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ABSTRACT
Cooperative co-evolution is often used to solve difficult opti-
mization problems by means of problem decomposition. Its
performance for such tasks can vary widely from good to dis-
appointing. One of the reasons for this is that attempts to
improve co-evolutionary performance using traditional EC
analysis techniques often fail to provide the necessary in-
sights into the dynamics of co-evolutionary systems, a key
factor affecting performance. In this paper we use two sim-
ple fitness landscapes to illustrate the importance of taking
a dynamical systems approach to analyzing co-evolutionary
algorithms in order to understand them better and to im-
prove their problem solving performance.

Categories and Subject Descriptors: I.2.m [Artificial
Intelligence]: Evolutionary Computation

General Terms: Algorithms.

Keywords: cooperative co-evolution, dynamics, landscapes

1. INTRODUCTION
The goal of our research is to better understand the be-

havior of co-evolutionary systems in order to improve their
applicability as a problem solving tool. To achieve this one
would like to reuse as much of the existing evolutionary
computation (EC) research as possible. However, it turns
out that many of the intuitions we have about how sim-
ple evolutionary algorithms (EAs) work and how we can
improve their performance do not transfer directly to co-
evolution. Consequently, there is a need to develop new
rules of thumb specific to co-evolutionary computation (Co-
EC). In this paper we give examples of heuristics concerning
improving the performance of regular EAs that do not apply
in the same way to cooperative co-evolutionary algorithms
(CCEAs). Additionally, we show how traditional EC anal-
ysis methods do not explain this lack of portability. We
then provide a dynamical systems perspective which sheds
light on the results as well as on specific ways of improving
co-evolutionary performance.
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2. BACKGROUND
The notion of cooperative co-evolution was introduced and

made popular by [6], although systems using similar models
of evolution pre-dated it, e.g. [3], [4]. Potter’s definition of
cooperative co-evolution [7] specifies the following character-
istics: 1) a species represents a subcomponent of a potential
solution; 2) complete solutions are obtained by assembling
representative members of each of the species present; and
3) credit assignment at the species level is defined in terms
of the fitness of the complete solutions in which the species
members participate. While this wording doesn’t explicitly
talk about populations, Potter’s implementation actually
keeps each species in a separate population (as opposed to
Holland’s model, which uses a single population). To further
make things concrete, Potter implements the third part of
the definition as follows: from one interaction consisting of
picking one subcomponent from each species and assembling
them into a complete solution, each subcomponent gets the
same payoff as the other subcomponents, namely a value
giving the quality of the complete solution.

Wiegand [9] extended this work in a number of direc-
tions, one of which was to show the relationship between
this notion of cooperative co-evolution and symmetric games
in evolutionary game theory [2].1 This provided a natu-
ral way to study cooperative co-evolution from a dynamical
systems perspective and provided many new insights.2 As
we gain more practical experience in using cooperative co-
evolutionary algorithms to solve difficult optimization prob-
lems, it is becoming increasingly clear how important this
dynamical systems perspective is for the practitioner faced
with making a variety of design decisions while building
an effective system. In this paper we illustrate this by
showing how traditional EC design heuristics fail to provide
the necessary insights to improve the performance of a co-
evolutionary system, and then showing how understanding
the co-evolutionary dynamics improves things dramatically.

3. EXPERIMENTAL SETUP
The general philosophy adopted here is to keep things as

simple as possible while still capturing the important phe-
nomena. We begin by defining several simple fitness land-
scapes that will serve as our experimental task domains.

1Wiegand [9] actually suggested replacing the phrase Co-
operative Co-evolutionary Algorithms with the more spe-
cific terminology of Multi-Population Symmetric Payoff Co-
evolutionary Algorithms.
2Dynamical systems theory proved useful in analyzing com-
petitive co-evolution as well[1]
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Figure 1: The oneRidge function.
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Figure 2: The twoRidges function.

The first function used for the experiments reported here
was the one pictured in figure 1. Its mathematical expression
is given by: oneRidgen(x, y) = n+2∗min(x, y)−max(x, y).
It has a single maximum of value 2 ∗ n at point (n, n) and
one ridge going diagonally from (0, 0) to (n, n) along which
the function value increases from n to the maximum 2 ∗ n.
The ridge separates two planar surfaces. The function has
two minima of value 0 at (0, n) and (n, 0). n = 8 was used
in all experiments.

