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ABSTRACT 
Serum profiling using mass spectrometry is an emerging technology 
with a great potential to provide biomarkers for complex diseases 
such as cancer. However, protein profiles obtained from current 
mass spectrometric technologies are characterized by their high 
dimensionality and complex spectra with substantial level of noise. 
These characteristics have generated challenges in discovery of 
proteins and protein-profiles that distinguish cancer patients from 
healthy individuals. This paper proposes a novel machine learning 
method that combines support vector machines with particle swarm 
optimization for biomarker discovery. Prior to applying the 
proposed biomarker selection algorithm, low-level analysis methods 
are used for smoothing, baseline correction, normalization, and peak 
detection. The proposed method is applied for biomarker discovery 
from serum mass spectral profiles of liver cancer patients and 
controls. 

Categories and Subject Descriptors: I.5.2 [Pattern 
Recognition]: Design Methodology – classifier design and 
evaluation, feature evaluation and selection.  

General Terms: Algorithms 

Keywords: proteomics, support vector machines, swarm 
intelligence. 

1. INTRODUCTION 
Several laboratories have demonstrated the feasibility of using 
serum-based proteomic pattern analysis by mass spectrometry for 
biomarker discovery and diagnosis of ovarian [14], breast [13], and 
prostate cancer [1], [15]. One of the commonly used biomarker 
discovery approaches is to apply statistical analyses that recognize 
differentially expressed mass-per-charge (m/z) values between the 
two groups with multiple subjects. For example, one can apply a 
two-sample t-test method to compare the protein intensities at each 
m/z value in cases and controls. Zhu et al. [23] proposed a statistical 
algorithm that can select a subset of k biomarkers from the marker 
list that could best discriminate between the groups in a training 
dataset via the best k-subset discriminant method with high 
sensitivity and specificity.  

Machine learning methods have also been proposed for biomarker 
discovery. For example, Petricoin et al. [14] applied a combination 
of genetic algorithm (GA) and self-organizing clustering (GA-SOC) 
for variable selection. The GA-SOC, which is implemented in 
ProteomeQuest software, begins with a random generation of a 
population of many subsets of the surface-enhanced laser desorption 
ionization-quadrupole time of flight (SELDI-QqTOF) mass spectra 
with precise m/z candidate values. The user arbitrarily fixes the 
number of features (i.e., m/z values) that will create the best model. 
In their study, the number of features varies with the biologic state 
and ranges from 5 to 20.  

One of the concerns in the construction and use of machine learning 
algorithms is the possibility of overfitting the training data [17]. 
Hence, it is necessary to have algorithms that are capable of not 
only dealing efficiently and effectively with high dimensionality of 
mass spectral data, but also producing models with good 
generalization capability. The latter demands models derived from a 
training dataset to apply equally well to a previously unseen 
(independent) dataset.  

Support vector machines (SVMs), introduced by Vapnik [20], have 
proven themselves as one of the classification algorithms that have 
the potential to satisfy the above two demands. Parameters of SVMs 
are determined based on structural risk minimization. In 
classification problems that involve two linearly separable classes, 
SVMs search for one target known as the optimal hyperplane. The 
optimal hyperplane maximizes the margin of separation between the 
hyperplane and the closest data points on both sides of the 
hyperplane. Koopmann [12] applied successfully SVM in a 
modified form to proteomic profiling. While SVMs and their 
variants have been successfully used in classification tasks, the 
selection of the most salient m/z values from high dimensional mass 
spectrometric data remains a challenging task. To address this 
challenge, Li et al. [13] introduced unified maximum separability 
analysis (UMSA) algorithm, which incorporates data distribution 
information into structural risk minimization learning algorithm. 
UMSA is applied to identify a direction along which two classes of 
data are best separated. This direction is represented as a linear 
combination of the original variables. The weight assigned to each 
variable in this combination measures the contribution of the 
variable toward the separation of the two classes of data. They 
analyzed protein profiles of serum samples from patient with or 
without breast cancer. They reported that UMSA enabled the 
identification of three discriminatory biomarkers that achieved 93% 
sensitivity and 91% specificity in detecting breast cancer patients 
from the non-cancer controls.  

