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ABSTRACT 
In this study, we introduce two improved assessment metrics of 
multiobjective optimizers, Nondominated Ratio and Spacing 
Distribution, and analyze their rationality and validity. Based on the 
concept of Immunodominance and Antibody Clonal Selection 
Theory, a novel multiobjective optimization algorithm, Immune 
Dominance Clonal Multiobjective Algorithm (IDCMA), is put 
forward. The simulation comparisons between IDCMA and the 
Strength Pareto Evolutionary Algorithm show that IDCMA has the 
best performance in popular metrics such as Spacing, Coverage of 
Two Sets and the two new metrics presented in this paper when low-
dimensional multiobjective problems are concerned. The statistical 
results of the four metrics also show that Spacing Distribution 
conquers some limitations of Spacing triumphantly, and 
Nondominated Ratio conquers the limitation of Coverage of Two 
Sets that only compared between two sets.  

Categories and Subject Descriptors 
F.2.1 [Analysis of Algorithms and Problem Complexity]: 
Numerical Algorithms and Problems – Number-theoretic 
computation 

General Terms: Algorithms, Measurement, Performance, 
Design. 

Keywords: multiobjective optimization, performance 
assessment, immune dominance, clonal selection, artificial immune 
system. 

1. INTRODUCTION 
A difficulty in multiobjective optimization is the quantitative 
comparison of the performance of different algorithms. To assess the 
output sets quantificationally is also a research focus going with the 

research of new algorithms. Zitzler and Van Veldhuizen et al have 
proposed a lot of metrics of performance assessment and provided 
some performance comparisons of representative multiojective 
evolutionary algorithms respectively [4][5].  
Artificial immune system (AIS) makes use of the mechanism of 
vertebrate immune system, and constructs new intelligent algorithms 
with immunology terms and fundamental, for providing some novel 
methods to solve problems [1]. Its research production refers to 
many fields like control, data processing, optimization learning and 
trouble diagnosing, and it has been a research hot spot after the 
neural network, fuzzy logic and evolutionary computation [1]. 

2. TWO IMPROVED ASSESSMENT 
METRICS OF MOEAS 
Generally, a multiobjective optimization problem has a set of 
Pareto-optimal solutions, instead of one single optimal solution, so 
the goal in a multiobjective optimization is different from that in a 
single-objective optimization. In multiobjective optimization, we 
desire to find as many different Pareto-optimal or near Pareto-
optimal solutions as possible. Generally speaking, multiobjective 
optimization includes three objectives, minimal distance to the 
Pareto-optimal front, and good distribution, and maximum spread. 
Quantitative performance assessments of MOEAs should take all of 
the three objectives into account. In the references [3] [4] and [5], 
some quantitative metrics have been presented for the performance 
assessment of multiobjective optimization, such as Dominated 
Space, Coverage of Two Sets, Hyperarea Ratio, Spacing, and so on. 
In this paper, a new metric ϕ  called Spacing Distribution is 
proposed, and it can be defined as follows by modifying the metric 
Spacing. 

Definition 1 (Spacing Distribution) Let ′ ⊆X X  be a set of 
decision vectors. The function ϕ  
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The set 1i -′X  is a subset of the set ′X , and 0 1{ }′ =X x , 

1 { }i i l−′ ′= ∪X X x , ′′ ′=XX X , d  is the mean of all id , and p 

is the number of objective functions. 

From Definition 1 we can see that id  is the minimal distance 

between the set 1i -′X  and the set -1i′ ′−X X . Its geometrical 
meaning can be seen in Figure 1.  
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Figure 1. The geometrical meaning of id . 

Figure 1 shows the calculating process of 3d . The minimal distance 

between the set 2′X  and the set 2′ ′−X X  is the distance between 

3x  and 6x . According to the definition of S, its 3d  and 7d  are 

both the 2d  in Fig 2, so it considers one information more than 
once while lose some useful distribution information, such as the 

3d  in Fig 2, because 2 3d d<  and the distance between 6x  and 

4x  also less than 3d , so the useful information 3d  will be ignored 
when calculate the metric S.  According to the definition of ϕ , the 

calculating process of id  is a process of constructing a connected 
tree. It is impossible to use one information more than once when 
calculate the metricϕ .  

Another improved metric named Nondominated Ratio is proposed 
in this section. The new metric η  is defined as follow.  

Definition 2 (Nondominated Ratio) Let ture
ℑP  be a set of ℑ  Pareto-

optimal solutions equidistantly spaced at the Pareto-optimal fronts. 
Pag is a set of decision vectors. Then the function η  of Pag is defined 
as equation (3): 
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Where f  means Pareto Dominate, 
¬
∃  means inexistence. 

  According to Definition 2, ag ture( , )η ℑP P  denotes the ratio between 

the number of the solutions in Pag which are not dominated by ture
ℑP  

and the number of all the solutions in Pag.  The metric η  measures 
by which each of the set of decision vectors can be assessed 
separately, however, we have to know the Pareto-optimal fronts 
when calculating it. So η  conquers the limitation of Coverage of 
Two Sets that must be compared between two sets. The new metrics 
are more intuitionistic and convenient when compared among three 
or more algorithms.  

3. CONCLUDING REMARKS 
Many popular test problems have been adopted to test the 
performances of Immune Dominance Clonal Multiobjective 
Algorithm [2] and SPEA2 [6]. The test results show that the 
Immune Dominance Clonal Multiobjective Algorithm can solve 
low-dimensional multiobjective problems preferably. The empirical 
results of the four metrics, Spacing Distribution, Nondominated 
Ratio, Spacing and Coverage to Two Sets, showed that Spacing 
Distribution conquered some limitations of Spacing, and 
Nondominated Ratio conquered the limitation of Coverage of Two 
Sets that only compared between two sets. The new metrics are 
more intuitionistic and convenient when compared among three or 
more than three algorithms. 
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