The second function studied is much like the first, as can
be seen in figure 2. It has the same maximum and the
same two minima. The difference is that instead of a single
ridge it has two ridges symmetrical w.r.t. the diagonal. The
function is given by the following formula:

twoRidgesn(x, y) =

8<
:

n + n−3x+4y
2

if y < 4x−n
3

;
n + x+y

2
if y < 3x+n

4
;

n + n+4x−3y
2

otherwise.
From a traditional EC perspective, both landscapes are

similar with respect to properties such as continuity, modal-
ity, ruggedness, etc. But, as we shall see, these landscapes
capture important differences for co-evolutionary algorithms.

Our task is to find the maximum of these functions. If
we were to use a standard single-population EC approach,
we might start out with a non-overlapping generational EA
that uses a real-valued representation, binary tournament
selection, and a gaussian mutation operator with a fixed
sigma of 0.25 changing on average 75% of the genes. We
might then tune our EA by experimenting with different
population sizes (10, 100 and 1000) and with the inclusion
of elitism. Figures 3 and 4 illustrate the typical kinds of in-
sights obtained. In this case, increasing the population size
improves performance, and introducing elitism has similar
effects on performance without requiring larger population
sizes. In the best-of-generation plots each point on a curve
represents the mean of best fitness values for the correspond-
ing generation over 100 runs. Every other 10 generations the
95% confidence intervals for the mean are displayed.

The standard way of attacking such problems using co-
operative co-evolution is to decompose the problem “nat-
urally” by defining each argument of the function to be a
subcomponent (species) to be evolved in a separate popu-
lation [6]. For our simple example landscapes this results
in two populations, one evolving values for the x function
parameter and the other evolving values for the y param-
eter. The simplest method of evaluating an individual in
one population is to couple it with the current best mem-
ber of the other population and the value of the function f
at that point is assigned as fitness. This has been termed
single best collaboration strategy by [9] and is the equivalent
of what was termed in competitive co-evolution LEO (last
elite opponent) evaluation [8]. It is also a case of symmetric
payoff as presented by [9].

The two populations take turns in evolving. During each
generation only one population of the two is active. The
pseudo-code of the algorithm for one X generation is given
below for clarity (the one for Y can easily be inferred):

- evaluate the X population using the current ybest;
- select parents according to determined fitness values;
- breed;
- evaluate the new population using the same ybest;
- determine xbest according to these new fitnesses.

At the begining of each run, both populations are initialized
uniformly random across the domain. Co-evolution starts
by evaluating the members of the initial X generation in
conjunction with a random y individual. For the first Y
generation (second generation of the run) the xbest used is
the actual best x individual from the first (X) generation.

If we now use the same EA that we used for our sin-
gle population example for each of the populations in our
CCEA3 and we perform the same tuning experiments as be-
fore, we obtain a rather surprisingly different set of results
as illustrated in figures 5 and 6.4 In particular, notice that
on the oneRidge landscape increasing the population size
and introducing elitism resulted in significant decreases in
performance! Clearly getting an insight into how CCEAs
work is more complex than for standard EC. In particular,
one needs to take a closer look at the dynamics of CCEAs.

3This means having 10/100/1000 individuals per population
for a total of 20/200/2000 in the system.
4All generations, both X and Y , are represented on the
plots, as fitness represents the function value in a particular
point, and for optimization purposes we are interested in
finding the (x, y) pair with the highest function value.
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Figure 3: EA on oneRidge. Best-of-generation curves. Summary of 100 runs; means with 95% confidence
intervals. Left: population size effects without elitism. Right: elitism effects for population size 10.
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Figure 4: EA on twoRidges. Best-of-generation curves. Summary of 100 runs; means with 95% confidence
intervals. Left: population size effects without elitism. Right: elitism effects for population size 10.
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Figure 5: CCEA on oneRidge. Best-of-generation curves. Summary of 100 runs; means with 95% confidence
intervals. Left: population size effects without elitism. Right: elitism effects for population size 10.
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Figure 6: CCEA on twoRidges. Best-of-generation curves. Summary of 100 runs; means with 95% confidence
intervals. Left: population size effects without elitism. Right: elitism effects for population size 10.