Our proposed method takes advantage of the collective features of 
SVMs and particle swarm optimization (PSO). PSO is similar to 
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evolutionary computation methods such as genetic algorithms 
(GAs). Each uses a population of potential solutions to explore the 
search space. While GAs are based on survival-of-the-fittest 
approaches as in the theory of natural evolution, PSO is an adaptive 
algorithm based on the social metaphor of flocking birds (or 
schooling fish, or swarming insects). In PSO, a population of 
individuals adapt by stochastic search of successful regions of the 
search space, influenced by their own success and that of their 
neighbors. Individual particles move stochastically in the direction 
of their own previous best position and the best position discovered 
by the entire swarm. Alternatively a neighborhood approach can be 
used, where instead of moving in the direction of the best position 
discovered by the entire swarm, each particle moves towards the 
best position discovered amongst a localized group of particles, 
termed the “neighborhood.” Since the change in particle trajectory 
is based on the position of the particle’s own best position as well as 
the global (or neighborhood) best position, the essence of the PSO 
algorithm is that each particle will continuously focus and refocus 
the efforts of its search within these two regions. Each particle in the 
swarm represents a candidate solution to the optimization problem, 
and is evaluated at each update by a performance function. PSO is a 
simple algorithm that has been shown to perform well for 
optimization of a wide range of functions, often locating optima in 
difficult multi-modal search spaces faster than traditional 
optimization techniques. Detailed information on swarm 
intelligence and the PSO algorithm can be found in [3], [8], and 
[11]. We have successfully applied PSO in ocean color remote 
sensing application and showed that PSO requires less computation 
time than GA [18]. 

The paper is organized as follows: Section 2 highlights the methods 
for biomarker discovery. The section gives an overview of low-
level analysis methods such as smoothing, baseline correction, 
normalization, and peak detection. In addition, the section 
introduces the proposed PSO-SVM algorithm and its application in 
biomarker discovery. Section 3 presents analyses made using our 
proposed biomarker discovery method and results obtained in 
analyzing liver cancer. Section 4 concludes the paper. 

2. METHODS  
2.1 Low Level Analysis 
Analysis methods for biomarker discovery via mass spectrometric 
data will perform sub-optimally, if low-level analysis is not made 
properly. The reason for this includes the substantial amount of 
noise and systematic variations between spectra caused by varying 
amount of protein, sample degradation over time, and variation in 
the sensitivity of the instrument. Sorace and Zhan [19] have 
reported the existence of a significant non-biologic experimental 
bias between cancer and control subjects in their assessment of 
ovarian cancer serum proteomic profiling using SELDI-QqTOF. 
Unfiltered mass spectra contain electronic noise, chemical noise due 
to contaminants and the ionization matrix used, and protein 
signatures [15]. Previous quality-control experiments have 
suggested several measurement properties of current mass 
spectrometry technologies that must be accounted for in the analysis 
[9], [22]. Thus, it is important to apply low-level analyses that 
enable the recognition of spectral quality prior to using the spectra 
for biomarker discovery and disease classification.  

Low-level analysis methods allow smoothing, baseline correction, 
and normalization of raw mass spectrum as well as peak detection. 
Smoothing can reduce the effect of some m/z values that appear as 

peaks but may not be or are very hard to verify by independent 
experiments. Baseline correction can minimize the effect of 
background noise. Normalization reduces systematic variation 
between spectra that may be caused by varying amounts of protein, 
sample degradation over time, or variation in the sensitivity of the 
mass spectrometry’s ion detector. Peak detection deals with the 
selection of m/z values which display a reasonable intensity 
compared to those that appear as noise. 

