; 
16.       if count < N then  
17.            A=C;    
18.       endif 
19. endwhile 
20. output E       

 

Figure 7.  Algorithm of generating synthetic anomalies 

4.2.2    Synthetic Generation without Seed Examples  

Data sets in the extreme case contain no examples of the anomaly 
class at all. The set of patterns input to Algorthm_3 is slightly 
different from the set of patterns input to Algorithm_2 since there 
is no constraint of anomalous samples during the process of co-
evolutionary. The algorithm begins with randomly selecting a 
vacant position in the space as a seed and labeling it as a sample 
of the anomaly class. A seed position is not covered by any 
pattern of the normal class. All the neighbours of the seed 
position are collected and checked if they are covered by the 
patterns. A neighbour without being covered by any pattern is 
probabilistically selected as a synthetic sample. The algorithm 
repeats the process of negative selection until a balanced data set 
is obtained.  

 

    Algorithm_3: Synthetic generation without seed examples 

Input: a set S of patterns, N: the number of synthetic samples    
Output: a set E of synthetic samples of the anomaly class 
1. E= ; count=0; 
2. while count < N    
3.      b=randomly_generate_seed( );    
4.      C=valid_neighbour (b);   
5.      for each element c  in C 
6.            for each s in S 
7.        Match(c, s );   /* collision check */      
8.            endfor 
9.            if  c  matches any s then  
10.                  remove c;  break; 
11.            else  
12.                  remove c  probabilistically;                          
13.            endif 
14.      endfor 
15.      count = count + |C| ; 
16.      E=E  C; 
17. endwhile 
18. output E       

Figure 8. Algorithm of generating synthetic anomalies without 
seeds. 

5. EXPERIMENTAL RESULTS 
We assessed the effectiveness of our method by conducting 
experiments on some UCI datasets  

We choose 14 data sets from UCI data set repertory.  8 of them 
consist of nominal attributes and the rest 6 consist of discrete 
attributes. If a dataset is multi-class, we mapped it into a two-class 
dataset with class-skewed distribution by labeling the instances of 
one class or two as anomaly and the reminder as normal. Table 1 
shows the class natural distributions and the class extreme 
distributions. For each dataset, we have three versions: the first 
with class natural distribution, the second obtained by balancing 
the first version and the third version by balancing the extreme  
class distribution.  

We then applied C4.5 and Naïve Bayes to each version to 
examine the classification performance, the ability of identifying 
innovative anomalies and the overfitting degree. The TP_rate and 
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FP_rate in Table 2 correspond to the detection rate and the false 
alarm rate, respectively. In order to understand the increased 
ability of classifiers in identifying innovative anomalies, we first 
tested the learner’s ability of identifying the original anomalous 
examples with the rules learnt in version 3 where the original 
anomalous examples in each data set were removed for testing. 
The results are shown in Figure 9 from which we can see that 
over 70% of the original anomalous samples are predicted. We 
then sort out the rules generated by C4.5 in each data set that 
cover only synthetic anomalous samples and calculate the value 
of r (see Figure 10). We found that r is strongly related to the 
class-skewed ratio in version 1. Mushroom and crx have the 
lowest values of r because of their closer to the class balanced 
distributions. The results show that the higher the class-skewed 
ratio, the higher the value of r. Overfitting is measured by both 
the fraction of the synthetic anomalous samples pruned in the 
classification and the tree size (see Table 3). The f.a.s.p in table 3 
denotes the fraction of anomalous samples pruned. The tree size is 
represented as leaf nodes/total nodes.  

Table 1. Data sets  from UCI data set repository  
    data set natural distri. extreme distri.

breast-cancer    201: 85       201: 0
car 1835 : 134    1835 : 0
mushroom 4208 : 3916    4208 : 0
post-operative     88 : 2        88 : 0
primary-tumor   325 : 14      325 : 0
splice-jxn  2423 : 767    2423 : 0
tic-tac-toe   626 : 332      626 : 0
voting    267 : 168      267 : 0
breast-wisc.   458 : 241      458 : 0
crx   383 : 307      383 : 0
german   700 : 300      700 : 0
lung-cancer     23 : 9        23 : 0
lymphography   142 : 6      142 : 0
soybean   290 : 17      290 : 0

 
 

Table 2.  Performance of classifiers on each data set 
version1 version2 version3 

