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ABSTRACT
Time series have been a major topic of interest and analysis
for hundreds of years, with forecasting a central problem. A
large body of analysis techniques has been developed, par-
ticularly from methods in statistics and signal processing.
Evolutionary techniques have only recently have been ap-
plied to time series problems. To date, applications of ar-
tificial immune system (AIS) techniques have been in the
area of anomaly detection. In this paper we apply AIS tech-
niques to the forecasting problem. We characterize a class
of search algorithms we call antigenic search and show their
ability to give a good forecast of next elements in series gen-
erated from Mackey-Glass and Lorenz equations.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—dynamic programming

General Terms
Algorithms, Experimentation

Keywords
artificial immune systems, time series, forecasting, antigenic
search

1. INTRODUCTION
A time series is a sequence of data collected from some

system by sampling a system property, usually at regular
time intervals. The analysis of time series has a long and
rich history with recorded examples going back more than a
millennium [9]. They appear in such diverse fields as astron-
omy, meteorology, seismology, oceanography, signal process-
ing, plant operations and economics among others. Three
primary questions arise. Given an unknown series can we
identify it by matching it with known series? Given the
past performance of a series, can we determine if the current
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performance is anomalous? Finally, a question of particular
interest in all of the above fields is, given a series, can we
forecast the next value or set of values in the sequence? It
is this last question that we address in this paper.

1.1 Standard Techniques of Time Series
Analysis

A variety of techniques have been developed to analyze
time series [9][14]. Most fall into one of two broad classes.
The first is based on statistical techniques. The second is
based on techniques associated with signal processing and
spectrum analysis. Only recently have techniques associ-
ated with evolutionary computation begun to be investi-
gated. The first application of AIS techniques appears to be
that of Dasgupta and Forrest [1] in 1995.

1.2 The Human Immune System and
Antigenic Search

The immune system (IS) performs two roles in the pro-
tection of the human body. The first role is anomaly or in-
trusion detection whereby foreign entities are detected and
eliminated. The second is an anticipatory role using a long-
term associative memory capability [16] that makes vacci-
nation against novel foreign entities effective.

Dasgupta and Forrest [1][2] have used an anomaly detec-
tion algorithm based on the properties associated with this
first role to study time series anomalies caused by tool break-
age in milling machines. Others have studied the anomaly
detection problem with other time series including computer
system calls [6][18][15].

The authors are unaware of any algorithm developed to
study time series forecasting using an IS metaphor. In this
paper we present a class of such algorithms that we term
antigenic search. We will use the term antigen to refer to
both entities the IS recognizes as foreign and to points in
test data. We will use the term antibody to refer to all IS
entities that have a detection or match capability, to points
in training data and to entities in detector and memory sets.

In Section 2 of this paper we review important charac-
teristics of time series and the IS properties applicable to
development of time series analysis algorithms. We identify
the shortcomings of IS models for developing time series
forecasting algorithms and what extensions are necessary to
facilitate their development with antigenic search. In Sec-
tion 3 we discuss related work and give a detailed description
of what antigenic search is and a general implementation.
Section 4 presents the results of testing various algorithmic
variants against data from Lorentz, Mackey-Glass and uni-
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form random data sets with an analysis of the results. Sec-
tion 5 summarizes our results and contributions. Section 6
identifies future work.

2. TIME SERIES AND IMMUNE SYSTEM
PROPERTIES

Time series are generated by a wide variety of systems.
Most systems of widespread interest are extremely large and
complex. The weather is a global system influenced by the
oceans and their temperatures and currents, the geography
of the planet’s land masses and the atmosphere. Some are
chaotic in nature and most natural systems exhibit consider-
able noise in their data. Forecasting then is a hard problem.