4. CO-EVOLUTIONARY DYNAMICS
In the literature the term co-evolutionary dynamics gen-

erally refers to population-level dynamics. In this paper we
use the term to refer to dynamics of individuals rather than
population(s). Specifically, we analyze the time trajectories
of best-of-generation individuals across the search space.L
There are two reasons for this. First of all, we are trying
to analyze the performance of cooperative co-evolution for
optimization, where the main concern is with the best in-
dividuals the algorithm produces. Second, we wanted to
understand the behavior of basic CCEAs before moving to
more complex ones, and the simplest one out there (that we
picked for our initial experiments) uses a single best collab-
oration strategy for evaluation.

In addition to this, the fact that a basic CCEA alternates
populations suggests a line-search-like way of operation. It
therefore makes sense to plot the best individual of one gen-
eration (and therefore one population) by coupling it with
its collaborator during fitness assessment (here, the best in-
dividual of the other population at the previous generation).
We thus obtain one point of the search space per generation
and we connect these points chronologically. It is obvious
that the lines connecting them will only be vertical (when
connecting an X generation with the following Y genera-
tion) and horizontal (when connecting a Y generation with
the following X generation). An example of the result of
this procedure for a single run can be seen in figure 7. Each
inflection point on the trajectory represents one generation.
The starting point is marked by an empty geometrical figure
(in this case a circle) and the end point is marked by the
same figure but filled.

This visualization technique was first introduced in [5] to
analyze the dynamics of a competitive co-evolutionary EA.
That work also pointed out that the shape of such trajec-
tories is influenced by so-called best response curves of the
domain. We give an intuitive description of this notion here.
The evolution process in one generation within the corre-
sponding population is basically a one dimensional search.
The active population is trying to find the best collabora-
tor for the current best individual from the other (static)
population. The bestResponseX curve is simply obtained

by plotting for each y value its best x collaborator.5 The
bestResponseY curve can be similarly constructed. For ex-
ample, on the oneRidge function, one can easily see that
both the X and the Y best response curves are identical,
namely the diagonal (0, 0) − (n, n), while they are distinct
lines on the twoRidge function. We use this methodology
of combining trajectory plots and best response curves to
provide additional insight into how the parameter tuning
presented in the previous section affects problem solving per-
formance.

Figures 8, 9, 10 show the space dynamics of the best in-
dividuals on oneRidge for population sizes 10, 100 and re-
spectively 1000 and a non-elitist model. Each plot shows 2
or 3 sample runs from the 100 that were carried out for that
particular setting. We tried to pick typical samples, while
still showing the breadth of behaviors possible and keeping
the pictures readable. Each run has a different line style and
a different geometrical figure to denote the start and end of
the run. We also show the best response curve(s).

One can see that for population size 10 the best individ-
uals deviate widely from the best response curve, while for
increased sizes they get closer to the best response. In the
extreme case, for population size 1000, they end up on the
curve. This causes them to no longer move, as each point
on the diagonal is both an X best response and a Y best re-
sponse. In terms of game theory, one can think of each of
these points as a Nash equilibrium[2]. We now understand
why increasing population size decreases performance. In
order to reach the maximum point of the landscape, the
algorithm has to actually avoid being permanently caught
on the other points of the ridge. With a small population
size, during one generation the evolutionary process is un-
likely to come up with the exact best response. Even if
it would occasionally do that, the trajectory is unlikely to
end up in that point, unless the following generation (for
the other population) will provide the exact best response
as well. Therefore, the trajectory wanders around close to
the diagonal, but doesn’t get stuck on it. During this pro-
cess, it is likely to visit areas close to the optimum, but it

5In this paper we only study functions for which the best
response is always unique.
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can subsequently leave them. Regardless of the initial start-
ing conditions, most runs will do that. This explains the
up and down oscillations on the best-of-generation curve for
populations of size 10 in the left side of figure 5.

