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ABSTRACT
Evolutionary relationships among species can be represented
by a phylogenetic tree and inferred by optimising some mea-
sure of fitness, such as the statistical likelihood of the tree
(given a model of the evolutionary process and a data set).
The combinatorial complexity of inferring the topology of
the best tree makes phylogenetic inference ideal for genetic
algorithms. In this paper, two existing algorithms for phy-
logenetic inference (neighbour-joining and maximum likeli-
hood) are co-utilised within a GA and enable the phenotype
and genotype to be assigned quite different representations.
The exploration vs. exploitation aspects of the algorithm
are examined in some test cases. The GA is compared to
the well known phylogenetic inference program PHYLIP.

Categories and Subject Descriptors
J.3 [Life and medical sciences]: Biology and genetics;
F.2.2 [Nonnumerical algorithms and problems]: Sort-
ing and searching; I.5.3 [Pattern recognition]: Clustering

General Terms
algorithms

Keywords
phylogenetic inference, genetic algorithms, genotype to phe-
notype mapping, neighbour joining, maximum likelihood

1. INTRODUCTION
Phylogenetic inference is the construction of trees that

represent the genealogical relationships between different
species. It begins with a data set consisting of characters
for each species; these characters might be nucleotide or
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Table 1: An example of aligned nucleotide sequences
for 7 species. The degree of similarity of the se-
quences implies a particular genealogical relation-
ship between the species.

species1 CGTCGGATTGAGGTTT...GTACGACCATAATCTTAGA

species2 AGTATGATGAAGCGAT...AATGCAAGAGCTACCATGA

species3 AATCGGATAACAATGC...GATTGTTCTTCTTGATCGA

species4 GCAGTAGTCCGTTAAG...TTCAGTGCAGTAGTTTCGG

species5 ATAAGGCCCTGTCCTA...CTCTCCGCCGGACTATAGC

species6 TCCGTGTGATTTTACA...GGGTAAGTATCAGTGGAAC

species7 TATGCATTAGATTGGG...GGCGCACCACTTCAGCTCC

amino acid sequences, protein shapes, anatomical charac-
ters, biosynthetic pathways or behavioural traits. In this
paper we look at sequences of the nucleotides, A, C, G and
T . A typical set of sequences is shown in Table 1.

Examples of trees can be seen in Fig. 1. The leaves of the
tree represent the species in the data set; the internal nodes
represent the inferred common ancestors; and the lengths
of the edges or branches represent evolutionary time or an
associated measure of distance between species. The trees
shown are unrooted which is common when the model of the
evolutionary process is time reversible and only a clustering
of species into more or less closely related groups is required.
The number of topologically distinct unrooted trees with n
leaves (species) is (2n − 5)!! = (2n − 5)(2n − 3) . . . 3.1. Ex-
haustive search of all possible tree topologies becomes in-
feasible for even moderate numbers of species. The internal
nodes on trees are usually unlabelled, but in studies of la-
belled histories [8] rooted trees are counted as distinct if the
internal nodes (common ancestors) arise in a different order.
The number of labelled histories is 21−nn!(n−1)!. Labelling
of internal nodes is also possible for unrooted trees, and can
correspond to the order in which the internal nodes are in-
ferred or emerge from an algorithm. The number of such
distinct labelled trees is the same as for labelled histories.

For example, for 7 species there are 945 unlabelled un-
rooted trees and 56,700 labelled histories; for 10 species
there are 2 × 106 unlabelled and 2.5 × 109 labelled trees;
for 20 species the numbers grow to 2.2×1020 and 5.6×1029.

There are also N = 2n − 3 internal branch lengths (or
2n − 2 for rooted trees) that need to be determined, so if
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we label the relevant combinatorial/topological search space
as S then the full search space is S ⊗ (R+)N . This is the
phenotype space in which the GA in this paper searches.
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Figure 1: The three tree topologies, with 7, 10 and
20 species respectively, used to test the genetic algo-
rithm. The encircled regions are parts of the trees
most difficult to reconstruct.

