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ABSTRACT
This paper presents a review of different artificial immune
network models, which have been published during the last
years. A general model of artificial immune network is pre-
sented, which provides a common notation that allows the
comparison of different models. A descriptive and compar-
ative analysis is presented emphasizing similarities, differ-
ences and relationships between models. Finally, some con-
clusions and suggestions for improving existent models are
presented.

Categories and Subject Descriptors
A.1 [Introductory and Survey]

; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic methods, Artificial im-
mune systems

; I.5.1 [Pattern Recongnition]: Models

General Terms
Algorithms

Keywords
Artificial Immune System, Artificial Immune Network

1. INTRODUCTION
Since Ishiguro published the first Artificial Immune Net-

work (AIN) computational model in 1994 [11], several new
AIN models have been proposed to solve different kind of
problems such as clustering, data analysis, and classifica-
tion. Nowadays, AINs have become a well established area
of research in the field of artificial immune systems.

Even though all the models are based on Jerne’s Immune
Network Theory [13], they present differences in terms of
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what mechanisms are modeled, how they are modeled, the
type of representation used, and the intended application.
The goal of this paper is to make a descriptive and compara-
tive analysis of the most relevant AIN models that have been
published to this date. The models are classified according
to how some of them evolved from other ones. A general
AIN model is introduced, providing a framework to discuss
the coincidences and differences of the reviewed models. The
main aim of this work is to provide elements to understand
the current state of development of AIN research and to give
useful insights for future work.

The rest of the paper is organized as follows: Section 2
presents a brief review of the main concepts and definitions
from immune network theory; Section 3 introduces a general
model of AIN, and describes different AIN models taking
into account their structure, dynamics and meta-dynamics;
finally, Section 4 presents the conclusions and some sugges-
tions for improving existent models.

2. IMMUNE NETWORK THEORY
The immune network theory was proposed by Jerne [13]

as a way to explain the memory and learning capabilities
exhibited by the immune system. The principal hypothe-
sis of this theory states that immune memory is maintained
by B-cells interacting with each other, even in the absence
of foreign antigens. These interactions can be either exci-
tatory or inhibitory. The production of a given antibody
(elicited by an external antigen) stimulates/suppresses the
production of other antibodies that stimulate/suppress the
production of other antibodies and so on [22]. Notice that
the word antigen denotes those molecules that the immune
cells/molecules are able to recognize, thus it is necessary to
differentiate between self antigens (antibodies) and non-self
antigens. Accordingly with the notation suggested by Jerne
[13], the portion on the antigen’s surface that an antibody
recognizes is named epitope, the portion used by an antibody
to recognize antigens is named paratope, and the epitope of
an antibody (self antigen) is named idiotope.

Based on Jerne’s work, some models of immune network
were developed using differential equations to predict the an-
tibody concentration during and after an immune response.
The first models were proposed by Jerne, Farmer et al., and
Varela et al., see [5] for a summary.

An important concept for immune network modeling was
introduced by Perelson [22], the shape-space. This concept
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considers antibody and antigen shapes as points in an n-
dimensional space, the shape-space, where each dimension is
related to some principal characteristic involved in the recog-
nition process. Antibodies recognize those antigens within
the scope defined by a sphere centered at the antibody with
a certain recognition radius.

3. ARTIFICIAL IMMUNE NETWORKS
An Artificial Immune Network (AIN) is a bio-inspired

computational model that uses ideas and concepts from the
immune network theory, mainly the interactions among B-
cells (stimulation and suppression), and the cloning and mu-
tation process. Several models have been proposed for prob-
lem solving in areas such as data analysis, pattern recog-
nition, autonomous navigation and function optimization.
These models will be reviewed in Subsection 3.2 and com-
pared in Subsection 3.3.

3.1 A General Model of AIN (GAIN)
In this section, a general training algorithm for AIN is

presented, which reflects the general steps common to the
different reviewed AIN models, and introduces a mathemat-
ical notation, which allows their comparison. The algorithm
is described in Figure 1. Other AIN general algorithms have
been presented before by de Castro [3] and Garret [9].