2.1 Time Series Characteristics
Characteristics associated with time series include:

1. explicitly represented data points. Usually the dynam-
ics of the underlying generator are unknown;

2. noisy data due to random perturbations;

3. the existence of pattern or cycles in the data with reg-
ular (seasonal) period;

4. the existence of cycles of irregular period;

5. differences between corresponding cycles both in am-
plitude and length;

6. the presence of a trend contribution that may be of
polynomial or exponential nature;

7. most series report one-dimensional real valued data;
however, multivariate analysis of multiple series may
be required in some circumstances.

Because of these complexities, filtering and decomposi-
tion techniques are traditionally used to aid analysis and
forecasting by smoothing noise and separating out contri-
butions from trend, seasonal and cyclical components. The
success of evolutionary approaches to other difficult prob-
lems motivates their consideration for time series.

2.2 Immune System Search and Forecasting
Characteristics

The IS [3] has a number of characteristics that make it a
suitable metaphor for search and forecasting. We summarize
these as:

1. explicit representation of entities, useful for evolution-
ary and population-based techniques based on clonal
selection and affinity maturation [3];

2. an ability to divide a search space into 2 partitions
commonly denoted as self and non-self, useful for anom-
aly detection;

3. an ability to create a population of antibodies each
capable of recognizing a class of antigen while being
incapable of recognizing any of self;

4. an ability statistically, to cover the entire non-self par-
tition over a short period of time [13] (see [4] for AIS
coverage techniques);

5. the ability to perform an approximate match with a
class of antigen with varying degrees of strength or
affinity for the members of the class. This is equivalent
to performing pattern matching on noisy signals;

6. the development of a separate class of memory entities
whose populations are proportionate in size to their
affinity for antigen;

7. anticipation of mutation of antigen through clonal di-
versity caused by somatic hypermutation.

A comparison of IS characteristics with time series charac-
teristics suggests the IS provides a strong metaphorical basis
for building algorithms to apply to time series problems.

What the IS lacks for representing time series however,
is any mechanism to represent sequence. The IS appears to
remember some antigen for long periods of time while forget-
ting others in a manner unrelated to the order of infection.
It has no mechanism to determine or represent the order
of infection. Antibody population size might be used as an
indicator if it were proportionate to the temporal order of
infection instead of the strength of response to infection.

Introducing sequence into the memory aspect of IS models
should enable the extension of IS search to modeling series
and forecasting. This is what antigenic search is designed
to facilitate.

3. ANTIGENIC SEARCH
Common to all AIS algorithms is a representation of an

entity in a problem domain by a chromosomal structure, the
genes of which may have any numerical or symbolic specifi-
cation. This structure, expressed as an n-tuple, corresponds
to a point in a space and the set of values of its genes repre-
sent the position of the entity in the space. We will refer to
this space as a state space. Other terms used in the literature
include shape space and search space.

In antigenic search we make two modifications to standard
AIS techniques. The first is to modify a gene by adding two
additional components representing velocity and accelera-
tion. This gives a gene the representation (d0, d1, d2) where
di is the ith derivative. In principle this could be extended
to any number of derivatives.

Our second modification is to specify a memory that pre-
serves sequence information. Any computational structure
may be used as long as the sequencing information of the
underlying time series can be recovered. This extends the
standard memory capability of discrete AIS models beyond
that of storing individual unconnected entities to include
series or sequences of connected entities.

Whereas Dasgupta and Forrest [2] use an implicit repre-
sentation of sequence as an encoding of the genome of an
antibody, we use an explicit representation via a memory
model in which each point in the series is discretely pre-
sented in a linked fashion. This allows easy representation
and comparison of variable length series and subseries.

The use of derivatives not only captures immediate past
performance of a system but enables forecasting next state,
real-time anomaly detection, and beneficial bias in search
and optimization problems.

In this paper we consider the application of antigenic
search principles to the specific problem of next element fore-
casting in a time series. We use real valued genes but any
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representation might be used as long as a notion of deriva-
tive can be specified for it. We note we have not attempted
to apply these ideas to immune network models [7].