For each pair of species, the total length of the edges
which connect them can be calculated. This is a symmet-
ric matrix containing a positive parameter for each pair
of distinct species. The diagonal entries are zero. These
M = n(n − 1)/2 positive numbers will be used to repre-
sent the tree. The space of all matrices of this form (called
distance matrices) is (R+)M . This will become the genotype
space in which the GA operates. An algorithm for construct-
ing a tree from a distance matrix is discussed later.

The main idea of this paper is to have different represen-
tations for the genotype and phenotype: one is a matrix, the

other is a tree. Separating the genotype from the phenotype
necessitates the use of a good mapping from one space to
the other, but also allows the use of a different set of genetic
operators.

In Section 2 existing algorithms are briefly reviewed and
compared to the new ideas proposed here. Details of the
genotype to phenotype mapping and the fitness function are
given in Section 3. The operation and parameters of the GA
algorithm are given in Section 4. The performance of the
algorithm is analysed in Section 5.

2. EXISTING ALGORITHMS
FOR PHYLOGENETIC INFERENCE

Two recent books [29, 12] on phylogenetic methods give
theoretical details and case studies for many current phylo-
genetic algorithms. Two specific approaches are of relevance
here: maximum likelihood and distance based methods.

Maximum likelihood methods use a statistical model of
the evolutionary process to compare candidate trees (hy-
potheses) and determine which is the most likely. Each com-
peting hypothesis consists of three parts: the topology of the
tree, the lengths of the edges, and the evolutionary model
parameters (i.e. how nucleotide changes occur). Given a
specific tree, a very efficient algorithm [12] exists for calcu-
lating its likelihood.

The definition of fitness (e.g. likelihood) and its calcula-
tion are independent of the method used to search for good
candidate tree topologies or to optimise the edge lengths
for a given tree shape. In many implementations, new can-
didate topologies are obtained by transformations applied
directly to the tree. In order of increasing complexity (and
disruption of the tree shape) these are: nearest-neighbour
interchange (NNI) where one of the two subtrees on one end
of an internal edge is swapped with one of the two subtrees at
the other end; subtree pruning and regrafting (SPR) where a
subtree is detached from one part of the tree and reattached
elsewhere; tree bisection and reconnection (TBR) where an
internal edge is deleted, the roots of the two subtrees are ig-
nored, the trees are rotated and reattached arbitrarily. The
space of all trees can be spanned more or less efficiently
using any or all of these transformations. One of the best
known phylogenetic inference packages, PHYLIP [11], has
a maximum likelihood algorithm that constructs trees by
gradually adding in each additional species and has options
to perform various rearrangements of the trees as above.

The combinatorial part of the search is always regarded as
the difficult aspect of the search, with the optimisation of the
branch lengths considered unproblematic. Often hill climb-
ing is used to optimise edge lengths for each given topology,
but it has been shown [2] that even with as few as 4 species,
there can be multiple maxima in the space (R+)N and hill
climbing can fail to find the global optimum even if it is
unique.

Distance-based methods are amongst the most rapid and
simplest algorithms for phylogenetic inference and have two
separate stages. The first stage determines an evolutionary
distance between all pairs of species. This distance can be as
simple as the fraction of nucleotide sites that differ between
two gene sequences, or more elaborate by incorporating as-
sumptions about different probabilities of different types of
mutations. In the second independent stage, the matrix of
pairwise distances is then used to construct a tree topol-
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ogy. That is, a tree is sought such that the total length of
the edges joining pairs of species is as similar as possible to
the distance between species determined by the evolutionary
model. One of the most efficient methods for this is a type
of cluster analysis: the Neighbour-Joining (NJ) algorithm
developed by Saitou and Nei, [28] and subsequently refined
by Studier and Keppler [33]. The tree produced by this al-
gorithm can only be regarded as a heuristic solution since
it is not clear what it optimises; however, this tree is often
very similar to the optimal trees found by other algorithms.
Indeed the NJ tree can be used as a starting point for more
sophisticated searches. The NJ algorithm has some interest-
ing properties that suggest it would make a good genotype
to phenotype mapping as discussed in the next section.