The algorithm receives as input a set of antigens (repre-
sented by the set A), which are going to be presented to
the network, and returns an immune network composed of
a set of B-cells and connections between them. Notice that
some AIN models do not represent explicitly the network
structure.

The first step is to create an initial set of B-cells (rep-
resented by the set B). Some models use a subset of the
antigen set and others generate the B-cells in a random fash-
ion. After this, an iterative process is performed starting by
presenting the set of antigens to the network. For each anti-
gen and each B-cell the stimulation is calculated. This is
represented by the following function:

fA
stimulation : A×B → <.

In most of models the stimulation is a function of an affin-
ity measure, which is defined in the space where B-cells and
antigens are represented. In such a case, the stimulation
measure is defined as follows:

fA
stimulation(a, b) := g(faffinity(a, b)),

where faffinity : B∪A×B∪A → < and g : < → <. faffinity

measures the similarity/complementarity between elements
in the shape-space. In many cases, faffinity corresponds to
a metric or pseudo-metric in the shape-space. g calculates
the amount of stimulation produced by an antigen with a
given affinity with the B-cell.

In the next step B-cells are allowed to interact with each
other, this is done by calculating the stimulation and sup-
pression effects between them. These effects are represented
by the following functions:

fB
stimulation : B ×B → < and fB

suppression : B ×B → <

Similar to antigen/B-cell stimulation, B-cell/B-cell stim-
ulation (and suppression) could be calculated as a function
of B-cell/B-cell affinity. Total stimulation F : B → < of

B-cells is calculated by summing up the effects caused by
antigen and network interactions :

F (b) =
X
a∈A

fA
stimulation(a, b)

+
X

b′∈B,b′ 6=b

fB
stimulation(b′, b)

+
X

b′∈B,b′ 6=b

fB
suppression(b′, b), b ∈ B.

Based on total stimulation, some B-cells are selected and
fcloning(b) copies of each selected B-cell b are created. Those
copies undergo mutation with a certain mutation rate. Some
models interpret this rate as the probability of a B-cell to
be selected for suffering mutation; other models interpret it
as the proportion of the B-cell fields that will be changed.
In the metadynamics step, some useless B-cells are removed
from the network, new B-cells are created randomly and
incorporated into the network, and links among all B-cells
are reorganized.

Finally, when the stopping criterion is met, the current
network is returned.

3.2 A Review of AIN Models
Many of the published AIN models are variations of pre-

viously proposed models. This generates a dependency re-
lationship between models, which could be represented as
a genealogical tree. Such a tree is presented in Figure 2.
All the AIN models in the first level can be considered as
computational versions of Jerne’s, Farmer’s and Varela and
Couthino’s models placed in the tree’s root. Those models
have experimented some variations or have inspired other
models which are presented in the lower levels.

A model is either a modification or is based on its parent
model. Each branch of the tree will be described taking
into account the differences and similarities between models,
structure, dynamics and metadynamics [5] of the models
in that branch, as well as the intended application. The
structure refers to the interactions among network elements,
the network dynamics refers to the mechanisms employed
by the network to adapt to itself and to the environment,
and the metadynamics describes the methods for adding new
elements to the network and removing useless elements from
the network [5].

3.2.1 The Hunt & Cooke Branch
In 1996 Hunt and Cooke [10] proposed an artificial im-

mune network, which was applied to pattern recognition
tasks in DNA sequences. That model considered the im-
mune system as a network of B-cells that are related to other
B-cells by its affinity and its enmity. Such a relationships
are based on Hamming distance following the Farmer’s work
[8]. Any B-cell undergoes cloning and mutation, if the cur-
rent non-self antigen makes it stimulated enough, this is, if
the B-cell stimulation level is greater than a threshold. The
cloning process produces a number of exact copies of the
B-cells depending on the stimulation level. The mutation
process is based on a random selection between three kind
of techniques. At the end of each iteration a subpopulation
of the less stimulated B-cells are removed from the network
and the same percentage of new cells is generated and in-
corporated in.