Many smoothing algorithms have been proposed in the field of 
signal processing to denoise raw signals including the well-known 
Savitzky-Golay filter that removes additive white noise. Pusztai et 
al. [16] have used this filter to process SELDI-QqTOF mass spectra. 
Wavelets are also useful in smoothing. For example, a 
multiresolution wavelet analysis can be used to estimate the 
approximation coefficients and the detail coefficients at different 
multiresolution levels. Smoothing can be achieved by thresholding 
the detail coefficients [7]. The spectra can be reconstructed by using 
the inverse wavelet transform without the thresholded detail 
coefficients. Several methods have been proposed for baseline 
correction. Baggely et al. [2] fitted a local median in a fixed window 
on the time scale. They also considered a local minimum instead of 
local median. Their final decision was to subtract a 
“semimonotonic” baseline. This procedure is described in [2]. A 
commonly used normalization for mass spectrometric data is 
rescaling each spectrum by its total ion current, i.e., the area under 
the curve (AUC). Alternatively, choosing the average AUC over all 
spectra as the rescaling coefficient can do a global normalization. 
Other common choices for the rescaling coefficient include the 
spectrum median or mean. A global optimization assumes that the 
sample intensities are all related by a constant factor. That means 
that the data distribution should not differ substantially from one 
spectrum to another. 

Coombes et al. [5] applied a simple peak finding (SPF) algorithm to 
identify peaks. The algorithm provides the locations of potential 
peaks and their associated left-hand and right-hand bases. In [6], 
Coombes et al. introduced an improved peak detection method 
using wavelets. Through undecimated discrete wavelet transform, 
they separated the true signal from the noise. The noise component 
was used to estimate the average noise for each peak. The ratio of 
the baseline corrected intensity and the average noise at each peak 
(signal-to-noise ratio, S/N) was used to select reasonable peaks 
among those selected via the SPF. They selected peaks with S/N > 
10. To accommodate some drift in the locations of spectral peaks 
from one experiment to another, two peaks are coalesced if they 
differed in location by at most 7 clock ticks or at most 0.3% relative 
mass for surface-enhanced laser desorption ionization-time of flight 
(SELDI-TOF) data. They also revisited peaks with 2 < S/N < 10 
and added these to the list if they fell within the same distance limits 
(7 ticks or 0.3% of mass) of a previously identified peaks. 

In this paper, we applied low-level analysis methods to raw high-
resolution SELDI-QqTOF mass spectra. To reduce the noise and 
dimensionality of the raw spectra, we used a binning procedure that 
divides the m/z axis into intervals of desired length. The mean of 
the intensities within each interval was used as the protein 
expression variable in each bin [21]. The baseline of each spectrum 
was estimated by using multiple shifted windows of a given size. 
Spline approximation was used to regress the varying baseline. The 
regressed baseline was subtracted from the spectrum yielding a 
baseline corrected spectrum. Each spectrum was normalized by 
dividing it by its total ion current. For peak detection, we used the 
SPF algorithm and refined the peaks by choosing those with S/N > 
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2. Note that, in this study, we did not perform any alignment of the 
spectra or coalescing of peaks that are close to each other. We are 
investigating these approaches. 

2.2 Biomarker Discovery 
The purpose of this analysis is to identify biomarkers from the 
preprocessed mass spectral data. While peak detection deals with 
the selection of mass points with reasonable intensity and signal-to-
noise ratio, the aim of biomarker discovery is to identify mass 
points that can be used to distinguish between cancer patients and 
health individuals. 

Statistical analyses can be applied to recognize differentially 
expressed m/z values between the two groups from a high 
dimensional mass spectral datasets with multiple subjects. 
Alternatively, peak detection algorithms can be used to identify 
potential peaks and use the resulting peaks for further analysis. We 
believe that m/z values that may appear statistically insignificant or 
subtle peaks may still be useful in improving classification accuracy 
when they are used in combination with other m/z values. To 
extract m/z values that interact with each other and to have a more 
concise list of m/z values, advanced computational methods are 
needed. 

In this paper, we propose the use of a PSO-SVM algorithm for 
biomarker discovery. The algorithm builds SVM classifiers for each 
particle (potential solution) generated by PSO. The prediction 
capability of the resulting SVM classifier on a validation dataset is 
used as a performance function for the PSO algorithm. Since SVMs 
provide good generalization capability in classification tasks and 
can be designed in a computationally efficient manner, they are an 
ideal candidate for use as a performance function. 

2.2.1 Support Vector Machines 
Support vector machines, introduced by Vapnik [20], are learning 
kernel-based systems that use a hypothesis space of linear functions 
in high dimensional feature spaces. Unlike artificial neural 
networks, which try to define complex functions in the input feature 
space, the kernel methods perform a nonlinear mapping of the 
complex data into high dimensional feature spaces and then use 
simple linear function to create linear decision boundaries. Thus, the 
problem of choosing network architecture is replaced here by the 
problem of choosing a suitable kernel for the data projection. 

