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ABSTRACT
Given the amino acid sequence of a protein, predicting its
tertiary structure is known as the protein folding problem.
This problem has been widely studied under the HP model
in which each amino acid is classified, based on its hy-
drophobicity, as an H (hydrophobic or non-polar) or a P
(hydrophilic or polar). Conformation of a protein in the
HP model is embedded as a self-avoiding walk in either a
two-dimensional or a three-dimensional lattice. The pro-
tein folding problem in the HP model is to find a lowest
energy conformation. This problem is known to be NP-
hard in both two-dimensional and three-dimensional square
lattices. In this paper, we present an efficient genetic algo-
rithm for the protein folding problem under the HP model
in the two-dimensional square lattice. A special feature of
this algorithm is its usage of secondary structures, that the
algorithm evolves, as building blocks for the conformation.
Experimental results on benchmark sequences show that the
algorithm performs very well against existing evolutionary
algorithms and Monte Carlo algorithms.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods ; J.3 [ Life and
Medical Sciences]: Biology and genetics

General Terms
Design, Algorithms

Keywords
Genetic Algorithm, Protein Folding Problem, 2D HP Model

1. INTRODUCTION
Amino acids are the building blocks of proteins. When

two amino acids bind together in a protein sequence, a wa-
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ter molecule is released, and the joined amino acids are
known as amino acid residues. The bond between two amino
acid residues is referred to as a peptide bond. Proteins are
polypeptide chains of amino acid residues. There are 20 dif-
ferent amino acids that make up most of the known proteins.
The linear sequence of amino acids that makes up a protein
is called the primary structure of the protein. At the proper
solvent composition and temperature, a protein folds from
its primary structure into a specific three-dimensional shape
called its tertiary structure. The tertiary structure of a pro-
tein, also called its native state, determines the protein’s
biological functions. The native state of a protein generally
corresponds to the lowest free energy state for the protein.
The protein folding problem is the problem of determining
the native state of a protein given its primary structure.
The sequence of structural changes that the protein under-
goes during the folding process is referred to as the folding

pathway. In general, determination of the folding pathway
is also considered part of the protein folding problem. In
this paper, we consider only the problem of determining the
tertiary structures and not the folding pathways.

The protein folding problem has been widely studied un-
der the HP model [5, 12] in which conformation of a pro-
tein is embedded as a self-avoiding walk in either a two-
dimensional (2D) or a three-dimensional (3D) lattice. There
are many variations of lattices used for the study of this
problem in the HP model [9]. In this paper, we consider
only square lattices where each lattice site is arranged or-
thogonally to its neighbors. In the remainder of the paper,
we use the term 2D HP model to refer to the HP model in
the 2D square lattice. Similarly, we refer to the HP model
in the 3D square lattice as simply the 3D HP model. The
objective of the protein folding problem is to determine a
conformation of minimum energy.

The protein folding problem in the 2D HP model has been
proved to be NP-hard [4] as is the case with the 3D HP
model [2]. There exist a number of approximation algo-
rithms for both the 2D and the 3D HP models [6, 14, 15].
Aside from these approximation algorithms, there are also
heuristic algorithms for the 2D and the 3D HP models. They
generally fall into two categories: evolutionary algorithms [8,
10, 11, 16, 21, 22, 23] and Monte Carlo algorithms [1, 7,
13, 18, 23]. Even though this problem has been studied
for a long time, there is no algorithm that works better on
all benchmark sequences in terms of solution quality and
running time. Many different techniques have been tried
in these algorithms, and each technique seems to work for a
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specific sequence, but fails in other sequences. In this paper,
we present a genetic algorithm (GA) for the protein folding
problem in the 2D HP model that performs very well against
the existing evolutionary and Monte Carlo algorithms on a
common set of benchmark sequences.

The rest of the paper is organized as follows. Section 2
gives the preliminaries and the formal definition of the pro-
tein folding problem in the 2D HP model and Section 3
describes our algorithm in detail. The experimental results
comparing our algorithm against other known algorithms
are given in Section 4 and the conclusion is given in Sec-
tion 5.