AINE (Artificial Immune NEtwork): Timmis et al. [25]
proposed in 2000 an AIN that represents an adaptation

362



GAIN(A: antigen set)
1: initialization
1.1: assign B an initial set of B-cells
1.2: initialize network structure L
2: repeat until a stop criterion is met
2.1: antigen presentation:

. Antigen/B-cell affinity
2.1.1: calculate faffinity(a, b) for all a ∈ A, b ∈ B

. Antigen/B-cell stimulation
2.1.2: calculate fA

stimulation(b, a) for all a ∈ A and b ∈ B
2.2: B-cell interaction:

. B-cell/B-cell stimulation/suppression
2.2.1: calculate fB

stimulation(b′, b) and fB
suppression(b′, b) for all b, b′ ∈ B

2.3: affinity maturation:
. Total stimulation

2.3.1: calculate F (b) :=
X

a∈A,b′∈B,b′ 6=b

fA
stimulation(a, b) + fB

stimulation(b′, b) + fB
suppression(b′, b), b ∈ B

2.3.2: create fcloning(b) clones of the B-cell b and mutate them
2.3.3: calculate stimulation of all new B-cells
2.4: metadynamics:

. deletion/creation of B-cells and links
2.4.1: update network structure L

. Return immune network
3: return (B, L)

Figure 1: A General Artificial Immune Network algorithm.

aiNet

AINE

Farmer Varela

Perelson

Jerne

aiNet
Hierarchy

opt−aiNetRLAIS

Other Models

Ishiguro AISEC

Michelan &
Von Zuben

CLARINET

IN
Reactive

Fuzzy AIS

TECNO−STREAMS

SSAIS

Meta−Stable
IN

Fractal
IN

IPD aiNet

Hunt & Cooke

Figure 2: Genealogical Tree of AIN Models: each model is a modification or is based on its parent.
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of Hunt and Cooke’s model to perform data analysis
tasks. B-cells are related to each other by stimula-
tion and suppression resembling the affinity and en-
mity interactions of Hunt and Cooke’s model. Those
cells with stimulation level greater than a threshold un-
dergo cloning proportionally to their stimulation level.
The mutation method assigns a fix probability for each
field in the clones to be mutated. This method corre-
sponds to one of the three mutation methods used by
the Hunt and Cooke’s model. At the end of each iter-
ation, the 5% of the weakest, less stimulated, B-cells
are removed from the network. Guided for the data
analysis application, the B-cells were represented as
real-valued vectors instead of bit-strings as its parent
model, and the network affinity threshold (NAT) is
introduced as a criterion to connect cells.

RLAIS (Resource Limited Artificial Immune System): In
2001 Timmis and Neal [24] modified the AINE model
introducing the concept of Artificial Recognition Ball
(ARB). An ARB is a representation of a family (type)
of identical B-cells instead of a single B-cell. In the
model, there is a resource pool (B-cells) with central-
ized control and the ARBs compete for allocating those
resources. The interactions among self elements, the
cloning and mutation processes are similar to those
in AINE, but at the ARB level. Unlike AINE, those
ARBs which have zero resources, are removed from
the network, and the NAT is time independent and
calculated from antigens data set.

SSAIS (Self-Stabilising Artificial Immune System): This
model, presented by Neal [19] in 2001, is based on
RLAIS for continuous analysis of time-varying data.
The main difference between SSAIS and RLAIS, is that
the former has no a limited resource level and each
ARB can control its own level of resources (decentral-
ized control). Additionally, SSAIS does not consider
B-cell suppression in the calculus of stimulation level.

Meta-Stable Memory Immune Network: Following the
AINE line, Neal [20] proposed a modified version of
SSAIS in 2003 for data analysis, clustering and arti-
ficial immune memory. In this new model each ARB
is stimulated by foreign antigens and by its neighbors
in an Euclidean space like SSAIS. The main difference
with SSAIS is that the system employs the cloning
process only in a primary response, which is mediated
by the NAT, but it does not consider mutation opera-
tor. All ARBs with a level of resources less than a fix
mortality threshold are removed from the network.