2.1 GA-based Searches
Thus, many aspects of the search problem make phylo-

genetic inference ideal for population based methods such
as genetic algorithms. The first application of GA to phy-
logenetic inference appears to be by Matsuda in 1996 [21].
Since then several variations have been proposed by Lewis
[20]; Moilanen [22]; Katoh, Kuma and Miyata [17]; Brauer
et al. [1]; Lemmon and Milinkovich [19]; Congdon [3, 4, 5];
Poladian and Jermiin [24, 23]; and Shen and Heckendorn
[31].These approaches all use some combination of muta-
tion and crossover (recombination) operators based on NNI,
SPR or TBR. They differ in whether the genetic operators
are combined with exhaustive local searches, and other at-
tributes of selection and diversity maintenance (eg. niching
and crowding). What all these methods have in common is
that the genetic operators are applied directly to the tree.

The advantages of directly manipulating trees is that ge-
netic operators can be chosen that clearly exhibit proper-
ties such as locality (small mutations lead to similar looking
trees) and heritability (offspring have features that resemble
their parents). One disadvantage of working directly with
the phenotype is that most common recombination opera-
tors need to be accompanied by a complicated repair mech-
anism to ensure that the offspring have meaningful pheno-
types: mapping cleverly to another space may lead to repre-
sentations and genetic operators that do not need repair or
where repair is trivial. Other more theoretical advantages
of using a alternate representation of trees are discussed in
section 6.

3. REPRESENTATION AND FITNESS
There are a few studies that have explored the idea of

representing the tree using an alternate structure. Reijmers
et al. [26] compared a distance matrix representation with
a Prüfer number [25] representation. The distance matrix
representation performed poorly; however, only one set of
mutation/recombiantion operators was investigated for each
representation; thus, it the operators might be responsi-
ble for the poor performance rather than the representa-
tion itself. For example, Cotta and Moscato [6] compared
two different types of recombination and mutation opera-
tors with the same Prüfer-like representation, and observed
differences in performance. Gottlieb et al. [14] came to a
definite conclusion that Prüfer numbers were a poor repre-
sentation since for almost all common genetic operators only
a negligible fraction of the genotype space provides high lo-
cality and heritability. These studies lead to the conclusion
that representations cannot be considered in isolation from

the genetic operators that will be applied to them, and more
importantly both the representation and the genetic opera-
tors should exhibit locality and heritability.

3.1 Genotype and Phenotype
The genotype is a distance matrix: a symmetric n-by-n

matrix with strictly positive entries in all off-diagonal en-
tries (the diagonal entries are zero and irrelevant). The rows
and columns represent the species and the entries conceptu-
ally correspond to some evolutionary distance between pairs
of species; but, most importantly they serve as parameters
that undergo cross-over and mutation and map onto specific
phenotypes.

The phenotype is a strictly bifurcating un-rooted tree with
n leaves (the number of species). The internal nodes are
the inferred common ancestors and trees with differently
labelled internal nodes are considered distinct; the lengths
of the edges (branches) represent evolutionary time. The
topology and edge lengths together are required to calculate
the fitness function.

3.2 Genotype to Phenotype Mapping
The NJ algorithm is used as a mapping from the geno-

type space (R+)M to the phenotype space S ⊗ (R+)N . The
genotype to phenotype mapping is akin to an artificial em-
bryogeny [32]. However, artificial embryogeny, especially in
the context of ALife, is often about the unfolding of com-
plexity (often with phenotypes of arbitrary complexity) from
very compact genotypes with the mapping mimicking some
developmental process. Whereas, here, it is more impor-
tant that the genotype space have efficient and convenient
crossover and mutation operators, and that the phenotype
space have efficient fitness calculations.

The NJ Algorithm takes a matrix of pairwise distances,
identifies the pair of species which are closest (neighbours)
and joins both of them to their most recent common ances-
tor, determining the edge lengths and creating one internal
node in the tree. The two species are then set aside and re-
placed by the single new node, and a new matrix of distances
is calculated. This matrix has one less row and column, and
the algorithm is applied recursively until all species and in-
ternal nodes are joined.