For population size 100, one generation of evolution ap-
proximates the best response much better. It is still unlikely
that two consecutive generations will produce the exact best
response, which would cause the trajectory to get stuck. In-
stead, the best individuals move slowly upwards, closely fol-
lowing the ridge. This steady but slow progress rate explains
the shape of the corresponding best-of-generation curve in
figure 5 (basically a constant slope line). Finally, for popu-
lation size 1000 both populations immediately generate the
best response and the trajectory stops almost in the same
point where it started, therefore the flatness of its best-of-
generation curve. Increasing the population size also in-
creases the dependency of the best at a particular point in
time on the initial starting point. Runs that start with low
fitness will not reach high fitness levels. This is why the
curve for size 1000 is positioned below the one for size 100
which is below the one for size 10. It is also due to this de-
pendency that variance for best-of-generation over all runs
increases with population size, and this is reflected in wider
confidence intervals for the mean.

What is the explanation for the opposite effects of increas-
ing population size on the twoRidges function? Figures 12,
13 and 14 hold the key. For this function the X best re-
sponse and the Y best response curves do not coincide any-
more. They are two different lines of equations y = 4x−n

3

and y = 3x+n
4

that intersect in the point of optimum fit-
ness. If the two populations were to provide the exact best
response each time (which actually happens for size 1000),
the trajectory would do the following: move vertically up
until intersecting the Y best response line, then move hori-
zontally to the right until intersecting the X best response
line, then up again, to the right again and so on. This kind
of motion makes the trajectory converge to the point of max-
imum fitness located at (n, n). This is exactly what we see
in figure 14. Additionally, it only takes a few generations
to reach the optimum, therefore, regardless of the starting
point, the best-of-run will approximate the optimum with
high precision every time. Going back to the left side of fig-
ure 6, we now understand why there is a near lack of variance
in the corresponding best-of-generation curve as it flattens
at optimum fitness. Smaller population sizes will provide
coarser approximations to the best responses, and therefore
the trajectory will deviate from the two best response lines.
This can slow its rate of reaching the optimum and make it
harder to precisely approximate it. It is exactly what we see
in figures 12 and 13 and they explain the curves in figure 6.

The effect of elitism is somewhat more subtle. Introducing
elitism prevents the algorithm from making a move to a
best individual that is worse than the previous best. In
general, increasing fitness is done by moving closer to the
best response curve of the current subcomponent. In the
case of the oneRidge function, the two curves are one and
the same line, so fitness of best individuals can be increased
only by getting closer and closer to it. As both populations
draw the trajectory towards the diagonal, it lands on a point
on this line quite fast and never leaves it, due to its Nash
equilibrium properties. This can be seen in figure 11 and
explains the corresponding flat best-of-generation curve in
the right side of figure 5. This behavior causes once again
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Figure 7: Best individuals’ dynamics. OneRidge.
Population size 10; no elitism. 1 run.
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Figure 8: Best individuals’ dynamics. OneRidge.
Population size 10; no elitism. 2 runs.

the best at a certain generation to strongly depend on the
random starting point. The result is a wider variance in
performance over multiple runs and a lower average than in
the non-elitist case, both observed in figure 5.

In the case of the twoRidges function, since the two best
response curves are different, elitism does not generate lack
of movement, as it draws the trajectory from one curve to
the other repeatedly, making it advance towards the opti-
mum (see figure 15). Since elitism doesn’t allow for decreas-
ing fitness, the trajectory doesn’t take steps back, which
makes it reach near-optimum values faster. This explains
the trends of the corresponding best-of-generation curves in
the right side of figure 6.6

6Elitism doesn’t produce more accurate best responses, so
the distribution of best-of-run fitnesses (investigated but
omited for brevity) was the same as in the non-elitist
case. For all other experiments, whenever best-of-generation
curves were visually distinct (i.e. most mean confidence in-
tervals disjunct), the medians of best-of-run distributions
over 100 runs were statistically significantly different with
95% confidence and the relationships between them were
consistent with the corresponding best-of-generation curves.