2. PRELIMINARIES
Proteins play a variety of very important roles in a bio-

logical system. For examples, the alpha-keratin protein is
a key structural component in biological materials such as
hair and fingernails. Some proteins such as actin and myosin
make muscular movement possible. Enzymes are proteins
that help in the digestion of food. Hemoglobin is a protein
that helps carry oxygen in blood. Antibodies are proteins
that form an important part of our immune system. Other
proteins help in the control of brain signals and copying
genes during cell division.

Each protein starts out as a sequence of amino acids, the
primary structure. The protein then folds itself into a three
dimensional shape, the tertiary structure. This folding pro-
cess happens very fast, in less than one second for most
proteins, and occurs immediately after the primary struc-
ture of the protein is created. A protein is not active until
it has completed the folding and settled in its final shape
(the native state). A protein’s function depends mainly on
its tertiary structure which in turn depends on its primary
structure. Mistakes in the folding process create proteins
with abnormal shapes which are the causes of diseases such
as cystic fibrosis, Alzheimer’s, and “mad cow” [3]. It is be-
lieved that if we could predict the tertiary structures of pro-
teins from their sequences, we would be able to treat these
diseases better. The knowledge of protein tertiary structures
also has other applications such as in the structure-based
drug design area.

A protein’s amino acid sequence can be readily determined
through experimental techniques such as Mass Spectroscopy.
However, predicting the protein’s tertiary structure from
its amino acid sequence remains one of the most difficult
problems in structural biology. X-ray Crystallography and
Nuclear Magnetic Resonance Spectroscopy are the two lab-
oratory structure determination techniques that are in use
to experimentally determine the tertiary structures of pro-
teins. Even though these techniques have been extremely
powerful in solving macromolecular structures, they are la-
borious, time consuming, and are limited to very small pro-
teins because of the fundamental resolution limit of these
techniques. It is estimated that there are 80,000 to 100,000
proteins produced in a human cell. However, only a small
fraction of these have experimentally determined structures.
So computational techniques are also being studied in paral-
lel to expedite this process [17]. But success has been limited
in this front also. Exhaustive search of a protein’s conforma-
tional space using computational techniques is not feasible
even for small protein sequences because of the exponential
number of possible solutions. This led to several simplified
models for the protein folding problem which allow efficient

Figure 1: An optimal conformation for the sequence
HHHPPHPHPHPPHPHPHPPH in the 2D square
lattice. The black squares denote the hydrophobic
(H) amino acid residues and the white squares de-
note the hydrophilic (P) residues. Dotted lines de-
note H-H contacts.

sampling of the conformational space. These models often
help understand the physics governing the protein folding
process.

2.1 HP Model
The HP model is based on the observation that the hy-

drophobic interaction between the amino acid residues is the
driving force for the protein folding and for the development
of native state in proteins [12, 19]. In this model, each amino
acid is classified based on its hydrophobicity as an H (hy-
drophobic or non-polar) or a P (hydrophilic or polar). Con-
formation of a protein in the HP model is then represented
as a self-avoiding walk in a 2D or a 3D lattice where each
lattice site is occupied by one amino acid residue, connected
to its sequence neighbor(s) on adjacent lattice site(s). In the
2D square lattice model, each residue has at most 4 lattice
neighbors. Similarly, there are at most 6 lattice neighbors
for each residue in the 3D model. Note that each residue
has at most two sequence neighbors in both the 2D and the
3D models. An H-H contact is a pair of H’s that are adja-
cent in the conformation, but not in the sequence. In the
HP model, each H-H contact in the conformation is assigned
an energy value of −1. Since the native state of a protein
generally corresponds to the lowest free energy state for the
protein, the optimal conformation in the HP model is the
one that has the maximum number of H-H contacts, which
gives the lowest energy value. Figure 1 shows an optimal
conformation for the sequence HHHPPHPHPHPPHPHPH-
PPH in the 2D square lattice. The conformation has 10 H-H
contacts, denoted by the dotted lines, and hence an energy
value of −10.