The algorithm will construct a tree from any matrix of
distances. However, if the entries in the matrix do not satisfy
what is known as a four-point metric inequality [30, 13], then
some of the tree edges will be assigned negative lengths.
When negative lengths occur they are simply replaced by
their absolute value and the distance matrix is recomputed
from this repaired tree. It is observed that repair becomes
less and less frequent as the GA algorithm proceeds, unless
the data corresponds to trees with genuinely small internal
edges that may be obscured by statistical noise.

Some of the beneficial properties of NJ are discussed here.
Small changes in the entries of the distance matrix usually
result in small changes to the edge lengths of the correspond-
ing tree (thus offspring usually resemble parents and the
population evolves smoothly from generation to generation).
However, sometimes small changes in the distance matrix
can change the order in which nodes are joined; this can
have a domino effect and produce moderate to large changes
in the topology of the tree (thus sometimes offspring can be
quite novel). However, unlike the tree transformations dis-
cussed above, this change in topology approximately con-
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serves the inter-species distances and is therefore less likely
to produce highly detrimental changes in the fitness of off-
spring. Furthermore, the distance between a specific pair
of species depends on the edge lengths that join these two
species and is insensitive to changes and rearrangements in
the topology of other parts of the tree. Therefore, changes
which only affect some entries in the distance matrix will
tend to preserve aspects of the tree corresponding to the un-
changed distances. Thus again, topological transformations
can occur that preserve certain inter-species relationships.

3.3 Fitness Calculation
The Felsenstein pruning algorithm [10] is used to calcu-

late the fitness of each candidate tree. The algorithm uses
the original nucleotide data and the choice of evolutionary
model is independent of all other aspects of the GA. The
model requires the specification of the expected frequencies
px of the nucleotide bases and a transition probability ma-
trix Pxy(t) that describes the probability that a nucleotide
x will have changed into a nucleotide y after an elapsed evo-
lutionary time t. In this paper, the simplest model proposed
by Jukes and Cantor [16] is used where all nucleotides oc-
cur with equal probability and mutate into each with equal
probabilities at a constant rate. Likelihood values are usu-
ally extremely small probabilities and thus it is conventional
to quote and discuss all results in terms of the logarithm of
the likelihood, which will be a negative number.

4. THE GENETIC ALGORITHM

4.1 Initialisation
The starting population candidates were obtained from

random distance matrices. Provided the initial population
is not lacking in diversity, the outcome of a good genetic
algorithm should be independent of the starting configura-
tion. However, the time to convergence will depend on the
starting population, and in a practical situation one might
also seed the initial population with candidates obtained by
other algorithms or certain prior information. To observe
the performance of the algorithm under the harshest condi-
tions, it was decided not to direct the GA towards specific
regions of the phase space by seeding or biasing the initial
population.

4.2 Selection Operators
A standard fitness based tournament selection is used for

reproduction. Each individual is guaranteed to compete in
at least one tournament, but also has a statistical expecta-
tion of competing in m−1 additional tournaments, where m
is the population size divided by the tournament size. The
number of tournaments is equal to the population size and
the winner of each tournament is selected into the next gen-
eration. Each pair of individuals is then replaced by two new
individuals using the cross-over or recombination operator
described below. After some trial and error, a population
size of 500 and tournament size of 5 was used.

4.3 Recombination-Mutation Operators
Special genetic operators that act on matrices were in-

vented. In earlier work, Reijmers et al. [26] adopted the
obvious strategy of randomly selecting each entry of the
distance matrix from either parent. Thus individual en-
tries in the matrix play the role of independently assorted

Mendelian genes. Their GA exhibited poor performance and
this can be attributed to the lack of heritability in such a
disruptive operation.