Fractal Immune Network: Despite this model, proposed
by Bentley and Timmis [2] in 2004, is not a modifica-
tion of RLAIS, it uses the ARB concept and rename
it Fractal Recognition Space (FRS). Here, interactions
among self elements are considered to take place via
artificial cytokines. Fractal cytokines are represented
by a single clone of the transmitting FRS. The signal
is received by a fractal receptor (a clone of the receiv-
ing FRS) and the distance is calculated (bitmap dis-
tance). If such distance falls below certain threshold,
the transmitting FRS is stimulated only if it is a ma-
ture FRS. The immune network algorithm is based on

SSAIS. A stimulated FRS is cloned, with a fix proba-
bility, by creating a copy of the FRS and merged with
the antigen following the merge-process of fractal pro-
teins. If there exists no such a FRS, a new one is
created at the antigen point as a primary response,
like its parent model. Cellular death is concentration-
dependent: each iteration, the FRS concentration is
increased based on stimulation level. If the concentra-
tion drops bellow a mortality threshold, the element is
removed from the network. The stimulation level of all
FRSs in the system suffers a decay process that acts
together with other operations as a population control
mechanism.

Fuzzy AIS: in 2002, Nasraoui et al. [18] presented a model,
based on RLAIS for performing clustering, web profil-
ing and web mining. The Fuzzy ARB concept is in-
troduced. A Fuzzy ARB defines a fuzzy set over the
domain of discourse consisting of the training data set.
Each fuzzy ARB is allowed to have its own scale/radius
of influence (similar to NAT). Other difference with
RLAIS is that those ARBs whose affinity is less than
a certain threshold are merged (crossover operator).
Stimulation and suppression interactions by both anti-
gens and ARBs are considered. The cloning and mu-
tation operators are applied over cells remaining after
remotion (remove ARBs with zero B-cells allocated).
The resource allocation process is modified.

TECNO-STREAMS: In 2003, Nasraoui et al. [17] adapted
the Fuzzy AIS to perform stream data mining tasks.
The self elements are named Dynamic Weighted B-Cell
(D-W-B-cell), which defines an influence zone over the
antigen space, as Fuzzy ARBs. However, since the
data have a temporal aspect, the most current data
have a higher influence than the older ones. The stim-
ulation level not only decreases with the distance from
the center, but with the elapsed time since the anti-
gen was presented to the immune network. The affin-
ity measure between cells is defined by the Robust
Weight/Activation Function, which decreases with the
Euclidean distance and the time factor of antigens, al-
lowing the system to identify noisy data. The total
stimulation that a D-W-B-cell perceived after certain
number of antigens have been presented to the net-
work, is given by the density of antigen population
around the cell and the neighbor interactions. This
process resembles the stimulation function of Fuzzy
AIS, but considering the modified affinity measure. In
order to decrease the number of network interactions,
the immune network is separated in subnetworks so
that the antigens disturb only one of such subnetworks.
The network division is performed using the K-means
algorithm.

3.2.2 The aiNet Branch
In 2001 de Castro and Von Zuben [7] proposed this model

for data analysis tasks. It generates a network of antibodies
linked according to the affinity (Euclidean distance). A sub-
set of the antibodies with the highest affinity, with respect
to a given antigen, is selected and cloned proportionally to
the affinity. All generated clones are mutated inversely to its
affinity. A fix percentage of clones is selected to be memory
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antibodies, by eliminating those whose affinity with the cur-
rent antigen is less than a death threshold. If a pair of mem-
ory antibodies have an affinity greater than a suppression
threshold, one of them is removed from the network. A re-
markable difference between the aiNet branch and the Hunt
& Cooke branch is that aiNet does not consider the stimu-
lation concept, but only the affinity concept. The training
process of aiNet has a part inspired by the clonal selection
principle and the other part uses antibody interactions for
removing redundancy and finding data patterns.

Hierarchy of aiNets: de Castro and Timmis [6] in 2002
proposed a stopping criterion for aiNet algorithm based
on Minimal Spanning Trees, and developed a technique
for creating a Hierarchy of aiNets in order to find not
only principal clusters in data sets, but subclusters.
This is accomplished by structuring several networks
in a kind of tree so that it is possible to separate auto-
matically the clusters, and subclusters, found in train-
ing data sets.

opt-aiNet: As an adaptation of aiNet to multimodal func-
tion optimization, de Castro and Timmis [4] in 2002
proposed this model. The network cells interact ac-
cordingly with its affinity and by a suppression process
that consists of removing those cells, which affinities
are less than a fix threshold. All of the network cells
undergo a cloning process by generating a fix number
of copies. Those copies suffer mutation proportional
to their parent’s fitness. If the fitness error is signifi-
cantly different from the previous iteration, the system
performs the suppression process, and a fix percentage
of new randomly generated cells are introduced into
the network. Otherwise, the cells go on cloning and
mutation processes.