For the 2D HP model, there exists a 1/4-approximation
algorithm, i.e., an algorithm that guarantees to return a
solution whose number of H-H contacts is at least 1/4 that
of the optimal solution [6]. The approximation factor was
later improved to 1/3 [14]. We have a 3/8-approximation
algorithm for the 3D HP model [6]. This factor was later
improved slightly to 0.37501 [15].

2.2 Problem Definition
Let A = a1a2a3 . . . an, where ai ∈ {H,P}, 1 ≤ i ≤ n, be

a string representing an amino acid residue sequence in the
HP model. We denote a conformation of A by a sequence of
fold directions starting from the lattice site occupied by the
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first amino acid residue a1. There are two common types of
encodings that are in use to denote a conformation in the
2D square lattice. In the first encoding scheme, the fold
directions are relative to the lattice, and in the second one,
they are relative to the conformation itself. The first scheme
uses the four symbols u, d, l, and r to denote the fold direc-
tions up, down, left, and right, respectively. The symbols
s, l, and r are used to denote the fold directions straight,
left, and right in the second encoding scheme. Using the
first scheme, the conformation given in Figure 1 can be de-
noted as ruuldlddrdrururuuld. If the input sequence A is
of length n, a conformation of A will be of length n − 1 in
this scheme. In the second encoding scheme, the first fold
direction is fixed as s, denoting straight, and the rest follows
from this. The conformation given in Figure 1 can be de-
noted as slsllrlslrllrlrlsll using the second scheme. In this
scheme, the first fold direction is often not explicitly men-
tioned. So a conformation for a sequence of length n can be
represented using n − 2 symbols.

In this paper, we use the first encoding scheme where the
fold directions are relative to the 2D square lattice. We call a
conformation valid, if each lattice site is occupied by at most
one amino acid residue, and each residue is connected to its
sequence neighbor(s) on adjacent lattice site(s). Otherwise
the conformation is invalid. We are now ready to define the
protein folding problem in the 2D HP model formally.

Input: A string A = a1a2a3 . . . an, where ai ∈ {H,P}, 1 ≤
i ≤ n, representing an amino acid residue sequence.

Output: A valid 2D square-lattice conformation of A that
has the maximum number of H-H contacts.

3. ALGORITHM
In this section, we present the motivation and the details

of our algorithm for the protein folding problem in the 2D
HP model.

The main idea behind our algorithm is the use of sec-

ondary structures in exploring the conformation space of a
protein. The actual conformations of proteins are centered
around polypeptide backbones that are in some particular
shape. These backbone conformations are known as the sec-
ondary structures, which are generally classified into the fol-
lowing three types: the α-helix, the β-strand or β-sheet, and
the turns or loops that connect the helices and strands. The
secondary structures and their side chains are then packed
tightly to form the three-dimensional tertiary structure of
the proteins. Extending this concept to the HP model, a
subsequence of hydrophobic residues is constrained to a spe-
cific conformation in the process of determining the optimal
conformation for the input sequence. That is, a secondary
structure here is just a conformation of a subsequence con-
sisting only of hydrophobic residues. This idea has already
been explored before in [13]. By using specific secondary
structures, best-known conformations were achieved in [13]
for some of the benchmark sequences. However, no reasons
were given for choosing one secondary structure over another
for a hydrophobic subsequence. Since there are too many
secondary structures even for a small subsequence of hy-
drophobic residues, it is impractical to try them all. We use
a genetic algorithm to systematically evolve the secondary
structures which are then used as building blocks to evolve
the best conformation for the given input sequence.

Our algorithm consists of two parts: the Secondary Struc-
ture Genetic Algorithm (SSGA) and the Protein Folding
Genetic Algorithm (PFGA). We first scan the input amino
acid sequence to determine the length k of the longest sub-
sequence of hydrophobic residues. We next run SSGA to
create a library of secondary structures for the hydrophobic
sequence of length k. Finally, we run PFGA which uses the
secondary structures from the library as building blocks.