The crossover or recombination operation used here is
uniform crossover with entire rows of the distance matrices
playing the role of individual genes. Cross-over is achieved
by swapping some subset of rows of the distance matrix be-
tween two individuals and then “symmetrising” the resulting
distance matrices. Specifically:

1. A number p is chosen randomly from the interval [0, 1].

2. For each species, the corresponding rows of the dis-
tance matrix are interchanged with probability p. Thus,
on average, each child inherits about pn rows (species)
from one parent and (1 − p)n rows (species) from the
other parent.

3. If species i and j were both exchanged or both not
exchanged then the entries in the distance matrix sat-
isfy dij = dji. (The inter-species distance is thus also
inherited unchanged from one parent.) No symmetri-
sation is required for such entries.

4. For those entries where dij 6= dji a real-parameter
stochastic average crossover is needed.

In the absence of selection pressure a good crossover op-
erator should not reduce the diversity of the population (or
change its average properties). Three well-known real pa-
rameter crossover operators that have the above properties
are blend crossover BLX-α [9], Voigt’s fuzzy recombination
[34] and simulated binary crossover [7]. BLX was used since
it is the easiest to implement, and after some trial and er-
ror a value of α = 1.0 was chosen. The use of BLX also
introduces new parameters into the population, therefore it
is not immediately obvious that an independent mutation
operator is also required. The large value of α is, in a sense,
enhancing the role of mutation. In the interest of simplicity,
no additional mutation was introduced, however the bene-
fits of additional mutation or different values of α will be
explored in future work.

5. PERFORMANCE ON SIMULATED DATA

5.1 Simulation Method
The benefits of using simulated data are that the evolu-

tionary model, tree topology and edge lengths used to gener-
ate the nucleotide sequences are known and thus the results
of the optimisation can be compared to these values. For
each of the cases with 7, 10 and 20 species, a distance ma-
trix was created with random entries in the range 0 to 1.
The NJ algorithm was used to construct a tree. These three
tree topologies are shown in Fig. 1. Nucleotide sequences
of length 500 were then generated by simulating evolution
on these trees. The simulation is essentially the inverse of
the likelihood calculation. Starting from any one node, a
random sequence of nucleotides is generated for this node.
The probability matrix Pxy(t) is then used to create a se-
quence of nucleotides at neighbouring nodes. A length of
500 nucleotides was used to keep the time taken to perform
the fitness calculations down. In analyses with moderate
numbers of species, it has been suggested that sequences
of several thousand nucleotides are required for statistically
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significant results. The analysis was also compared to the
results from the widely used PHYLIP program [11] to com-
pare the final trees and likelihood values. In every case,
PHYLIP recovered the tree topology used to simulate the
data, with edge lengths within a few percent of the origi-
nal values. With only 500 nucleotides, small difference are
expected due to statistical fluctuations during simulations,
The edge-lengths shown in Fig. 1 are drawn proportional to
the lengths found by the PHYLIP program.

The GA was run 10 times for each tree using the simulated
nucleotide sequences as input. Information was collected on
the best likelihood value in each generation, the number of
novel topologies emerging in each generation and the average
and maximum number of generations that particular tree
topologies persisted.
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Figure 2: The log(likelihood) from each of the 10
runs as a function of generation for (a) 7 (b) 10 (c)
20 species. In each case the best value from the GA
is compared to that from PHYLIP. N.B. The results
for 20 species are shown over 100 generations.

5.2 Convergence
In every run, the GA uncovered the tree topology used

to simulate the data. However, as the number of species
increased the best likelihood value attained by the GA fell
slightly short of the maximum found by PHYLIP. The edge
lengths of the trees in the final population also disagreed by
a few to several percent. These results suggest that although
this GA was good at searching the combinatorial space of
topologies it could probably gain by being hybridised with a
more conventional local search to optimise the edge lengths
of the trees. The convergence of the log-likelihood with gen-
eration and the best values found are shown in Fig. 2.

In the 7 species case, the final populations contained only
the correct tree topology, but with up to 4 different ver-
sions of labelling of the internal nodes. This occurs because
the edge lengths of the optimal tree topology have not suf-
ficiently converged and alternate orderings of the neighbour
joining takes place. This is another indication that a hybrid
approach is necessary.