The advantages of support vector machines over neural networks is 
that they are significantly faster to train, better suited to work with 
high dimensional data, provide better generalization ability on the 
test set, can be developed with few training examples, and allow for 
scaling the importance of outliers. Parameters of SVMs are 
determined based on structural risk minimization.  

In classification problems that involve two linearly separable classes 
(e.g. A and B in Figure 1), SVMs search for one target known as the 
optimal hyperplane. While various hyperplanes can separate the two 
groups correctly, the optimal hyperplane maximizes the margin of 
separation (ρ) between the hyperplane and the closest data points on 
both sides of the hyperplane. Thus, SVMs can be used to develop an 
optimal classifier that best separates cancer patients from healthy 
individuals based on m/z values. 

 
Figure 1: The optimal hyperplane that separates data points 

from two linearly separable classes. 

2.2.2 Particle Swarm Optimization 
In the PSO algorithm, each particle is represented as a D-

dimensional vector Θ∈ixr , with a corresponding D-dimensional 
instantaneous trajectory vector )(txi

r∆ , describing its direction of 
motion in the search space at iteration t. The core of the PSO 
algorithm is the position update rule (1) which governs the 
movement of each of the N particles, Ni ,...2,1= , through the 
search space. 
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At any instant, each particle is aware of its individual best position, 
)(, tx besti

r , as well as the best position of the entire swarm, 

)(, tx bestG
r . The parameters c1 and c2 are constants that weight 

particle movement in the direction of the individual best positions 
and global best positions, respectively; and r1,j and r2,j, Dj K,2,1=  
are random scalars distributed uniformly between 0 and 1, 
providing the main stochastic component of the PSO algorithm. 
Figure 2 shows a vector diagram of the contributing terms of the 
PSO trajectory update. The new change in position, )1( +∆ txi

r , is 
the resultant of three contributing vectors: (i) the inertial 
component, )(txi

r
∆ , (ii) movement in the direction of the global (or 

neighborhood) best, bestGx ,
r

, and (iii) movement in the direction of 

individual best, bestix ,
r

. 
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Figure 2: Vector diagram of particle trajectory update. 

The constriction factor, χ , may also help to ensure convergence of 
the PSO algorithm, and is set according to the weights c1 and c2 as 
in (2) [3]. 
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The key strength of the PSO algorithm is the interaction among 
particles. The second term in (1), ( ))()(,2 txtx ibestG

rr
−Φ , is considered 

to be a “social influence” term. While this term tends to pull the 
particle towards the globally best solution, the first 
term, ( ))()(,1 txtx ibesti

rr
−Φ , allows each particle to think for itself. The 

net combination is an algorithm with excellent trade-off between 
total swarm convergence, and each particle’s capability for global 
exploration. Moreover, the relative contribution of the two terms is 
weighted stochastically.  

The algorithm consists of repeated application of the velocity and 
position update rules presented above. Termination can occur by 
specification of a minimum error criterion, maximum number of 
iterations, or alternately when the position change of each particle is 
sufficiently small as to assume that each particle has converged. The 
PSO is implemented as a bounded optimization [10]. A pseudo-
code description of the PSO algorithm is provided below: 
(i) Generate initial population of particles,

ixr , Ni ,...2,1= , 
distributed randomly (uniform) within the specified bounds. 

(ii) Evaluate each particle with objective function, )( ixf r ; if any 
particles have located new individual best positions, then 
replace previous individual best positions, 

bestix ,
r , and keep 

track of the swarm global best position, bestGx ,
r . 

(iii) Determine new trajectories, )1( +∆ txi
r , according to Eq. (1). 

(iv) Update each particle position, )1()()1( +∆+=+ txtxtx iii
rrr . 

(v) Determine if any )1( +txi
r  are outside of the specified bounds; 

hold positions of particles within the specified bounds. 
(vi) If termination criterion is met (for example completed 

maximum number of iterations), then bestGx ,
r  is the best 

solution found; otherwise, go to step (ii). 