In what follows, we first describe PFGA assuming that the
library of secondary structures has already been created. We
then describe SSGA which has a similar structure to that of
PFGA.

3.1 Protein Folding Genetic Algorithm (PFGA)
We use a steady state GA combined with local optimiza-

tion schemes for folding the protein sequence. The algorithm
is given in Figure 2. The details of the algorithm are given
in the following sections.

PFGA(A)
generate initial population P
while stopping criteria not met

select two parents p1, p2

o1, o2 ← crossover(p1, p2)
mutate offspring o1, o2

adjust offspring o1, o2

local optimize offspring o1, o2

replace (P, p1, p2, o1, o2)
end-while
return the best member of P

Figure 2: The PFGA algorithm

3.1.1 Initial Population
If the input amino acid sequence is of length n, then each

individual in the population is a string of length n − 1 over
the alphabet Σ = {u, d, l, r}, and denotes a valid confor-
mation in the 2D square lattice. This is the first encoding
scheme described in Section 2.2.

Let A = a1 . . . an be the input sequence. Let k be the
length of the longest hydrophobic subsequence in A. Let
C = c1 . . . cn−1 be the conformation of an individual. Fig-
ure 3 shows the algorithm for creating an individual in the
initial population. For i = 1 to n−1, we consider the succes-
sive pairs of residues (ai, ai+1) in A, and construct the fold
direction ci based on the placement of ai+1 in the lattice
with respect to that of ai. If ai is the beginning of a hy-
drophobic subsequence of length k, then we randomly decide
whether to use a secondary structure for this hydrophobic
subsequence or not. If we do, a secondary structure, S, is
randomly selected from the library and placed in the con-
formation as ci . . . ci+k−2. Now, if c1 . . . ci+k−2 becomes an
invalid conformation, we try the 90◦, 180◦, and 270◦ rota-
tions of S, one at a time, until it gives a valid conformation.
If it still doesn’t give a valid conformation, we recreate the
individual. Once we get a valid conformation, we then move
to the pair (ai+k−1, ai+k). On the other hand, if we do not
want to use a secondary structure, or if ai is not the be-
ginning of a hydrophobic subsequence of length k, then we
select an available fold direction for (ai, ai+1) at random and
place it in the conformation as ci. If there is no available
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CREATE INDIVIDUAL(A)
i ← 1
while i < n

if ai . . . ai+k−1 is a hydrophobic subsequence then
randomly decide whether to use a secondary

structure from the library or not
if yes then

randomly select a secondary structure, S, from
the library and place it as ci . . . ci+k−2

if c1 . . . ci+k−2 is a valid conformation then
i ← i + k − 2

else
try 90◦, 180◦, and 270◦ rotations of S, one

at a time, until c1 . . . ci+k−2 is valid
if c1 . . . ci+k−2 is still invalid then

i ← 0
end-if

end-if
else

randomly select one of the available fold
directions for (ai, ai+1) and place it as ci

if no fold direction is available then
i ← 0

end-if
end-if

else
randomly select one of the available fold

directions for (ai, ai+1) and place it as ci

if no fold direction is available then
i ← 0

end-if
end-if
i ← i + 1

end-while
return C

Figure 3: Algorithm to create an individual

fold direction, we recreate the individual. When a secondary
structure is used in an individual, it is marked so that no
crossover cutpoint or mutation occurs inside that secondary
structure. Note that the algorithm always creates a valid
individual. We create 1000 individuals in this manner.

The fitness of each individual is then calculated, and it is
simply the number of H-H contacts in the conformation for
the input sequence A. The initial population is formed by
selecting the 500 best-fit individuals from the original set of
1000.

3.1.2 Crossover
We use tournament selection to select the two parents

from the population as follows. Two pools of individuals are
selected at random from the population so that the size of
each pool is 10% of the population size. The best member of
each pool is selected as a parent. We use one-point crossover
on these two parents to create two offspring.

