
Shape Nesting by Coevolving Species
Jeffrey Horn

Northern Michigan University
1401 Presque Isle Avenue

001-906-227-1607

jhorn@nmu.edu

ABSTRACT
In this paper (full version: http://cs.nmu.edu/~jeffhorn/RFS) we
extend the work of [3], which introduced a new niching
algorithm, resource-based fitness sharing (RFS), and
demonstrated its efficacy on shape nesting problems. RFS was
applied to the nesting of regular, convex shapes (namely, squares)
within a larger, regular, convex shape (specifically, a larger
square). Furthermore, the nested pieces were fixed in their
orientation to be aligned with the axes of the substrate. We
extend that work by applying the RFS approach to nesting of
irregular, non-convex polygons, within irregular, non-convex
polygon substrates, with full rotation of the pieces. The shaped
pieces can be placed anywhere on the substrate, at any angle of
rotation, and the task at hand is to maximize the number of such
placed pieces such that no pieces overlap with each other or with
the substrate boundary. We find that a single population, evolved
under RFS, is able to discover a cooperative set of “species” that
together “cover” most of the substrate, thus showing that the
successful results reported in [3] carry over to the more general
case of non-convex polygons with full rotation.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: ARTIFICIAL
INTELLIGENCE: Problem Solving, Control Methods, and
Search – heuristic methods.

J.6 [Computer Applications]: Computer-aided Engineering –
computer-aided manufacturing (CAM).

General Terms
Algorithms, Design, Experimentation.

Keywords
Genetic algorithm, evolutionary computation, niching, shape
nesting, speciation, fitness sharing, coevolution, cooperative
coevolution, cooperative-competitive evolution, resource sharing.

1. SHAPE NESTING
The general problem at hand involves “nesting” (that is, placing)
shaped pieces on a finite substrate so as to maximize the number
of such pieces on the substrate. No overlaps among the placed
pieces are allowed, and all such pieces must be placed so as to be
completely within the boundaries of the substrate. Shape nesting
problems arise in a number of industries, such as automotive
manufacturing, in which various shaped parts must be stamped
from a sheet metal substrate [4].

2. THE RFS ALGORITHM
Resource sharing seems to be nature’s way to induce speciation
(niching) during evolution, but it appears to induce complex
dynamics [2]. Horn [3] proposed resource-based fitness sharing
(RFS). RFS handles explicit resources while keeping the
equilibrium calculations simple (linear), as in fitness sharing [1].
The result is an algorithm with the natural fit of resource sharing,
and the speed and simplicity of fitness sharing.

The implementation of RFS is the same as used in [3]. For the
two dimensional shape nesting problem, the placement of a piece
is made by specifying the piece’s location and its orientation
(rotation), as in Figure 1. Thus a chromosome consists of three
genes: x,y,

�
.

Figure 1. Shape nesting decision variables.

To focus our experiments on selection, we limit ourselves to one
discovery operator: mutation. In particular, we use the same
Gaussian mutation as in [3]. Each generation, with a probability
pm = 0.01 (per allele), the x and y coordinates of an individual,
and its orientation

�
, are independently adjusted by a pseudo-

random amount, normally distributed around a mean of 0.

Every individual of the current population is evaluated and
assigned a “fitness”. Pieces that extend beyond the boundaries of
the substrate are given a fitness of 0. For all other individuals the
algorithm calculates a shared fitness for use in a standard
selection method. In RFS, the shared fitness for each individual is
a function of the area of the individual piece (e.g., fA and fB in
Figure 2) and the extent to which the placed piece overlaps with
other placed pieces (e.g., fAB in Figure 2).

Figure 2. Defining terms for RFS.
Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

fA

fB

fAB (= fBA)

orientation: �
 = 35˚ location: (x,y)

placement = location + orientationplacement = location + orientationplacement = location + orientationplacement = location + orientation

557

We consider a species to be a set of identical individuals (i.e.,
with identical placements). Thus unique chromosomes (x,y,�)
map one-to-one with unique species. There is complete overlap
between any two members of the same species, while there is less
than complete overlap between any two members of different
species. The shared fitness, under RFS, for every member of a
species X is given by

∑
∀

=

 species Y

Sh,X
XYY

X

fn

f
 f

 .

The numerator fX is the “objective” fitness of the individual
(species) X. The denominator is the “niche count” for X in the
current population. The niche count is a sum of pair-wise
interactions between the individual (being evaluated) and each of
all the other individuals in the current population. The species
count nY is simply the number of members of species Y in the
current population. For example, the RFS shared fitness
calculation for the two species A, B in Figure 2 would be

.,
 AB B

B

AB A

A

fnfn

f
f

fnfn

f
f

AB

Sh,B

BA

Sh,A

+
=

+
=

3. EXPERIMENTS
We use a population size of M = 6000, a fairly high mutation
probability pm = 0.20 (per allele), binary tournament selection
with continuously updated sharing (see [5]), and random initial
populations (generation 0). In Figure 3 (top) we see generation 1
of the first experiment. Many of the “infeasible” species from
generation 0 have been eliminated.

Figure 3. Experiment 1.

By generation 709 (Figure 3, bottom), the algorithm seems to
have “settled” on a particular ensemble of 9 species (the figure
depicts only those species with species count greater than 22).

Figure 4 shows the result of Experiment 2. Here the population
size was set to M = 500 and the mutation rate was pm = 0.30. The
figure shows all species with counts of at least 19 in generation
4700. (It is not known if this is an optimal solution, as the
amount of unused substrate exceeds the area of a sixth piece.)

Figure 4. Experiment 2.

4. CONCLUSIONS
The RFS approach shows promise for general shape nesting
problems. The combination of resource-based fitness sharing
with GA selection seems able to promote competition among
cooperative subsets of individuals within a single population.
Other discovery operators (e.g., crossover) combined with this
particular selection pressure might find even better cooperative
ensembles more quickly and on harder problems, including real-
world shape-nesting problems from various industries.

5. REFERENCES
[1] Goldberg, D. E., and Richardson, J. Genetic algorithms with

sharing for multimodal function optimization. In
Proceedings of the 2nd international conference on genetic
algorithms (ICGA 2) (Cambridge, Massachusetts, USA, July
1987). Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1987, 41-49.

[2] Horn, J. The Nature of Niching: Genetic Algorithms and the
Evolution of Optimal, Cooperative Populations. Ph.D.
thesis, University of Illinois at Urbana-Champaign, (UMI
Dissertation Services, No. 9812622), 1997.

[3] Horn, J. Resource-based fitness sharing. In Parallel
problem solving from nature (PPSN VII) (Grenada, Spain,
September 7-11, 2002), Lecture Notes in Computer Science,
Vol. 2439. Springer, Berlin, 2002, 381-390.

[4] Kendall, G. Applying Meta-Heuristic Algorithms to the
Nesting Problem Utilising the No Fit Polygon. Ph.D. thesis,
University of Nottingham, 2000.

[5] Oei, C.K., Goldberg, D.E., and Chang, S. Tournament
Selection, Niching,, and the Preservation of Diversity.
IlliGAL Report No. 91011, Dept. of General Engineering,
University of Illinois at Urbana-Champaign, 1991.

generation 1 generation 1 generation 1 generation 1

all speciesall speciesall speciesall species

(species_count > 0)(species_count > 0)(species_count > 0)(species_count > 0)

generation 709generation 709generation 709generation 709

top speciestop speciestop speciestop species

(species_count > 22)(species_count > 22)(species_count > 22)(species_count > 22)

558