3.1 Related Work
NASA uses anomaly detection of time series data to iden-

tify component failure. Mahoney and Chan [12] have stud-
ied anomalous Shuttle valve operation data using derivative-
based models. A first derivative approach using piecewise
linear splines was investigated but failed to detect data anom-
alies satisfactorily.

A path-based approach has since been developed using
first and second derivatives of their 1-dimensional data to
construct points in a 3-dimensional space. They note that
n-dimensional data may be used. When they add first and
second derivatives they get a 3n-dimensional space to work
in.

Low-pass filters are employed to smooth the data and im-
prove its continuity. Anomalous behavior of a test series is
determined by the use of a Euclidean-based distance mea-
sure between a test point and a point of a training series
summed over all points in the training series and all test
points. They rejected immunological-based approaches due
to their lack of a suitably “human comprehensible model”.

The other piece of work we mention is that of Kennedy et
al. on particle swarm optimization (PSO) [10] [11]. This
is an evolutionary [8], population-based search technique
rather than a time series analysis technique. The relevance
to our work lies in its representation of points in a search
space by both a position and velocity (first derivative) vec-
tors. The authors use a fitness criterion to guide the search.
Each entity in the population adjusts its position and ve-
locity in the search space by the vector difference between
its current position and a combination of its personal best
position and the population’s globally best position to date.

3.2 Features of Antigenic Search
As noted in Section 2.2 the IS has what we termed an

anticipatory characteristic. When an antigen is identified
the IS produces a series of genetically uniform subpopula-
tions termed clones of size proportional to their affinity for
the antigen. These we may consider to be memory antibod-
ies. Each clone will have its own area of coverage of state
space with the likelihood of considerable overlap with other
clones. Should a mutated antigen occupy a point in state
space not far from its parent it will likely fall into this area
of clonal coverage. In this sense, the IS can anticipate fu-
ture infection. Smith [17] has used this property to model
a time series problem, the efficacy of influenza vaccination
strategies.

An antibody extends its region of recognition through its
clonal children. If we consider any particular lineage, the
successive generation of children effectively maps a search
tree through state space. As we have noted, however, the IS
has no mechanism to record this lineage. We can confer a
stronger ability on an antibody than anticipation by adding
velocity and acceleration components. These effectively es-
tablish a lineage relationship for successive generations of
antibody. In addition, the application of these components
to an antibody in state space constitutes making a forecast
of its next position or in other terms, the location of a pre-
ferred child. Its velocity and acceleration may be expressed
at each point as a discrete difference from its previous po-

sition. Therefore, each child clone of an antibody with its
parental lineage represents a unique path or trajectory in
state space, a series in time.

The effect of velocity and acceleration components is shown
in Figure 1. The circle shown represents a hypersphere in
state space. For normal IS search, Figure 1(a), if the prob-
ability distribution of children is centered on the parent’s
position p

i
, a child has equal likelihood of being created any-

where on this surface, say at p
i+1

. With antigenic search,

the parent positioned at p
i
with associated velocity vi and

acceleration ai will forecast a preferred position at p
i+1

as

shown in Figure 1(b).

ai

v
i

P
i

P
i +1

P
i

Pi+1

(a) (b)

Figure 1: An antibody’s movement is state space,
(a) no preferential direction and (b) forecast direc-
tion.

The first three entities in a time series (three are needed
to calculate initial velocity and acceleration components) are
sufficient to establish a continuous trajectory in state space.
Since this trajectory does not likely represent the training
series, the memory must be given an additional capability
of storing the actual entities and their sequence.

The training phase of an antigenic search algorithm com-
pares the next test entity’s position with the forecast po-
sition and uses this feedback to guide the direction of mu-
tation of children. Children are added to memory with a
two-way link with their parents. This captures the sequen-
tial information of a time series. Any memory antibody has
the information to allow both forward and backward traver-
sal of the stored series characteristics. In the training phase
of antigenic search, evolutionary selection is not required.