3.1.3 Mutation
Mutation is applied to both offspring, and we use uniform

mutation. If the offspring does not contain a secondary
structure, then each fold direction in the encoding is mu-
tated with a probability that varies with time from 0.2 at

the beginning to 0.1 at the end of the algorithm. A fold
direction is mutated by replacing it with a fold direction
selected at random from Σ. The mutation probability is
varied with time so that more exploration is done in the ini-
tial generations and more exploitation is done in the later
ones.

If the offspring contains a secondary structure, no muta-
tion is performed inside this structure. We treat this as a
single unit, and it is mutated with a time varying probabil-
ity as above. A secondary structure is mutated by replacing
it with some other structure selected at random from the
library.

3.1.4 Offspring Adjustment
It is most likely that after crossover and mutation, the off-

spring produced will have invalid conformations. We adjust
the offspring, as explained below, so that their conforma-
tions become valid. Let A be the input sequence of amino
acid residues. Let C be an offspring to be adjusted.

Offspring with no secondary structure. Starting
from the first amino acid residue in the input sequence A,
and for each subsequent residue, we first place the residue in
the 2D lattice as per its current fold direction dictated by the
offspring C. If this is infeasible, i.e., if the lattice site is al-
ready occupied, we place the residue at one of the randomly
chosen, available adjacent lattice sites, and modify the fold
direction in the offspring accordingly. If there is no available
adjacent lattice site, then the offspring is discarded.

Offspring with one secondary structure. Let A =
a1 . . . ap . . . aq . . . an be the input sequence, where ap . . . aq

is the longest hydrophobic subsequence. Let A1, A2, and
A3 denote the three subsequences a1 . . . ap, ap . . . aq, and
aq . . . an, respectively. Let α, β, and γ denote the conforma-
tions for A1, A2, and A3, respectively, in the offspring C.
Here β denotes the secondary structure that represents the
fold directions for the hydrophobic subsequence A2.

Let AR
1 and αR denote the reverse of A1 and α, respec-

tively. Let ᾱ denote the conformation obtained from αR by
taking the opposite of each fold direction in αR. The oppo-
site of l is r, and vice versa. Similarly, the opposite of u is d,
and vice versa. For example, if α = ldrru, then ᾱ = dllur.

Now the offspring C can be adjusted as follows. First, the
hydrophobic residues in A2 are placed at the lattice sites
as per the fold directions in β. Next, the residues in AR

1 ,
starting from ap and ending in a1, are placed in the lattice
sites as dictated by ᾱ. For any residue, if its lattice site is
already occupied, we randomly choose one of the available
adjacent lattice sites for the residue. If there is no available
adjacent lattice site, the offspring is discarded. We then
place the residues aq through an in A3 based on γ in a
similar manner.

Finally, the adjusted offspring C can be obtained by read-
ing off the fold directions from the just constructed embed-
ding starting from a1.

Offspring with more than one secondary structure.
Here we explain the adjustment operation for an offspring
with only two secondary structures. However, this process
can be extended to include any number of secondary struc-
tures.

Let A = a1 . . . ap . . . aq . . . ar . . . as . . . an be the input se-
quence. Let A1, A2, A3, A4, and A5 denote the subsequences
a1 . . . ap, ap . . . aq, aq . . . ar, ar . . . as, and as . . . an, respec-
tively, in A where A2 and A4 are the longest hydrophobic
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subsequences. Let α, β, γ, δ, and η be the conformations
for A1, A2, A3, A4, and A5, respectively, in the offspring C.
Here β and δ denote the secondary structures that represent
the fold directions for the hydrophobic subsequences A2 and
A4, respectively.

We first place the residues in the subsequences A1, A2,
and A3 as before. Then the hydrophobic residues in A4 are
placed in the lattice sites as per the fold directions in δ. For
any residue in A4, if its lattice site is occupied, we try the
90◦, 180◦, and 270◦ rotations of the secondary structure δ,
one at a time, until all the residues in A4 can be placed in
the lattice sites. If none of the rotated secondary structures
works, then the offspring is discarded. Once all the residues
in A4 are placed, we then place the residues in A5. The
adjusted offspring C can then be obtained by reading off the
fold directions from the finished embedding starting from a1.