      Data set Classifier 
TP_rate  FP_rate TP_rate FP_rat TP_rate FP_rate 

 C4.5 0.235 0.075 0.816 0.159 0.915 0.124 
breast-cancer 

Naivebayes 0.435 0.144 0.896 0.189 0.930 0.085 
 C4.5 0.785 0.011 0.993 0.015 0.997 0.028 

car 
Naivebayes 0.355 0.000 0.967 0.028 0.886 0.267 
 C4.5 1.000 0.000 0.992 0.000 0.964 0.000 mushroom 
Naivebayes 0.921 0.008 0.928 0.025 0.945 0.047 
 C4.5 0.000 0.031 0.558 0.375 0.806 0.219 

post-operative 
Naivebayes 0.038 0.016 0.529 0.484 0.847 0.172 
 C4.5 0.000 0.000 0.790 0.164 0.905 0.085 

primary-tumor 
Naivebayes 0.000 0.000 0.729 0.194 0.936 0.079 
 C4.5 0.925 0.061 0.965 0.067 0.885 0.083 

splice-jxn 
Naivebayes 0.813 0.036 0.877 0.037 0.729 0.044 
 C4.5 0.741 0.008 0.842 0.133 0.660 0.163 

tic-tac-toe 
Naivebayes 0.413 0.155 0.714 0.268 0.690 0.296 
 C4.5 0.958 0.045 0.963 0.064 0.910 0.086 

voting 
Naivebayes 0.917 0.119 0.948 0.124 0.928 0.124 
C4.5 0.921 0.046 0.976 0.059 0.996 0.055 

breast-wisc. 
Naivebayes     0.988   0.033   0.993   0.033 1.000   0.037 

 C4.5 0.980 0.008 0.982 0.010 0.956 0.051 
crx 

Naivebayes 0.997 0.000 0.997 0.003 0.948 0.042 
 C4.5 0.380 0.133 0.776 0.250 0.931 0.073 

german 
Naivebayes 0.470 0.144 0.743 0.254 0.984 0.036 
 C4.5 0.667 0.174 0.870 0.261 0.739 0.217 

lung-cancer 
Naivebayes 0.667 0.304 0.739 0.174 1.000 0.087 
 C4.5 0.500 0.000 0.993 0.028 0.880 0.085 

lymphography 
Naivebayes 1.000 0.021 0.986 0.021 0.965 0.056 
 C4.5 0.882 0.003 0.973 0.031 0.890 0.062 

soybean 
Naivebayes 0.941 0.000 0.987 0.000 0.986 0.024 

                      Note: The classification were conducted by using Weka Knowledge Explorer 
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Figure 9.   Percentage of the original anomalous samples identified by the rules learnt in version 3 

 

 

Figure 10.   The ability of the classifier identifying innovative anomalous samples measured by r 

  

Table 3. Decision tree size and the fraction of anomalous samples pruned in C4.5 
Version 1 Version 2 Version 3 

      Data set 
Tree size  f.a.s.p tree size  f.a.s.p tree size  f.a.s.p 

breast-cancer 4/6 61/85 45/59 11/201 23/29 7/201 
car 44/63 10/134 55/79 8/1835 71/102 0/1835 
mashroom 25/30 0/3916 70/86 0/4208 85/108 2/4208 
post-operative 1/1 2/2 22/32 9/88 12/17 6/88 
primary-tumor 1/1 9/14 44/78 16/325 24/44 24/325 
splice-jxn 61/81 36/767 58/77 28/2423 213/452 46/2423 
tic-tac-toe 95/142 27/332 97/145 27/626 133/199 32/626 
voting 11/16 3/168 14/19 3/268 17/23 7/268 
breast-wisc. 28/31 13/241 46/51 5/458 37/41 7/458 
crx 12/17 3/307 12/17 3/383 17/26 7/383 
german 69/101 128/300 206/288 53/700 43/71 75/700 
lung-cancer 5/7 1/9 8/12 2/23 5/7 2/23 
lymphography 3/4 3/6 7/10 1/142 14/22 8/142 
soybean 16/22 1/17 18/25 3/290 31/44 7/290 

                                note: f.a.s.p = the anomalous samples pruned/the total anomalous samples                                                                                               

 

The experimental results are analysed by comparing each two of 
the three groups: 

version1 vs. version 2.  

In version 1, both C4.5 and Naive Bayes produce quite low 
FP_rates in most of the cases, which means that the normal 
classes are well classified, or the false alarm rates are quite low. 
But the TP_rates are not satisfying, which means that the 
detection rates are not satisfying. This explains that classifiers are 

biased to the normal class. The poor performance on the anomaly 
classes is also exhibited by the higher values of f.a.s.p in version 
1. In version 2, the TP_rates are increased evidently in most of the 
cases, and accordingly the FP_rate are also slightly increased. 
This explains that the improvement in detection rate is often 
accompanied by a slight sacrifice in false alarm rate. The values 
of f.a.s.p in version 2 degrade sharply and the tree sizes are 
appropriately augmented. The ability of generating innovative 
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anomalous samples in version 2 is highly related to the class skew 
ratio of the data set.       

version 1 vs. version 3.  

Since all the examples of the anomaly class in version 3 are 
synthetic ones, we are concerned with the TP_rate, FP_rate and 
the ability of the classifier in predicting real anomalies. The 
TP_rates in version 3 are fairly high and the false alarm rates are 
also slightly higher than those in version 1. We found that data 
sets in version 1, e.g. breast-cancer, car, german, post-operative 
and primary-tumor, are poorly classified but well classified in 
version 3. And the tree size and f.a.s.p in such a case are quite 
satisfying. The results in Figure 9 show that over 70% of the 
original anomalous examples can be identified by the rules learnt 
from the artificial anomalies. This actually demonstrates the 
ability of the classifier in predicting innovative anomalies and 
also validates our motivation of generating synthetic anomalous 
samples.     

version 2 vs. version 3. 