3.3 An Antigenic Search Forecasting Algorithm
In this section we will present the core component of the

basic algorithm first, the forecasting component second and
the child creation component last.

As a first step in the core component, a forecast is made.
Next an antigen is retrieved from the test series and matched
against the memory. We use a two threshold approach to
recognition. One is a match threshold matchT that deter-
mines whether recognition of antigen by an antibody would
be said to occur. The second is a tighter, sufficiency thresh-
old suffT that is used to guide the creation of appropriate
antibodies for the memory set. This bears some similarity
to the two threshold model of Watkins et al. [19] who use a
“stimulation threshold” to terminate training on an antigen.

If the first match with an antibody that occurs is suffi-
cient, nothing further is done with the antigen. If the first
match made with an antibody is not sufficient, a child capa-
ble of a sufficient match is created and added to the memory
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set. If no match occurs, a child is created capable of a suf-
ficient match and added to the memory set.

Parameters:
matchT: the distance within which a match occurs
suffT: the sufficient distance to qualify an antibody

Initialization:
memSet <- new empty structure;

Processing:
while antigen remains do

Forecast antigen and report difference;
exit <- false;
Get next antigen;
while memSet not empty and exit false do

Get next antibody;
distance <- distance between antigen, antibody;
if distance <= suffT then

exit <- true;
else

if distance <= matchT then
Create child;
exit <- true;

endif
endif

endwhile
if no memory match occurred then

Create child;
endif

endwhile

The forecasting aspect of the algorithm is given next.
Genes have three components, position, velocity and accel-
eration shown by an index in parentheses in this example.
A forecast is made from the last antibody accessed in the
memory set. The position of the forecast antigen is com-
puted from the position, velocity and acceleration associated
with this antibody. No velocity or acceleration components
are calculated for the forecast since the actual next antigen
presented will have no such components to compare against.

Initialization:
lastC <- chromosome of last matched antibody;
newC <- initialized chromosome of forecast antigen;

Processing:
for each gene of lastC and newC do

newCGene(0) <- lastCGene(0) + lastCGene(1)
+ lastCGene(2);

newCGene(1) <- 0;
newCGene(2) <- 0;

endfor
forecastAntigen <- Create with newC chromosome;

When a new antibody is created, two things happen. Its
position in state space is chosen using a mutation rate pa-
rameter. Then, its associated velocity and acceleration are
calculated using its new position and the position and veloc-
ity of its parent. The number of new antibodies created is
determined by a reproduction rate parameter. This repro-
duction process is described by the following pseudocode:

Parameters:
suffT: the sufficient distance to qualify an antibody
muteRate: the rate in [0, 1] of mutation;
repRate: the number >= 1 of children produced;

Initialization:
lastC <- chromosome of last matched memory antibody;
agC <- chromosome of the current antigen;

newC <- initialized chromosome of new antibody;

Processing:
for repRate times do

for each gene of lastC and newC do
Create new gene using muteRate;
newCGene(0) <- random value, dist. <= suffT;
newCGene(1) <- newCGene(0) - lastCGene(0);
newCGene(2) <- newCGene(1) - lastCGene(1);

endfor
newAntibody <- Create with newC chromosome;
memSet <- Add newAntibody;

endfor

The motivation to use a dual threshold model was to pro-
vide separate capabilities to conduct search and guide repro-
duction. A match threshold, matchT, guides search and can
be set relatively wide. A sufficient threshold, suffT, specifies
the condition under which an antibody is close enough to an
antigen that we won’t try and improve it by reproduction or,
if reproduction occurs, the criterion for selection of a clone.

The above description of our algorithm imposes no specific
structure on the memory set but we assume that whatever
is used meets the requirement to retain sequence informa-
tion. We tested three different memory set structures, a
FIFO queue, a LIFO queue and a graph structure. Their
characteristics are discussed in the next section.