3.1.5 Local Optimization
We use two local optimization schemes, explained below,

to improve the fitness of the offspring before introducing
one of them into the population. Neither of these schemes
requires an empty lattice site to perform the local optimiza-
tion. For each offspring, Scheme 1 is applied followed by
Scheme 2.

Scheme 1. In this scheme, we consider a 4-point config-
uration in the offspring consisting of a lattice square, where
each corner of the square is occupied by an H or a P as
shown in Figure 4(a). The sequence is then refolded so that
the conformation remains the same except for the fold di-
rections around the four lattice sites W, X, Y, and Z. The
new fold directions around these lattice sites are as shown in
Figure 4(b). Once the sequence is refolded, we calculate the
number of H-H contacts. If the new conformation is better
than the current one, we replace the current conformation
with the new one. We perform this refolding operation on
each 4-point configuration found in the offspring.

W X

YZ Z Y

XW

(b)(a)

Figure 4: Local Optimization Scheme 1

It should be noted that this scheme will sometimes break
the conformation into two parts, and create a loop in one
of them. In order to break the loop and to join the two
parts, we select a lattice square as shown in Figure 5(a)
where the lattice sites S, T, U, and V are the four corners of
the lattice square. The sequence is then refolded as shown
in Figure 5(b) so that the conformation remains the same
except for the fold directions around the four lattice sites
S, T, U, and V . If there are more than one such place to
break the loop, then we select the one that gives the highest
fitness. If there is no way to break the loop without de-
creasing the fitness of the offspring, we ignore the 4-point
configuration that creates this loop, and search for the next
4-point configuration. A variation of this scheme has already
been explored in [18].

Scheme 2. This scheme considers 6-point configurations

S T

V UUV

S T

(a) (b)

Figure 5: Local Optimization Scheme 1 - loop break

in the offspring consisting of two adjacent lattice squares.
One such configuration is shown in Figure 6(a). The se-
quence in this case is refolded so the conformation around
the six lattice sites U, V, W, X, Y, and Z is as shown in Fig-
ure 6(b). We then compute the number of H-H contacts in
the new conformation. If it is more than the current con-
formation’s, the new conformation replaces the current one.
This refolding process is done for each 6-point configuration
found in the offspring.

W X

YZ

U V

(b)(a)

W X

YZ

VU

Figure 6: Local Optimization Scheme 2

3.1.6 Replacement
Let o be the most fit of the two offspring, and p be the least

fit of the two parents. If o is better than p, then we replace
p with o in the population. Otherwise, let w be the least fit
member of the population. If o is better than w, then we
replace w with o in the population. If no replacement can
be made, we discard o.

3.1.7 Stopping Criteria
The algorithm runs for a maximum of 100,000 iterations

or until there is no improvement in the last 10,000 iterations.
The best member of the population is then returned.

3.2 Secondary Structure Genetic Algorithm
(SSGA)

The secondary structure library is generated by SSGA,
which is similar to the main genetic algorithm, PFGA, de-
scribed in the previous section. The input to SSGA is the
longest hydrophobic subsequence in the input sequence of
amino acid residues, i.e., a sequence of H’s only. Here the
fitness of a conformation is no longer just the number of H-H
contacts as in the case of the PFGA. SSGA also differs from
PFGA in that individuals in its population obviously can-
not have any secondary structures. In addition, we also put
some constraints on the conformations evolved by SSGA.
The rest of SSGA is identical to that of PFGA. We first de-
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Table 1: Benchmark HP sequences