IPD aiNet: Alonso et al. [1] make a modification of aiNet
to model an agent that plays the Iterated Prisoner’s
Dilemma (IPD). In such a model, antigens and B-cells
are represented as IPD strategies. An IPD strategy
is considered as the way a player decides what move
it will play given previous interactions. The immune
agent perceives the opponent’s strategy and try to find
a strategy (most stimulated B-cell), in the immune
memory, which provides it the highest payoff to con-
front the playing opponent. The main modification
made to aiNet is in the memory mechanism: if a B-
cell is added to memory it will never be removed.

3.2.3 Other Models
In 1994 Ishiguro [11] implemented an artificial immune

network and demonstrated its potential applicability to a
system of gait acquisition for a six-legged robot. Mitsumoto
[16] extended this work by developing an environment with
multiple robots. Despite the efficacy of these initiatives, the
antibody interaction rules are generally defined in a rather
ad hoc manner. The efficiency of this approach is restricted
to low-complexity systems, which may be described using
few antibodies [12].

Michelan & Von Zuben: In 2002, Michelan and Von Zuben
[15] presented an AIN model for autonomous control of
mobile robot for multi-objective tasks. In this model,
the antibodies represent an action the robot have to

execute, and the antigens represent the current state
of the robot. Stimulation and suppression interactions
among antibodies are also modeled. The network dy-
namics is performed by genetic, crossover and muta-
tion operators. An elitist selection operator is used
in the training algorithm. The cellular death is per-
formed by selecting those antibodies with a low fitness
and replacing them by new generated antibodies.

CLARINET: CLARINET [26] is a model for autonomous
navigation proposed by Vargas et al. in 2003. It is a
hybrid non-parametric system which combines learn-
ing classifier systems, evolutionary algorithms and an
artificial immune network. Classifier systems are re-
garded as B-cells, which interact each other with stim-
ulation and suppression functions. The training algo-
rithm considers crossover and mutation operators like
as ones in the model proposed by Michelan et al. [15].

Reactive Immune Network: In 2004, Luh and Liu [14]
proposed another model for autonomous navigation.
As usual, the antigens are represented by states of
the environment and antibodies are represented by the
steering direction of the robot. The stimulation by
antigens is calculated using the Artificial Potential Field
approach, which considers a virtual attractive force be-
tween the robot and the target and a virtual repulsive
force between the robot and obstacles. The stimula-
tion and suppression among two antibodies is related
to the difference between its steering angles.

AISEC (Artificial Immune System for E-mail Classifica-
tion): The purpose of this model is interesting/uninteresting

web information classification. The B-cells are repre-
sented by prototypes of uninteresting e-mail messages
and the antigens are represented by the incoming e-
mail messages. If a B-cell is activated by an antigen,
the message associated to it is labeled as uninterest-
ing and sent to a special storage. The stimulation and
suppression interactions are performed via increment
and decrement of stimulation counter. Clonal selection
process is performed and a B-cell can die via two death
process: one is to eliminate those cells with stimula-
tion counter equals zero, and the other one eliminates
a B-cell when it makes a bad classification based on
user feedback, this is, when the B-cell classification
and the user classification do not match. This model
was proposed by Secker et al. [23] in 2003.

3.3 AIN Model Comparison
This section presents a comparative analysis of the models

described above. This analysis emphasizes specific aspects
of the models such as B-cell/Antigen representation as well
as affinity, stimulation and suppression measures.