Figure 3 demonstrates particle trajectories over a two-dimensional 
error surface. The contours represent equi-error curves on the error 
surface. Several of the depressions on the surface represent local 
minima (labeled “B”), whereas the point labeled “A” possesses the 
globally minimum error on the surface. A simple PSO with 10 

particles was used to determine the position on this surface with 
minimum error, with their trajectories traced as lines. Note their 
mildly erratic behavior as each is pulled towards both the global and 
its individual best solution. 

 
Figure 3: Trajectories of particles in solution-space. 

2.2.3 PSO-SVM for Biomarker Discovery 
Figure 4 depicts the proposed methodology for biomarker 
discovery. It starts by preprocessing the raw mass spectral data 
using the low-level analysis methods described in Section 2.1. The 
preprocessed data are split into training and testing (independent) 
datasets. The training dataset is used to select features and to build 
an SVM classifier. The validity of each classifier created with the 
selected features is evaluated using the sensitivity and specificity of 
the SVM classifier in distinguishing cancer patients from non-
cancer controls. SVM classifiers are built for various combinations 
of features until the classification accuracy of the SVM classifier 
converges or maximum iteration number is reached. Estimates of 
classification accuracy are calculated by using the hold-out method 
where a validation dataset is used to evaluate the generalization 
error. 

The PSO algorithm guides the selection of potential biomarkers that 
lead to best sensitivity and specificity in distinguishing cancer 
patients from healthy individuals. Figure 5 illustrates the PSO-SVM 
algorithm in more details. The ultimate biomarkers are evaluated 
using the testing (independent) dataset. 

The PSO-SVM algorithm can be used to identify the optimal m/z 
values either from the entire variable set or from a reduced subset 
selected by other methods such as t-test or a peak detection 
algorithm. From these variables, the algorithm chooses n sets of 
randomly selected k m/z values (biomarkers) as initial particles. The 
algorithm evaluates the performance of each particle in 
distinguishing the two classes. This performance test is carried out 
by building an SVM classifier for each particle and using the cross-
validation method. The algorithm uses the most-fit particles to 
contribute to the next generation of n candidate particles. Thus, on 
the average, each successive population of candidate particles fits 
better than its predecessor. This process continues until the 
performance of the SVM classifier converges. The algorithm 
repeats the above steps for various values of k to detect the optimal 
number of biomarkers along with the m/z values. The final 
biomarkers are evaluated via testing dataset (i.e., independent 
dataset that was not used for training) to determine the sensitivity 
and specificity of the SVM classifier. 
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Figure 4: Methodology for biomarker discovery. 

 
Figure 5: PSO-SVM algorithm. 

 
3. RESULTS AND ANALYSIS 
We examined the capability of the proposed PSO-SVM algorithm 
in identifying optimal m/z values (biomarkers) distinguishing liver 
cancer patients from healthy individuals. 411 SELDI-QqTOF mass 
spectra, 199 from hepatocellular carcinoma patients (cases) and 212 
from matched healthy individuals (controls) were available from an 
ongoing study. About 13% of these spectra displayed substantial 
deviation from the data distribution and were excluded, leaving 357 
(176 cases and 181 controls) spectra for further analysis. These 
outliers were singled out based on their deviation from the median 
ion current, median record count (number of mass points), and their 
alignment with pre-selected landmarks.  

Each spectrum consisted of ~340,000 m/z values with the 
corresponding ion intensities. The dimension of these high-
resolution spectra was reduced to 6107 m/z values via a binning 
procedure that divides the m/z axis into intervals of desired length to 
the mass range 1 to 11.5 kDa. A bin size of 400 parts per million 
(ppm) was found adequate as it is 10 times the routine mass 
accuracy of the QqTOF with external calibration (40-50 ppm) [4]. 
The mean of the intensities within each interval was used as the 
protein expression variable in each bin [21]. The baseline of each 
spectrum was estimated by using multiple shifted windows of a 
given size. Spline approximation was used to regress the varying 
baseline. The regressed baseline was subtracted from the spectrum 
yielding a baseline corrected spectrum. Furthermore, each spectrum 
was normalized by dividing it by its total ion current. 