In the 10 species case, the final populations contained two
distinctly labelled versions of the same tree topology. The
results are somewhat better than expected: the presence
of a very short internal branch (as indicated by the circle
in Fig. 1) combined with the lack of tight convergence of
the edge lengths should lead to some alternate topologies
persisting in the population.

In the 20 species case, three internal nodes of the tree were
slightly problematic. These nodes are indicated on the tree
in Fig. 1. The final populations contained the correct topol-
ogy, but also contained different topologies corresponding to
slightly different connections between these three internal
nodes. In some cases as many as a dozen different labelled
topologies and several distinct tree shapes still exist in the
population even after 100 generations.

Table 2 shows the degree of edge length convergence for
the distinct labelled topologies surviving in the final popula-
tion of one of the 7 species runs. After only 50 generations,
the edge lengths have converged to better than 3% for those
connected to the species, and the internal edge lengths to
6%.

Table 2: The four best (surviving) labelled topolo-
gies in the 7 species case. All have a log likelihood
of -4707.9.

i j, dij Phylip
1 8 , 0.343 8,0.340 11, 0.346 12, 0.339 0.344
2 8 , 0.956 8,0.952 11, 0.954 12, 0.954 0.947
3 9 , 0.497 9,0.500 12, 0.506 11, 0.504 0.510
4 11, 0.675 12,0.668 9 , 0.666 9 , 0.661 0.685
5 12, 0.814 11,0.818 8 , 0.818 8 , 0.816 0.820
6 12, 0.362 11,0.358 8 , 0.359 8 , 0.358 0.354
7 10, 0.313 10,0.312 10, 0.314 10, 0.321 0.427
8 9 , 0.224 9 ,0.224 9 , 0.234 9 , 0.240 0.219
9 10, 0.845 10,0.846 10, 0.820 10, 0.812 0.695
10 11, 0.822 12,0.818 12, 0.835 11, 0.842 0.711
11 12, 0.226 12,0.234 12, 0.220 12, 0.226 0.211

5.3 Exploration vs. Exploitation
An interesting feature of any GA to try to understand

is the balance between exploration and exploitation. In this
GA, exploration is equivalent to topological innovation, that
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is, the creation of labelled tree topologies that did not exist
in earlier generations. It is important in early generations to
search the space broadly and find many diverse candidates
to avoid premature convergence to a local optimum. Later,
in the exploitation phase, it is more important to refine the
fitness of the best candidates and spend less time exploring
since the chance of finding worthwhile novel trees is less.
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Figure 3: The solid (upper) curve shows the number
of distinct labelled trees in each generation. The
dashed (lower) curve shows the number of novel
trees in each generation (i.e. labelled trees that did
not exist in the previous generation). Results are
averages over 10 different runs for (a) 7 (b) 10 and
(c) 20 species.

The number of distinct trees and the emergence of novel
trees per generation is shown in Fig. 3. Another indicator
of progress is the persistence of good solutions; in this case:
the number of generations that a labelled tree topology will
exist in the population before disappearing. The average
and maximum lifetime of the tree topologies as a function
of the generation in which they first occurred is shown in
Fig. 4.

For the 7 and 10 species cases, the exploration phase lasted
about 5 to 7 generations; for the 20 species case, though, the
exploration continued for more than 20 generations. In the
exploration phase many new trees are discovered; on average

these trees last less than two generations and even the most
persistent ones survive less than 10 generations.

At some point, trees are discovered that essentially remain
in the population for very long periods of time (sometimes
forever). For 7 and 10 species this occurs around generation
10; for 20 species it is around generation 30 to 40. These
are the trees that very strongly resemble the optimal tree
topologies. The global peaks in Fig. 4 reveal the genera-
tion in which indefinitely persisting trees (i.e. the optimal
topology) first appear.
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Figure 4: The solid (upper) curve shows the maxi-
mum observed lifetime of trees born in that gener-
ation. The dashed (lower) curve shows the average
lifetime of trees born in that generation. Results are
averages over 10 different runs.

