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ABSTRACT  
In this paper (full version:  http://cs.nmu.edu/~jeffhorn/RFS) we 
extend the work of [3], which introduced a new niching 
algorithm, resource-based fitness sharing (RFS), and 
demonstrated its efficacy on shape nesting problems.   RFS was 
applied to the nesting of regular, convex shapes (namely, squares) 
within a larger, regular, convex shape (specifically, a larger 
square).  Furthermore, the nested pieces were fixed in their 
orientation to be aligned with the axes of the substrate.  We 
extend that work by applying the RFS approach to nesting of 
irregular, non-convex polygons, within irregular, non-convex 
polygon substrates, with full rotation of the pieces.  The shaped 
pieces can be placed anywhere on the substrate, at any angle of 
rotation, and the task at hand is to maximize the number of such 
placed pieces such that no pieces overlap with each other or with 
the substrate boundary.  We find that a single population, evolved 
under RFS, is able to discover a cooperative set of “species” that 
together “cover” most of the substrate, thus showing that the 
successful results reported in [3] carry over to the more general 
case of non-convex polygons with full rotation. 
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1. SHAPE NESTING 
The general problem at hand involves “nesting” (that is, placing) 
shaped pieces on a finite substrate so as to maximize the number 
of such pieces on the substrate.  No overlaps among the placed 
pieces are allowed, and all such pieces must be placed so as to be 
completely within the boundaries of the substrate.  Shape nesting 
problems arise in a number of industries, such as automotive 
manufacturing, in which various shaped parts must be stamped 
from a sheet metal substrate [4].  

2. THE RFS ALGORITHM 
Resource sharing seems to be nature’s way to induce speciation 
(niching) during evolution, but it appears to induce complex 
dynamics [2].  Horn [3] proposed resource-based fitness sharing 
(RFS).  RFS handles explicit resources while keeping the 
equilibrium calculations simple (linear), as in fitness sharing [1].  
The result is an algorithm with the natural fit of resource sharing, 
and the speed and simplicity of fitness sharing. 

The implementation of RFS is the same as used in [3].  For the 
two dimensional shape nesting problem, the placement of a piece 
is made by specifying the piece’s location and its orientation 
(rotation), as in Figure 1.  Thus a chromosome consists of three 
genes:  x,y,

�
.   

 

Figure 1.  Shape nesting decision variables. 

To focus our experiments on selection, we limit ourselves to one 
discovery operator:  mutation.  In particular, we use the same 
Gaussian mutation as in [3].  Each generation, with a probability 
pm = 0.01 (per allele), the x and y coordinates of an individual, 
and its orientation 

�
, are independently adjusted by a pseudo-

random amount, normally distributed around a mean of 0.   

Every individual of the current population is evaluated and 
assigned a “fitness”.   Pieces that extend beyond the boundaries of 
the substrate are given a fitness of 0.  For all other individuals the 
algorithm calculates a shared fitness for use in a standard 
selection method.  In RFS, the shared fitness for each individual is 
a function of the area of the individual piece (e.g., fA and fB in 
Figure 2) and the extent to which the placed piece overlaps with 
other placed pieces (e.g., fAB in Figure 2).   

 

Figure 2.  Defining terms for RFS. 
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We consider a species to be a set of identical individuals (i.e., 
with identical placements).  Thus unique chromosomes (x,y,� ) 
map one-to-one with unique species.  There is complete overlap 
between any two members of the same species, while there is less 
than complete overlap between any two members of different 
species.  The shared fitness, under RFS, for every member of a 
species X is given by           

∑
∀

=

 species Y

Sh,X
XYY

X

fn

f
    f

   
 . 

The numerator fX is the “objective” fitness of the individual 
(species) X.  The denominator is the “niche count” for X in the 
current population.  The niche count is a sum of pair-wise 
interactions between the individual (being evaluated) and each of 
all the other individuals in the current population.  The species 
count nY is simply the number of members of species Y in the 
current population.  For example, the RFS shared fitness 
calculation for the two species A, B in Figure 2 would be 
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3. EXPERIMENTS 
We use a population size of M = 6000, a fairly high mutation 
probability pm = 0.20 (per allele), binary tournament selection 
with continuously updated sharing (see [5]), and random initial 
populations (generation 0).  In Figure 3 (top) we see generation 1 
of the first experiment.  Many of the “infeasible” species from 
generation 0 have been eliminated. 

 

        

Figure 3.  Experiment 1. 

By generation 709 (Figure 3, bottom), the algorithm seems to 
have “settled” on a particular ensemble of 9 species (the figure 
depicts only those species with species count greater than 22). 

Figure 4 shows the result of Experiment 2.  Here the population 
size was set to M = 500 and the mutation rate was pm = 0.30.  The 
figure shows all species with counts of at least 19 in generation 
4700.  (It is not known if this is an optimal solution, as the 
amount of unused substrate exceeds the area of a sixth piece.) 

 
Figure 4.  Experiment 2. 

4. CONCLUSIONS 
The RFS approach shows promise for general shape nesting 
problems.  The combination of resource-based fitness sharing 
with GA selection seems able to promote competition among 
cooperative subsets of individuals within a single population.  
Other discovery operators (e.g., crossover) combined with this 
particular selection pressure might find even better cooperative 
ensembles more quickly and on harder problems, including real-
world shape-nesting problems from various industries. 
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