Seq.
No. Sequence Length Cmax

1 (HP)2PH(HP)2(PH)2HP(PH)2 20 9
2 H2P2(HP2)6H2 24 9
3 P2HP2(H2P4)3H2 25 8
4 P(P2H2)2P5H5(H2P2)2P2H(HP2)2 36 14
5 P2H(P2H2)2P5H10P6(H2P2)2HP2H5 48 23
6 H2(PH)3PH4PH(P3H)2P4(HP3)2HPH4(PH)3PH2 50 21
7 P(PH3)2H5P3H10PHP3H12P4H6PH2PHP 60 36
8 H12(PH)2((P2H2)2P2H)3(PH)2H11 64 42
9 H4P4H12P6(H12P3)3HP2(H2P2)2HPH 85 53

10 P(P2H2)2H2P2H3(PH2)3H2P8(H6P2)2P7H(PH2)2H9P2H(H2P)2HP(PH)2H2P6H3 100 50
11 P5(PH)2HP5H3PH5PH2P2(P2H2)2(PH5)2H5(PH2)2H5P11H7P(PH)2H2P5(PH)2H 100 48

scribe the constraints and then the rules for evaluating the
fitness.

Constraint 1. Since the conformations for the secondary
structures in the native state of a protein have certain degree
of symmetry, we require that the secondary structures of the
hydrophobic subsequences to be symmetric to either one of
the two lattice axes.

Constraint 2. Since each secondary structure will be
extended from both of its end lattice sites, the end lattice
sites should have at least one unoccupied lattice neighbor.

In creating the initial population as well as when an off-
spring is created, an individual is eliminated if it does not
satisfy the above two constraints.

Let C be an individual. The fitness, f(C), of C is defined
as

f(C) = f1(C) + f2(C),

where f1 and f2 are defined by Rules 1 and 2, respectively.
Rule 1. Let B be the longest hydrophobic subsequence

in the input sequence A. Since B is more likely to form the
core in the conformation of A, we give a higher fitness to
the conformation of B that has the highest number of total

H-H contacts. The total H-H contacts is the total number of
H-H contacts the conformation will have if it is surrounded
by hydrophobic residues. That is, the fitness is not based on
just the number of H-H contacts within the conformation of
B itself. Figure 7 shows two different conformations for a
hydrophobic subsequence of twelve residues. The one in Fig-
ure 7(a) has 6 H-H contacts, whereas the one in Figure 7(b)
has only 5 H-H contacts. However, the conformation in Fig-
ure 7(b) will have 21 total H-H contacts when surrounded
by hydrophobic residues, whereas the one in Figure 7(a) will
have only 20 total H-H contacts. So the conformation in Fig-
ure 7(b) is given a higher fitness than the one in Figure 7(a).
The fitness f1(C), assigned for C, is just the number of total
H-H contacts.

Rule 2. In order to achieve the maximum number of H-H
contacts, the hydrophobic core is normally compact, leaving
no unoccupied lattice sites inside the subsequence confor-
mation. Thus, we assign higher fitness for the conformation
that is more compact. Let s be the number of lattice squares
that the conformation occupies. The fitness f2(C), assigned
for C, is just −s.

The total fitness f(C) of individual C is then the sum of
f1(C) and f2(C). The rest of SSGA is the same as that of
PFGA.

(a) (b)

Figure 7: Two conformations for the hydrophobic
subsequence HHHHHHHHHHHH.

4. EXPERIMENTAL RESULTS
In this section, we describe the results from our algorithm,

PFGA, on various benchmark sequences, and compare them
against the results from the following algorithms: an Ant
Colony Optimization (ACO) algorithm [21], an Evolution-
ary Monte Carlo (EMC) algorithm [13], a Genetic Algo-
rithm combined with Tabu Search (GTS) [8], a Metropolis
Monte Carlo (MMC) algorithm [23], and a Genetic Algo-
rithm (GA) [23]. Our algorithm was implemented in C++,
and run on a PC with a Pentium IV 3.2GHz processor and
1GB of RAM under Windows XP Pro.

The details of the benchmark sequences used in our test
are shown in Table 1. Hi, Pi, and (. . .)i represent repeti-
tions of the respective residue(s) i times. Cmax represents
the best-known maximum number of H-H contacts found
for the corresponding sequence. Sequences 1 through 8 were
introduced in [23]. Sequence 9 was introduced in [10] and se-
quences 10 and 11 were introduced in [18]. These sequences
have been used as benchmark by various algorithms for the
2D HP model.