3.3.1 Memory Structures
A FIFO queue was considered as it produces a memory

image of a training series in the order of presentation of
antigen since it is traversed in the sequence entries are made.
This means a test series can be matched by traversing the
memory in the natural order in which antibodies are added.
The disadvantage with a serial traversal of this sort is the
first match is accepted whereas a better fit may exist further
down the queue.

The effect of the dual threshold model is to trap new anti-
gen early in the queue traversal when the match is not suf-
ficient causing a new antibody to be created and added to
the memory. With no information to guide choice, intuition
would suggest the last antibody created would be a better
candidate to test first against the next antigen rather than
some other antibody produced by a match in the queue. If
such were the case, the last antibody is more likely to pro-
duce a sufficient match producing no new antibody whereas
an early match near the front would more likely produce
one, adding to the memory size.

A LIFO queue allows us to test this intuition by providing
a reverse order traversal of the series. A possible disadvan-
tage of this structure occurs when matching a test series: the
memory is in the reverse order of what may be desirable. A
related disadvantage is that subsequences in the test series
that might have earlier memory matches are not identified
and will be repeated in the memory set.

With both structures, multiple antibodies with overlap-
ping coverage at the sufficient level can easily occur. To
limit memory representation to non-overlapping antibodies
a graph structure was created using an unordered list in the
following manner. Each antibody added to the list is given
a secondary list for storing edges. Antigen are tagged with
their index position in the time series they are taken from.
An antibody is created and added to the memory for an
antigen only if no sufficient match in the list is found. Oth-
erwise, the best sufficient match in the memory is chosen

356



ab
2

ab
j

ab
1

ag
k

ab
i

k-1k hj

ab
j

current
antigen

last matched
antibody

...

.........

.........

match

edge
set

antibody list

Figure 2: The graph structure used to implement
the memory set.

and its edge set augmented with a pair of indexes. One is
the index of the antigen that created the current best match.
The other is the memory position of the antibody that was
the previous best match.

Using Figure 2 as an example, the current antigen agk

is matched against the entire antibody list. For the best
matching antibody abi, the index k is placed in its edge set
along with the antibody list index j of the last antibody
matched, abj . This new best match becomes the last best
match. To reconstruct the entire sequence, we start from
the last best match. The largest antigen index in its edge
set is the last entry in the test series. The memory set
position associated with it gives the previous best match.
This retracing can continue until the first antibody created
is reached. Note that any antibody may be referenced a
number of times corresponding to the size of its edge set.
This structure guarantees no overlapping coverage since new
antibodies are added only for antigen that find no match.
In this case the new antibody becomes the last matched.

Three algorithmic variants implementing these structures
called FIFO, LIFO and Graph were investigated. The
results are given in Section 4.4.

3.3.2 Reproductive Strategies
We investigated two variants of the algorithm for repro-

ductive techniques. Both implemented memory with a FIFO
queue. One mentioned in the last section called the FIFO
variant creates a random mutation within the antigen’s suf-
ficient threshold. The other called the Exact variant creates
an antibody as the exact genetic clone of the antigen. Both
of these techniques supersede the use of a mutation rate.

As a simplification, we used another parametric constraint,
that of a reproduction rate of 1. This avoids the complexity
of adding multiple clones to the memory at each stage since
only one preferred antibody is needed for making a forecast.
If multiple clones are used, then a fitness criterion would be
needed to recommend a best one as the forecast.

4. TESTING AND RESULTS
For initial conditions, the velocity for the first antibody

created and the acceleration for the first two antibodies cre-
ated are defined as 0.

MatchT and suffT values are related to the size of the
space being covered. The Lorenz data coordinates have the
following span: x ∈ (−18.8, 21.9), y ∈ (−24.5, 30.2) and
z ∈ (−1.0, 55.1). This gives a rectilinear volume of 1.25 ×
105. In contrast, the Mackey-Glass data tested has a linear
span of x ∈ (0.2, 1.4) which is less than the matchT used in
some tests on Lorenz data. A value that would give good

discrimination in a Lorenz space could completely cover the
Mackey-Glass space.