511



0 2 4 6 8

0
2

4
6

8

X

Y

bestResponseY(x)
bestResponseX(y)

Run 1: start−>stop>
Run 2: start−>stop>
Run 3: start−>stop>

Figure 9: Best individuals’ dynamics. OneRidge.
Population size 100; no elitism. 3 runs.
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Figure 10: Best individuals’ dynamics. OneRidge.
Population size 1000; no elitism. 3 runs.
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Figure 11: Best individuals’ dynamics. OneRidge.
Population size 10; elitism. 3 runs.
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Figure 12: Best individuals’ dynamics. TwoRidges.
Population size 10; no elitism. 2 runs.
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Figure 13: Best individuals’ dynamics. TwoRidges.
Population size 100; no elitism. 2 runs.
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Figure 14: Best individuals’ dynamics. TwoRidges.
Population size 1000; no elitism. 2 runs.
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Figure 15: Best individuals’ dynamics. TwoRidges.
Population size 10; elitism. 2 runs.

5. IMPROVING CCEA PERFORMANCE
The key insight from the previous section is the critical

role that the collaboration mechanism plays in determining
the dynamics of the co-evolutionary system which in turn
has a direct effect on problem solving performance. This
observation is not new (see [10]). What is new is the use of
a particular type of dynamical systems plots (namely ones
depicting space trajectories of best individuals) to provide
the insights necessary to make changes that improve overall
performance. We illustrate this idea briefly in this section.

An obvious direction one might take is to reduce the one-
dimensional line search characteristics of the single best col-
laboration strategy by requiring multiple collaborations in
order to assess the fitness of an individual. This, of course,
comes at the cost of an increase in the number of function
evaluations required per generation (so one can afford fewer
generations within the same time budget). The effectiveness
of such a change can be studied both from a performance
point of view and from a dynamical systems point of view.

For example, one might define the fitness of an individ-
ual to be the maximum of two function evaluations, one
involving the best individual from the other population and
a second using a randomly chosen one. Figure 16 shows the
effects of this change on the co-evolutionary dynamics for
both functions. Notice the significant difference in behavior
for both landscapes in comparison to the earlier plots (figure
8 for oneRidge and figure 12 for twoRidges). One character-
istic of this new collaboration scheme is that the trajectory
no longer has only horizontal and vertical lines, but oblique
ones as well, which tend to allow for larger jumps. While
these jumps can take steps back sometimes, their main effect
is that of pulling the whole trajectory into a smaller area of
high fitness in the upper right corner of the domain.

One might also explore the added value, if any, of in-
creasing the number of randomly chosen collaborators. As
an example, Figure 17 illustrates the effects of using 4 ran-
domly chosen collaborators. Notice the marginal effect this
has on the dynamics.

Figure 18 illustrates how these modest changes in dynam-
ics translate directly into modest performance improvements
of the CCEA system.

6. CONCLUSIONS AND FUTURE WORK
In this paper we used two simple fitness landscapes to

gain insights into the nature of cooperative co-evolution. We
showed that heuristics for improving performance of regular
EAs cannot be ported as-is to CCEAs. Additionally, we
noted that regular EC analysis methods (such as best-of-
generation curves) do not provide adequate insight as to why
that is the case. However, switching to dynamical systems
analysis methods immediately clarified the results. More-
over, we illustrated how to use these same methods with
good results to investigate co-evolution specific heuristics
for improving performance.

We believe that the key to efficiently using co-evolution
(whether cooperative or competitive) as a problem solving
tool is understanding its dynamical behavior. We are contin-
uing to conduct further research on this topic. Some natural
directions for extending the work presented here include:

- analyzing the frequency of interaction between popula-
tions (e.g. ranging from every evaluation to every couple of
generations);

- analyzing additional fitness landscapes to expose more
co-evolution behaviors;

- improving the dynamical systems visualization methods.
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Figure 16: Best individuals’ dynamics. Population size 10; no elitism; collaboration: best + 1 random. Left:
oneRidge. Right: twoRidges.
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Figure 17: Best individuals’ dynamics. Population size 10; no elitism; collaboration: best + 4 random. Left:
oneRidge. Right: twoRidges.
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Figure 18: Collaboration effects for best-of-generation. Population size 10; no elitism. Summary of 100 runs;
means with 95% confidence intervals. Left: oneRidge. Right: twoRidges.
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