Figure 6 depicts a typical SELDI-QqTOF mass serum spectrum of a 
healthy individual. On the horizontal axis are m/z values and on the 
vertical axis are intensity measurements that indicate the relative ion 
abundance. The raw spectrum is shown in Figure 6a. Figure 6b is 
the spectrum after binning. As shown in the figures, the binning 
algorithm has removed the high frequency noise, thus smoothing 
the spectrum. The binned spectrum is further normalized and 
baseline corrected (Figure 6c).   

The preprocessed mass spectra were split into three datasets: 
training, validation, and testing datasets with 140 samples (70 cases 
and 70 controls), 60 samples (30 cases and 30 controls), and 157 
samples (76 cases and 81 controls), respectively. We used the 
training and validation datasets (100 cases and 100 controls) for 
peak detection via the SPF method [5]. As we described in Section 
2.1, an estimate of S/N is needed to select reliable peaks among 
those identified by the SPF method. To estimate the noise level in 
the preprocessed mass spectra, we applied undecimated discrete 
wavelet analysis that separated the true signal from noise. The noise 
for each peak was estimated by averaging over a window of 500 
m/z values to the left of the peak and 500 m/z values to the right. 
We selected peaks with S/N > 2 and found 2940 peaks in the 200 
spectra (100 cases and 100 controls). An SVM classifier trained 
with these 2940 peaks yielded 87% success in distinguishing liver 
cancer patients from healthy individuals in the testing dataset.  

To reduce the number of peaks, we selected those peaks that were 
present in at least 25 of cases (out of 100) and combined them with 
those that were present in at least 25 of controls (out of 100). This 
approach resulted in 437 peaks. With these peaks, an SVM 
classifier achieved a prediction accuracy of 89% in distinguishing 
cases and controls in the testing dataset. 

Further reduction of the number of peaks did not improve the 
prediction accuracy. For example, we found 59 peaks by combining 
peaks that were present in at least 50 cases with those that were 
present in 50 controls. These peaks resulted in only 83% prediction 
accuracy. 
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(a) 

 
(b) 

 
(c) 

Figure 6: Typical SELDI-QqTOF mass spectrum in the range 
between 1-11.5 kDa: raw (a), binned (b), and normalized and 

baseline corrected (c). 
 

Figure 7 and 8 depict the averaged spectrum for the 100 controls 
and 100 cases, respectively. These figures indicate 384 peaks that 
were present in at least 25 controls and 394 peaks found in at least 
25 cases, respectively. Figure 9 shows the absolute difference 
between the averaged control spectrum and averaged case spectrum 
along with the 437 peaks found by combining those that were 
present in at least 25 cases with those that were present in at least 25 
controls. The reduction in the combined number of peaks (i.e., 
384+394 > 437) indicates overlaps between case and control peaks.  

 
Figure 7: Averaged spectrum and peaks present in at least 25% 

of the control spectra. 

 
Figure 8: Averaged spectrum and peaks present in at least 25% 

of the case spectra. 

We used the PSO-SVM algorithm to select biomarkers from the 
peaks that we identified (above). In this study, we arbitrarily 
targeted at five biomarkers. The parameters of the PSO algorithm 
were selected as c1 = c2 = 2.05 (Eq. 1), thus χ = 0.73 (Eq. 2). The 
algorithm began with 100 particles where each particle consisted of 
k randomly selected m/z values from the 437 peaks. A linear SVM 
classifier was built for each particle via the training dataset. The 
prediction power of each particle (k biomarkers) was evaluated. 
This was done by measuring the performance of the SVM classifier 
in distinguishing the two classes in the validation dataset. The most-
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Figure 9: Absolute difference between averaged cases and 

controls; peaks present in at least 25% of cases; peaks present 
in at least 25% of controls; biomarkers found by PSO-SVM. 
Mass range: 1-11.5KDa (top figure); 7.4-8.2KDa (bottom). 