We evaluate the accuracy of a forecast by measuring the
Euclidean distance dE between the forecast antigen and ac-
tual antigen. For two points x = (x1, x2, · · · , xn) and y =
(y1, y2, · · · , yn) in state space this distance is given as

dE =

vuut
nX

i=1

(xi − yi)2

We term this distance the forecast error. All data sets used
are of size 1000 and each experiment processes all 1000 anti-
gen. The error we report is the mean error over the 1000
individual forecasts.

4.1 Forecasting with Lorenz Data
We used a discrete time form of the Lorenz equations

xi = xi−1 + ha(yi−1 − xi−1)
yi = yi−1 + h(xi−1(b − zi−1) − yi−1)
zi = zi−1 + h(xi−1yi−1 − czi−1)

to calculate our dataset. Parameter settings were a = 10.0,
b = 28.0, c = 8.0/3.0 and h = 0.01 with an initial value of
(1, 2, -1).

4.1.1 Effect of matchT
Using Exact , the effect of varying matchT on accuracy

is shown in Figure 3. For this we set suffT = 1.0. First

Effect of Match Threshold Change on Accuracy:
Lorenz Data, Exact  Algorithm, suffT = 1.0
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Figure 3: The effect of changing the matchT size on
memory size and forecasting error.

we note how the memory rapidly increases in size to its
upper bound corresponding to 1000 antigen. The reason
for this is as matchT increases, more and more antigen are
trapped early in the sequence by antibodies that can match
them, but since the match is not sufficient, a new sufficient
antibody will be generated and added to the memory.

A consequence of this is that the last antibody accessed is
more often closest in sequence to the previous antigen tested.
This generally should offer the best predictive capability of
any antibody creating a forecast with least error. This effect
we observe as the mean forecast error and note it inversely
tracks the memory size.

With smaller memory sizes there is less overlap among an-
tibody coverage so a single antibody will match more anti-
gen. The average of these antibody/antigen distances will
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be greater than if two antibodies match the same number of
antigen, each more closely. The result is seen in the curve
on the chart that shows the mean actual distance between
a new antigen and the last antibody referenced which corre-
sponds to the the last antigen presented. This distance de-
creases in an inverse manner to memory size increase. With
closer matches, one would expect smaller forecast errors and
the two curves decrease in a similar manner with increasing
memory size.

The relationship between actual distance and forecast er-
ror then is smaller mean error relative to mean actual dis-
tance indicates greater forecasting accuracy and better per-
formance.

If matchT is set to 0, the model is effectively a single
threshold one based on suffT. Varying suffT produces better
forecasts at smaller values as it forces more antibodies to
be generated. This in turn results in a closer fit to the
training series. A matchT of 2.0 and a suffT of 1.0 produce
a low mean forecast error while maintaining good run times.
These same parameter values are used in Section 4.1.2 and
Section 4.4.

4.1.2 Forecast Error
Figure 4 shows the accuracy of one test using Exact on

Lorentz data. For most of the 1000 iterations of the test

Inter-Antigen Distance and Forecast Error: Lorenz Data, Exact 
Algorithm, matchT = 2.0, suffT = 1.0
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Figure 4: A comparison of the forecasting error and
the distance between successive antigen for Exact
using Lorenz data.

the forecast error is small. Closer examination of the data,
Figure 5, shows the regions of higher error correspond to re-
gions of rapid change in the data, particularly at the second
derivative. The results are listed in Table 1.

Table 1: Forecast Error and Actual Distance for
Lorenz, Mackey-Glass and Uniform Random data
using Exact

Lorenz Mackey-Glass U. Random
error mean 0.0890508 0.0043713 4.1708794
error stdev 0.3911758 0.0112890 1.6752899
actual mean 0.6562106 0.0289928 1.3192512
actual stdev 0.9059448 0.0199842 0.5098254

Inter-Antigen Distance and Forecast Error: Lorenz Data, 
Exact  Algorithm, matchT = 2.0, suffT = 1.0
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Figure 5: A magnified view of the data for antigen
numbers 20 to 44.

