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ABSTRACT

In this paper (full version: http://cs.nmu.eduffjern/RFS) we
extend the work of [3], which introduced a new imch
algorithm, resource-based fitness sharing (RFS),d an
demonstrated its efficacy ®hape nestingroblems. RFS was
applied to the nesting of regular, convex shapaméty, squares)
within a larger, regular, convex shape (specificath larger
square). Furthermore, the nested pieces were firetheir
orientation to be aligned with the axes of the talbs. We
extend that work by applying the RFS approach tsting of
irregular, non-convex polygons, within irregularpraconvex
polygon substrates, with full rotation of the pieceThe shaped
pieces can be placed anywhere on the substragayaangle of
rotation, and the task at hand is to maximize theler of such
placed pieces such that no pieces overlap with etieér or with
the substrate boundary. We find that a single [atjoun, evolved
under RFS, is able to discover a cooperative s&spscies” that
together “cover” most of the substrate, thus shgwihat the
successful results reported in [3] carry over te thore general
case of non-convex polygons with full rotation.
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1. SHAPE NESTING

The general problem at hand involves “nesting” t(ieaplacing)

shaped pieces on a finite substrate so as to maxithe number
of such pieces on the substrate. No overlaps arttenglaced
pieces are allowed, and all such pieces must lxeglso as to be
completely within the boundaries of the substrafape nesting
problems arise in a number of industries, such wenaotive

manufacturing, in which various shaped parts meststamped
from a sheet metal substrate [4].
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2. THE RFS ALGORITHM

Resource sharing seems to be nature’s way to ingpeeiation
(niching) during evolution, but it appears to inducomplex
dynamics [2]. Horn [3] proposessource-based fithess sharing
(RFS). RFS handles explicit resources while kegpthe
equilibrium calculations simple (linear), as iméss sharing [1].
The result is an algorithm with the natural fitreBource sharing,
and the speed and simplicity of fitness sharing.

The implementation of RFS is the same as used]in F®r the
two dimensional shape nesting problem, plecemenbf a piece
is made by specifying the piecefscation and its orientation
(rotation), as in Figure 1. Thus a chromosome ists1®f three
genes: Xx,\9.

placement = location + orientation

4
"y orientation:
i 9= 35

.
»

location: (X,y)

Figure 1. Shape nesting decision variables.

To focus our experiments on selection, we limitselres to one
discovery operator: mutation. In particular, wee uthe same
Gaussian mutation as in [3]. Each generation, wifirobability

pm = 0.01 (per allele)the x and y coordinates of an individual,
and its orientatiord, are independently adjusted by a pseudo-
random amount, normally distributed around a mdah o

Every individual of the current population is ewsied and
assigned a “fitness”. Pieces that extend beybadbundaries of
the substrate are given a fitness of 0. For akeoindividuals the
algorithm calculates ahared fitnessfor use in a standard
selection method. In RFS, the shared fithessdoh éndividual is
a function of the area of the individual piece (efgandfg in
Figure 2) and the extent to which the placed pmelaps with
other placed pieces (e.flg in Figure 2).
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fag (=Tfaa)

Figure 2. Defining terms for RFS.



We consider aspeciesto be a set of identical individuals (i.e.,
with identical placements). Thus unique chromosoreyO)
map one-to-one with unique species. There is cetmpmverlap
between any two members of the same species, tigite is less
than complete overlap between any two members féreint
species. The shared fitness, under RFS, for anember of a
speciesX is given by

f

Z Ny fxv

O species Y

fshx

The numeratorfy is the “objective” fitness of the individual
(species)X. The denominator is the “niche count” fdrin the
current population. The niche count is a sum oif-p&e
interactions between the individual (being evaldatnd each of
all the other individuals in the current populatiohe species
count ry is simply the number of members of speciein the
current population. For example, the RFS sharddeds
calculation for the two species A, B in Figure 2ulcbbe

fa fq

- . fsh,B = .
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3. EXPERIMENTS

We use a population size & = 6000, a fairly high mutation
probability p,, = 0.20 (per allele), binary tournament selection
with continuously updated sharing (see [5]), anddoan initial
populations (generation 0). In Figure 3 (top) we generation 1
of the first experiment. Many of the “infeasiblspecies from
generation 0 have been eliminated.

generation 1
all species
(species_count > 0)

generation 709
top species
(species_count > 22)

Figure 3. Experiment 1.
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By generation 709 (Figure 3, bottom), the algoriteeems to
have “settled” on a particular ensemble of 9 spe¢ibe figure
depicts only those species with species count gréiaan 22).

Figure 4 shows the result of Experiment 2. Hereghpulation
size was set tM = 500 and the mutation rate was= 0.30. The
figure shows all species with counts of at leastirflgeneration
4700. (It is not known if this is an optimal satut, as the
amount of unused substrate exceeds the areaxthggce.)

Figure 4. Experiment 2.

4. CONCLUSIONS

The RFS approach shows promise for general shapgnge
problems. The combination of resource-based fitna&saring
with GA selection seems able to promote competitonong
cooperative subsets of individuals within a singlepulation.
Other discovery operators (e.g., crossover) contbiwéh this
particular selection pressure might find even betwmoperative
ensembles more quickly and on harder problemsudiing real-
world shape-nesting problems from various industrie
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