Table 1 shows B-cell and antigen representation schemes
used by different models. The most common representation
scheme is an attribute list. Depending on the space of the
problem, bit-strings or real-valued vectors are used. Each
field represents a feature relevant to the problem; a bit-
string field means the presence or absence of a particular
feature, while a real-valued vector field represents a certain
measure of the feature. Such a representation is adopted by
Hunt & Cooke and aiNet branches, except for Fuzzy AIS
and TECNO-STREAMS, where the elements in B contain
not only the feature vector but its coverage radius.
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Table 1: Representation schemes for B-cells and antigens: bit-string and real-valued vector are the principal
choice for representation. Other models use more complex representations in order to fit it to the particular
application.

Model B A
Hunt & Cooke {0, 1}n {0, 1}n

AINE <n <n

RLAIS <n <n

SSAIS <n <n

Meta-Stable IN <n <n

Fractal IN <3, Fractal <3, Fractal
Fuzzy AIS <n ×< <n

TECNO-STREAMS <n ×< <n ×N
aiNet <n <n

Hierarchy of aiNets <n <n

opt-aiNet <n <
IPD aiNet IPD strategy IPD strategy

Michelan & Von Zuben {0, 1}n × Saction {0, 1}n

CLARINET Stag × {0, 1, #}n × {0, 1}n Stag × {0, 1}n

Reactive IN <3 <3

AISEC Ssbj × Ssnd Ssbj × Ssnd

The Other Models branch has more complex representa-
tions. This group contains models created for autonomous
navigation tasks and e-mail classification. In autonomous
navigation models, like Michelan & Von Zuben’s model and
CLARINET, the antigens represent states of the robot in the
environment and the B-cells represent actions to be taken by
the robot in the form of rules containing a condition to be
satisfied ({0, 1}n, Stag × {0, 1, #}n), and the corresponding
action (Saction,{0, 1}n ). In AISEC, created for e-mail clas-
sification, the antigens represent the subject-sender tuples
(Ssbj ×Ssnd) of e-mails to be classified and B-cells represent
subject-sender tuples (Ssbj × Ssnd) of uninteresting e-mails
prototypes.

Notice that most of the models do not differentiate be-
tween phenotype and genotype of cells, except for Fractal IN,
where phenotypes are represented by three real values, which
are mapped into genotypes represented by Fractals. Addi-
tionally, the models use the same type of representation for
both antigens and B-cells, except for TECNO-STREAMS,
which consider a time factor as a part of the antigen rep-
resentation; and the autonomous navigation models, where
the antigens have no action factor in its representation.

In the models, the affinity measure is based on a distance
measure in a certain problem-dependent space. The def-
inition of an affinity measure implicitly generates a shape-
space. As it is shown in Table 2, the two main ways to model
affinity are: a function of the Hamming distance (DH), for
bit-string representation, and a function of the Euclidean
distance (D), for real-valued vector representation. Notice
that some models do not present explicitly the affinity func-
tion, but define the stimulation mechanism directly as D
or 1 −D. In general, a B-cell get stimulated by an antigen
proportionally to its affinity with that antigen [22], the stim-
ulation level depends on the affinity and, additionally, the
stimulation level affects the cloning and mutation processes.

It is possible to classify the models, according to the cell
interactions they model, in two groups: those that con-
sider both stimulation and suppression interactions among

B-cells, and those that consider only stimulation interac-
tions. SSAIS, Meta-Stable IN and Fractal IN conform the
latter group. Regarding the suppression mechanism, the
models in the aiNet branch , model the suppression as a
killer or interchange operator, while the other ones model
the suppression as a negative stimulation operator.

The effects of stimulation or suppression, experimented by
a B-cell when interacts with another B-cell, are also affinity
dependent. Some models consider the stimulation (and sup-
pression) effect as a function of the affinity between two B-
cells, others interpret suppression as a cellular death mech-
anism, and others simply do not consider the suppression
effect.

Cloning and mutation processes constitute the principal
mechanism for updating the network structure. According
to immunology, B-cells undergo cloning and mutation if their
total stimulation is greater than certain threshold [22]. Mod-
els mostly use that idea, although there are models that
simply create a fix number of copies of the stimulated cell.
Regarding mutation, there are models that perform it with
a certain probability and others do it always, but consider
a mutation rate calculated from the affinity or stimulation
measure. As special cases, some models use genetic algo-
rithms (GA) as a mechanism to adapt the network struc-
ture.