4.2 Forecasting with Mackey-Glass Data
The Mackey-Glass time delay differential equation can be

written as

dxt

dt
=

βxt−δ

1 + xγ
t−δ

− αxt.

Our data is generated with parameter settings α = 0.1, β =
0.2, γ = 10.0 and δ = 17.0 with an initial value of x0 = 1.2.

Tests similar to those for Lorenz data shown in Figure 3
suggest that a matchT of 0.2 and a suffT of 0.01 produce a
low mean error. We repeated the test for values of suffT of
0.1, 0.01, 0.001, 0.001, 0.0001 and 0.00001. These produced
memory sizes of 9, 78, 419, 872 and 992. The spikes in
forecast error in Figure 6 for suffT = 0.01 that appear larger
than the actual antigen/antibody distance recede to much
lower levels as suffT is decreased. The results using Exact
are given in Table 1.

Inter-Antigen Distance and Forecast Error: Mackey-Glass Data, 
Exact  Algorithm, matchT = 0.2, suffT = 0.01
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Figure 6: A comparison of the forecasting error and
the distance between successive antigen for Exact
using Mackey-Glass data.

4.3 Forecasting with Uniform Random Data
Lastly we ran a test of our algorithm with random data

uniformly distributed on the interval (-1, 1). Figure 7 shows
the result of a test using parameter settings of 0.2 for matchT
and 0.05 for suffT. The results using Exact are given in Ta-
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Inter-Antigen Distance and Forecast Error: Uniform Random 
Data, Exact  Algorithm, matchT = 0.2, suffT = 0.05

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900 1000

Antigen Number

D
is

ta
n

ce

inter-antigen distance forecast error

Figure 7: A comparison of the forecasting error and
the distance between successive antigen for Exact
using uniform random data.

ble 1.
For Lorenz and Mackey-Glass data, the mean error rel-

ative to the mean actual distance is 14% and 15% respec-
tively. For the uniform random data, it is 316% indicating
the algorithm has much worse predictive capability.

A true measure of the goodness of these results depends on
an external criterion to compare them against and for which
we have no examples. However it is interesting to look at
the ratio of the volume of space of a cube of twice the mean
error on a side, to the rectilinear volume of space computed
in beginning of Section 4. For the Lorenz case, this number
is 2.8 × 10−8. For The 1-dimensional Mackey-Glass data it
is 6.2×10−3 and for the random data, 72.5. While the error
in the first two cases is a small fraction of the size of the
problem space, in the random case it is orders of magnitude
larger attesting to an expected inability to forecast random
data.

4.4 Memory Structure Tests
Tests on the memory structures introduced in Section 3.3.1

are discussed in this section. All tests were performed on
Mackey-Glass data with matchT = 0.2 and suffT = 0.01.
The results are for 20 runs on each data structure and are
shown in Table 2. Since the property of the graph structure
is a set of non-overlapping antibodies, the results for 20 runs
are identical.

Table 2: Forecast Error for FIFO, LIFO and Graph
Data Structures Using Mackey-Glass Data, 20 runs.

FIFO LIFO Graph
mean 0.021916631 0.29319738 0.056521207
stdev 0.000509427 0.001183307 0.054286758

mem size 980 802 76

For a FIFO queue, growth of the memory was observed to
be linear at almost a 1:1 ratio at 980:1000, antibody:antigen.
Its performance for forecasting was significantly better than
the other structures.

For the LIFO queue with 802 antibodies generated, the
memory saving over the FIFO case was about 19% but the
accuracy was considerably less.

The graph structure had the lowest memory size at 76

antibodies. With no no overlap in coverage, this is probably
the lower limit on memory size for the parameter settings
chosen. The cost of this improvement is a decrease in fore-
casting accuracy over the FIFO case of about 2.5 times.