The difference between version 3 and version 2 for each data set 
is that in version 2 the original anomalous samples are used as 
seeds for synthetic generation and used to train the learners, 
whereas all the anomalous samples in version 3 are artificial ones. 
In version 2, the synthetic samples are generated to fill in the 
vacant neighbors of the seed examples of the anomaly class; in 
version 3, however, they are generated based on negative 
selection in the human immune system.  The classification 
performances in version 2 are slightly better than those in version 
3. This can be explained that the existing samples of the anomaly 
class provide information in determine the boundaries between 
the classes. 

6. CONCLUSIONS 
This paper applied both positive selection and negative selection 
to supervised learning for anomaly detection via generating 
synthetic anomalous samples which are viewed as potentially new 
anomalies. In general, both the existing and synthetic anomalous 
samples provide important information for determining the 
boundary between the normal class and the anomaly class, and 
make the detection more effective. In normal case, the synthetic 
samples are generated around the seed examples of the anomaly 
class, whereas the artificial anomalies are generated completely 
based on negative selection. We are concerned with the ability of 
classifiers in predicting both previously known and innovative 
anomalies. Our method is empirically validated via experiments 
on some symbolic/discrete data sets from UCI data repository. 
Experimental results show that over 70% of the original 
anomalous examples can be predicted by the rules learnt from 
pure artificial examples. The f.a.s.p values in both version 2 and 
version 3 decrease greatly, accompanied with the appropriate 
augment of the decision tree size. The advantages of our method 
include (1) an evident improvement of the performance of 
classifiers on the anomaly class, (2) the generation of as large 
decision regions for the anomaly class as possible and, (3) the 
maximal degradation of overfitting phenomenon 

4. REFERENCES 
[1] Chawla, N. V., Japkowicz N. and Kotcz. A.  Editorial : 

special issue on learning from imbalanced data sets 

[2] Weiss. G. Mining with rarity: A unifying 
framework.SIGKDD Exploration, 6(1):7-9,2004. 

[3] Chawla,N.V. Bowyer, K.W., Fall,L.O.&Kegelmeyer,W.P. 
(2002), SMOTE: synthetic minority over-sampling 
Techniques, journal of artificial intelligence research, 16, 
321-357. 

[4] Dasgupta, D. and Gonzalez, F. “An immunity-based 
Technique to Characterize Intrusions in Computer 
Networks”, IEEE transaction on evolutionary computation 
6(3),pp 1081-1088 June 2002. 

[5] Paul, K. harmer, Paul, D. Williams, Gregg H.Gunch and 
Gary B.Lamont,  “An Artificial Immune System Architure 
for Computer Security Applications” IEEE transaction on 
evolutionary computation, vol.6. No.3  June 2002. 

[6] Fawcett, T. and Provost, F.  Adaptive fraud detection, Data 
mining and knowledge discovery, 1-28(1997). 

[7] Fan, W. Miller, M and Stolfo, S. Using Artificial Anomalies 
to detect unknown network intrusions.   

[8] González, F., Dasgupta, D. and Kozma, R. Combining 
Negative Selection and Classification Techniques for 
Anomaly Detection. In Proceedings of the Congress on 
Evolutionary Computation , pp 705-710, Honolulu, HI, May 
2002. 

[9] Kim, J,  Ong, A. and  Overill, R.  Design of an artificial 
immune system as novel anomaly detector for combating 
financial fraud in the retail sector. 

[10] Wei-Chou Chen, et al, A novel manufacturing defect 
detection method using data mining approach. In the 
proceeding of innovation in applied artificial intelligence, 
IEA/AIE,2004.   

[11] Kubat, M, Hole, R.C. and Matwin,S. Machine learning for 
the detection of oil spills in satellite radar images. Machine 
Learning, 30(20):195-215,1998. 

[12] Potter, M. A. and Kenneth A. De Jong (1998). The 
Coevolution of Antibodies for Concept Learning. In 
Proceedings of the Fifth International Conference on 
Parallel Problem Solving from Nature, pp 530-539. 

[13] Hang, X. and Dai, H: Constructing Detectors in Schema 
Complementary Space for Anomaly Detection. GECCO (1) 
2004: 275-286.   

[14] Poli, R. and Langdon, W. B. Schema theory for genetic 
programming with onepoint crossover and point mutation. 
Evolutionary Computation, 6(3):231-252, 1998. 

[15] Potter, M. A., Jong, K. A. and Grefenstette, J. J., A 
coevolutionary approach to learning sequential decision 
rules. In Larry J. Eshelman, editor, Proceedings of the 6th 
International Conference on Genetic Algorithms (ICGA95), 
pages 366--372. Morgan Kaufmann Publishers, 1995.

 

352