4. CONCLUSIONS
In this paper, a general model of artificial immune network

was presented. The model introduced a notation that served
as a basis for a descriptive and comparative analysis of some
AIN models. The relationships between models were shown
in a genealogical tree of AIN models that has three main
branches: The Hunt & Cooke branch, the aiNet branch and
the Other Models branch.

The different models present immune concepts such as B-
cells, antigens and B-cell/antigen interaction; and immune
network theory concepts such as epitopes, paratopes and
B-cell/B-cell interactions. There are also concepts that are
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Table 2: Modeling of affinity, simulation, suppression measures and cloning process: most of the measures
are distance-based, and the number of clones created is, in general, proportional to the B-cell stimulation
level. Empty cells mean that the corresponding function is not implemented by the model.

Model faffinity fA
stimulation fB

stimulation fB
suppression fcloning

Hunt & Cooke
P

k G (DH − ε + 1) faffinity faffinity faffinity kF
AINE 1−D faffinity faffinity faffinity − 1 kF
RLAIS 1−D faffinity faffinity faffinity − 1 kF

SSAIS 1−D faffinity
1

nfaffinity
–

σdecayRF

10θmortality

Meta-Stable IN 1−D 1
faffinity+2D

faffinity + 2D + 1 – 1

Fractal IN 1−D
10faffinity

θAM

faffinity+2D+1

θCM
– 1

Fuzzy AIS exp
`−D

2σ2

´ faffinity

σ2
αfaffinity

σ2
−βfaffinity

σ2 kF

TECNO-STREAMS exp
“
−

“
D2

2σ2 + J
τ

””
faffinity

σ2
αfaffinity

σ2
−βfaffinity

σ2 kF

aiNet 1
D

– – death kfaffinity

Hierarchy of aiNets 1
D

– – death kfaffinity

opt-aiNet D fitness – death k
IPD aiNet DH – – death kfaffinity

Michelan & Von Zuben
P

k G (DH − ε + 1) faffinity faffinity faffinity GA
CLARINET

P
k G (DH − ε + 1) faffinity faffinity faffinity GA

Reactive IN – ftarget + fobstacle cos (θi − θj) cos (θj − θi) kF

AISEC words
|bshort|

scounter ↑ B − cell → M − cell scounter ↓ kF

modeled implicitly, for instance, the APCs (antigen present-
ing cells) are present in CLARINET: the model has some
elements that receive antigens (messages) from the environ-
ment and present them to the network, which accomplishes
the immune response. Finally, there are concepts that are
not modeled at all, like the role of T-cells in the immune
response.

In [21], some hypotheses and questions regarding immune
network theory were outlined: (i) antigens modify the whole
network or only a portion of it. (ii) the network can be seen
either as a whole indivisible unit (open network) or as a
set of nearly independent subnetworks (close network). (iii)
there is some experimental evidence that if an antibody a
stimulates an antibody b, b also stimulates a, but if the effect
a − b is suppressive, it is not clear how the b − a effect is.
Regarding (i), the Hunt & Cooke model explores the idea
of local antigen perturbation, it means that each antigen is
presented to a subpopulation of the B-cells in the network.
Regarding (ii), in the Hierarchy of aiNets model, this idea is
implicitly used to separate the clusters and to find possible
subclusters by constructing a network of aiNet connected
subnetworks. However, this construction is not performed
by an immunity-based approach. TECNO-STREAMS, also
considers the whole system as a set of subnetworks, which
are built using K-means, with the purpose of implementing a
local antigen perturbation. Regarding (iii), some models of
AIN use the mutual stimulation between B-cells, and others
assume that if the B-cell a stimulates the B-cell b then b
suppresses a.

As an idea to create a population control mechanism, it
could be useful to consider the fact that an antigen has a
finite number of epitopes on its surface, it means that only a
finite number of antibodies can effectively be stimulated by
the antigen, namely, those which effectively bind to it. In
the reviewed models, the antigen is presented to the whole
network and every B-cell able to recognize it gets stimulated.

If only some of those B-cells are allowed to get stimulated,
only those B-cells will suffer cloning and mutation.
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