The Cmax values, listed in Table 1, were obtained by a
PERM (Pruned Enriched Rosenbluth Method) algorithm [7].
PERM is a biased chain growth algorithm based on the
Rosenbluth-Rosenbluth (RR) method [20]. Several varia-
tions of PERM have been studied, and the one in [7] seems
to perform very well compared to other PERM variations.
Since PERM uses exhaustive enumeration at several stages,
it is not a feasible algorithm to use in practice for longer se-
quences. Thus, even though the Cmax values were obtained
by PERM, we did not include PERM in the comparison.
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Table 2: Comparison of maximum number of H-
H contacts obtained by different algorithms on the
benchmark sequences.

Seq. PFGA ACO EMC GTS MMC GA

No. Cmax Best Best Best Best Best Best

1 9 9 9 9 9 9 9
2 9 9 9 9 9 9 9
3 8 8 8 8 8 8 8
4 14 14 14 14 14 13 12
5 23 23 23 23 23 20 22
6 21 21 21 21 21 21 21
7 36 36 36 35 35 33 34
8 42 42 42 39 39 35 37
9 53 53 51 - - - -

10 50 49 47 - - - -
11 48 48 47 - - - -

Table 2 gives the maximum number of H-H contacts ob-
tained by various algorithms on the benchmark sequences.
For all the sequences, the maximum number of H-H con-
tacts obtained by the PFGA were out of 500 independent
runs. Similarly the maximum obtained by EMC, MMC,
and GA were out of 5 independent runs. For GTS, no such
information is available. The maximum obtained by ACO
for sequences 1 through 6 were out of 500 runs, the maxi-
mum for sequences 7 and 8 were out of 300 runs, and the
maximum for sequences 9 through 11 were out of 100 runs.
Experimental results for the last three sequences were not
available for EMC, GTS, MMC, and GA. It is clear from
the table that PFGA performs very well against existing
algorithms.

Table 3: Performance of PFGA on the benchmark
sequences.

Number of H-H contacts Average

returned by PFGA running time

Seq. Standard tavg

No. Cmax Best Average deviation (seconds)

1 9 9 8.39 0.63 3.23
2 9 9 7.93 0.70 4.48
3 8 8 6.51 0.93 4.77
4 14 14 11.44 1.03 7.98
5 23 23 18.51 1.49 12.85
6 21 21 17.51 1.33 12.78
7 36 36 31.62 1.28 19.88
8 42 42 37.24 1.91 23.82
9 53 53 47.40 1.89 44.05

10 50 49 43.38 1.96 56.71
11 48 48 42.10 1.92 58.93

Table 3 gives the performance of our algorithm on the
benchmark sequences. For each sequence, the table gives the
maximum number of H-H contacts obtained, average value
out of 500 runs, standard deviation, and average running
time, tavg. The running times reported in Table 3 do not
include the time taken by SSGA. The reasons for this are (i)
the time taken by SSGA is insignificant compared to that
of PFGA and (ii) the results produced by SSGA can be
reused again for different input sequences. We were not able
to compare the running times of our algorithm with others

due to the following reasons: (i) a variety of methods for
reporting running times were used in previous papers and
(ii) insufficient information to allow for the adjustment of
running times from different system configurations used to
test previous algorithms. Finally, we give the conformations
obtained by our algorithm for the benchmark sequences in
Table 4.

5. CONCLUSION
In this paper, we gave an efficient genetic algorithm for

the protein folding problem in the 2D HP model. The algo-
rithm combines the concept of secondary structures with a
genetic algorithm. Experimental results on the benchmark
sequences show that it outperforms existing evolutionary
and Monte Carlo algorithms. We would like to improve our
algorithm further to be able to obtain the best-known values
for all the benchmark sequences. Also we would like to ex-
tend this concept of systematic evolution of secondary struc-
tures to the protein folding problem in the 3D HP model.
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