After this discovery phase, new tree topologies are still
discovered but most do not last very long, and most of the
effort of the GA goes into refining the edge lengths of the
trees already found. This is the consolidation or exploitation
phase.

In the 7 species case, during the 10 runs, between 4060
and 5229 different labelled trees were examined. Depending
on the run, the last novel tree appears sometime between
generation 19 and 48. In most cases, there were two to four
distinct labelled trees equally populating the last generation.
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In the 10 species case, between 4892 and 5689 different
labelled trees were examined. Depending on the run, the
last novel tree appears sometime between generation 27 and
38. In every case, there were two distinct labelled trees
equally populating the last generation.

In the 20 species case, between 17911 and 20332 trees
were examined. New trees emerged at all stages up to 100
generations.

In the 7 species case, about 5% of the total number of
possible trees are explored before the best topology is found.
In the 10 species case, only slightly more trees are explored
but this represents only 10−5% of the total space. Four times
as many trees are explored in the 20 species case, although
the combinatorial space is 20 orders of magnitude larger.
This observation in itself suggests the GA has good scaling
properties.

6. CONCLUSION
The preliminary analysis of the three cases studied here

revealed both positive and negative attributes of the GA de-
veloped here. The behaviour of the GA can be considered in
terms of three phases: an initial exploration phase, followed
by discovery of good solutions (or partial solutions) and a
final exploitation phase. The lengths of these phases varies
with the number of species. One expects that the lengths
of these phases should also depend on the parameters of the
GA (such as population and tournament size) and this is a
study that needs to be conducted next.

Much longer studies are needed to confirm typical con-
vergence times for cases with 20 or more species, but the
results here do indicate that the length of the exploration
phase grows slowly with the number of species. More anal-
ysis is needed to determine the precise relationship (and
hopefully confirm a low power law behaviour). Certainly,
the search spaces varied by a very large number of orders
of magnitude with only 3 to 4 times variation in the time
taken to locate some good solutions. However, the above
suggests that the algorithm has good initial behaviour and
a reasonable balance of exploration and exploitation.

In all the cases tested, the GA found the original tree
topology used to simulate the data, which agreed with the
optimal solution found by PHYLIP. The algorithm did make
a smooth transition to a more exploitative phase in later
generations, but the performance of the algorithm in refin-
ing the values of the edge lengths was a bit slow. Slightly
more worrying is that although the correct topology was
present in the final population, several alternate topologies
were also still present in the 20 species case after 100 gen-
erations. These alternate topologies sometimes appear to
have higher likelihoods, but only because the edge lengths
of these trees have yet to be accurately refined.

The persistence of these non-optimal topologies is hoped
to be resolved by the same mechanism planned to resolve the
slow convergence of the edge lengths: hybridisation with a
specialised approach to refining the numerical values once
or while the correct topology is being discovered.

A more detailed statistical analysis of the algorithm is
worthwhile and underway as well as studying its perfor-
mance on larger numbers of species and the incorporation
of a special local optimiser.

In terms of a more theoretical analysis of the algorithm,
a disadvantage of working directly with the trees has been
the concept of the distance between two tree topologies in

tree-space. There are a number of metrics that have been
discussed in the literature. Some do not include any infor-
mation on edge lengths, those that do include the Robinson-
Foulds metric [27] and the branch score [18]. More recently,
Holmes [15] has explored the need for good metrics in devel-
oping statistics for phylogenetic trees, and probability dis-
tributions in particular. Mapping from one space to another
does allow a metric in one space to induce one in the other,
and this may contribute to the discussion. However, it still
remains a challenging question to quantitatively describe
how various genetic operators reduce, preserve or increase
diversity or flow through the phenotype space. By mapping
to a simpler space, where well-defined distance metrics can
be applied to matrices, some of these attributes may be more
easily quantified. A better understanding of these concepts
will also allow more sophisticated statistical approaches such
as Bayesian inference to be applied.
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