 
fit particles contributed to the next generation of 100 candidate 
particles. This process continued until the performance of the SVM  
classifier converged. The algorithm was run for k = 3, 5, 10, 15, 20, 
and 25. We selected five biomarkers (7721.8, 7746.5, 7922.0, 
7934.6, and 8331.4) that were identified by the algorithm more 
frequently than other peaks. These biomarkers yielded 91% 
prediction accuracy (88% sensitivity and 94% specificity) in 
distinguishing liver cancer patients from the non-cancer controls in 
the testing dataset. Note that the testing dataset consisted of 76 cases 
and 81 controls that were used neither for training nor for biomarker 
selection. We also applied the PSO-SVM algorithm to select 
biomarkers from the 2940 peaks that were present at least once in 
anyone of the case or control spectra. The algorithm was run for the 
same values of k as above. We selected five biomarkers (2484.0, 
7721.8, 7746.5, 7922.0, and 7934.6) that were identified by the 
algorithm more frequently than other peaks.  These peaks resulted 
in 92% prediction accuracy (91% sensitivity and 93% specificity) in 
detecting liver cancer patients from the non-cancer controls in the 
testing dataset. 

To examine the performance of the PSO-SVM algorithm further, 
we ran the algorithm assuming all 6107 m/z values as potential 
biomarkers. The algorithm was run for the same values of k as in 
the above analyses. Five biomarkers (2484.0, 7721.8, 7746.5, 
7922.0, and 8328.0) were found more frequently than other m/z 
values. These biomarkers yielded 92% prediction accuracy (90% 

sensitivity and 95% specificity) on the testing dataset. This exercise 
demonstrates the power of the algorithm in identifying relevant 
biomarkers despite the presence of large number of unlikely peaks. 

Finally, we selected five biomarkers (2484.0, 7721.8, 7746.5, 
7922.0, and 7934.6) that appeared frequently among the seven 
biomarkers found in the above three analyses. These biomarkers 
resulted in 92% prediction accuracy (91% sensitivity and 93% 
specificity). Figure 9 presents those five biomarkers. As shown in 
the figure, PSO-SVM selected not only obvious peaks but also 
subtle peaks, which appear insignificant. This demonstrates that the 
algorithm is capable of identifying peaks whose interaction with 
other peaks leads to more accurate classification. Table 1 
summarizes the results obtained in this study. 

Table 1: Five biomarkers selected from various variable sets 
Variable 

Set Biomarkers Selected Sensitivity Specificity 

6107 2484.0, 7721.8, 7746.5, 
7922.0, 8328.0 90 95 

2940 2484.0, 7721.8, 7746.5, 
7922.0, 7934.6 91 93 

437 7721.8, 7746.5, 
7922.0,7934.6, 8331.4 88 94 

7 2484.0, 7721.8, 7746.5, 
7922.0, 7934.6 91 93 

 

4. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a new computational method that 
combines particle swarm optimization with support vector machines 
(PSO-SVM) for biomarker discovery. We showed that PSO-SVM 
can select relevant m/z values from the complex mass spectra. The 
mass points selected by PSO-SVM provide improved prediction 
accuracy in blinded dataset compared to a predictor that uses all 
potential mass points or peaks. PSO-SVM has the capability to 
identify significant biomarkers despite the presence of large number 
of peaks with signal only slightly higher than noise. Selection of 
peaks with a reasonable signal-to-noise ratio can slightly improve 
the performance of the algorithm for biomarker selection.  
We believe that further improvement in biomarker discovery can be 
achieved by optimizing the low-level analysis and the PSO-SVM 
algorithm. Thus, our future work will focus on two major tasks. 
First, we will continue to investigate low-level analysis methods for 
smoothing, baseline correction, normalization, peak detection, and 
alignment. Second, we will optimize the parameters of the PSO-
SVM algorithm to improve its performance. The parameters include 
number of particles, number of iterations, values for the stochastic 
component of the PSO algorithm, appropriate kernels (e.g. linear, 
polynomial, radial basis, etc.) for SVM, number of biomarkers, and 
fitness measure to evaluate the performance of potential biomarkers. 

We also believe that the use of computational methods alone cannot 
provide a solution to the complex task of biomarker discovery from 
mass spectra involving thousands of proteins. In addition to 
advanced computational methods that are capable of extracting 
knowledge from complex and high dimensional data, this task 
requires careful study design, sample collection and preparation, 
improved mass spectrometry, well-designed low-level analyses, and 
inter-laboratory validation. 
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