As a general observation, forecasting accuracy increases
as more antibodies are added to the memory.

4.5 Comparison with Related Work
A requirement of single event anomaly detection is that a

binary partition can be created in state space either explic-
itly by representing or enumerating the members of one par-
tition or implicitly by a function or relation that describes
all the members of one partition. This partition which we
call a K-partition may in some cases be implemented as a
memory structure. It may represent either the self or non-
self sets of AIS methodology [5]. If a series of events are to
be examined for anomalies as is the case with a time series,
sequence must be added to the space in the form of an order
relation with explicit representation (connection). Finally,
if forecasting is to be implemented, a capability must be
added that allows a change in position to be computed in
state space.

In PSO [10] there is no mechanism for partitioning state
space or representing the sequence of entities. Although it
has a limited dynamic in the form of position and velocity
information, in its current form it is unsuitable for analyzing
time series.

The work of Mahoney and Chan [12] is closest to ours
having both a sequence representation of time series data in
their path and box model, and a dynamic in the first and
second derivative that could be applied to forecasting. Their
use of these derivatives as ordinates of a point in state space
is different from our representation of them as information
associated with a point represented in the space by position
only. This gives a more complex representation, particu-
larly with respect to distance measures. It is unknown if
it offers improved performance. They reject a population
based evolutionary approach due to its inability to provide
a human comprehensible graphical representation of a solu-
tion whereas we have attempted to retain these aspects of
AIS methodology.

The common approach to representing a series in AIS al-
gorithms and the one used by Dasgupta and Forrest [1] is
to use a sliding window to sample the data and encode the
sample as a single point in a sample space. This is a compact
representation for anomaly detection but offers no possibil-
ity for forecasting. The information lost in the encoding
process would also place a lower bound of the sensitivity
of the detection function. With our approach, we can tune
the detection limits to suit an application through the para-
metric thresholds. The explicit representation of the series
enables the easy design of algorithms that match on subse-
quences of a series.

5. OBSERVATIONS AND CONCLUSIONS
In this paper we have introduced a new class of AIS search

algorithm we call antigenic search. Two ideas distinguish it
from traditional AIS search techniques. The first, by adding
first and second derivatives to antibodies, enables a form of
directed search that makes forecasting possible. The second,
by adding sequential memory capability, enables ancestral
retracing and the memory of sequences, a property useful
for anomaly detection.
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We investigated three memory structures and their im-
pact on memory size. All show linear complexity in growth
with the training series size being the upper bound. The
FIFO structure performed best on forecasting tests while
the graph structure had the best memory size performance.
All have advantages and disadvantages leaving the applica-
tion to direct the choice.

We described two algorithms, Exact and FIFO , that
when applied to Lorenz and Mackey-Glass time series data,
provided a good ability to forecast succeeding members in
the series. A test against random data revealed no forecast-
ing ability which is expected.

In this initial approach, when a forecast is made, devia-
tion from the actual next value is corrected by immediate
feedback. Unlike with neural network approaches, the infor-
mation provided by these corrections is thrown away. Con-
sequently, if an attempt is made to forecast a series of steps
without feedback, the algorithm will calculate a trajectory
in state space that may quickly deviate from the actual fu-
ture series. Finding a way to effectively utilize all training
information to enable more than next event forecasting re-
mains an open problem.

6. FUTURE WORK
In certain fields such as plant operations and computer

systems, anomaly detection is of more interest than fore-
casting. Consequently we are investigating the application
of antigenic search techniques to the anomaly and intrusion
detection problems. Another area of current research con-
cerns the representation of multiple series from a memory
perspective. Work in this paper was conducted with a single
series, but many time series problems offer multiple training
series. Early consideration points to a number of alterna-
tives approaches to this problem. Finally, the importance of
memory constraints is being investigated along with specific
techniques including population regulation by aging.
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