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ABSTRACT
While the evolution of biological networks can be modeled
sensefully as a series of mutation and selection, evolution of
other networks such as the social network in a city or the
network of streets in a country is not determined by selec-
tion since there is no alternative network with which these
singular networks have to compete. Nonetheless, these sin-
gular networks do evolve due to dynamic changes of vertices
and edges. In this article we present a formal, analyzable
framework for the evolution of singular networks. We show
that the careful design of adaptation rules can lead to the
emergence of network topologies with satisfying performance
in polynomial time while other adaptation rules yield ex-
ponential runtime. We further show by example how the
framework could be applied to some ad-hoc communication
scenarios.

Categories and Subject Descriptors
F2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures; G2.2 [Discrete Mathemat-
ics]: Graph Theory—Network Problems; I6.5 [Simulation
and Modeling]: Model Development

General Terms
Algorithms

Keywords
Evolutionary Algorithm, Self-Organization, Evolution of Net-
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1. INTRODUCTION
Theoretical work on the evolution of organisms gave rise

to the new field of evolutionary algorithms, developed in-
dependently by many scientists with different perspectives
[1, 4, 10]. The theory of evolution does not only give an
explanation to the evolution of organisms as a whole but
also of the evolution of subparts of organisms on a smaller
level: Within the organisms also different types of networks
have evolved, like protein-protein interaction networks [12],
or metabolic networks [5]. Their evolution is conducted by
mutations of the DNA and subsequent selection of the or-
ganisms with respect to their fitness. The evolution of these
networks is well modeled by the general framework of evo-
lutionary algorithms as described in [4, 9]. As such, the
evolution of these networks is distributed over many organ-
isms and no network as an individual survives forever. In-
stead, only the information for the generation of a successful
network is passed on from generation to generation. Since
networks are finite and can be displayed as a set of vertices
and an adjacency matrix where entry a[i][j] states that ver-
tices i and j are connected by an edge, the evolution of a
network towards an optimal topology can be viewed as a
combinatorial optimization process.

The networks we are interested in this article are different
from those evolved in biological organisms [7]: They are sin-
gular, i.e., at every timestep there is only one network, and
their global fitness is not evaluated by some entity from the
outside but by the vertices within the network. These can
then change parts of the network as a result of the evalua-
tion. Thus, the network’s topology evolves in a decentralized
and self-organized fashion but the network itself cannot be
replaced by another network as a whole. As examples for the
evolution of this kind of singular and self-organized networks
we want to discuss shortly the evolution of the network of
streets in a country and evolution of the global social net-
work in which all of us participate: Singular networks are
built between rational entities and these entities are able
to evaluate the network’s current performance with respect
to their own position in the network. In the case of social
networks a person might evaluate how well her position is
in the network by how much information she gets from her
social environment, while the network of streets in a coun-
try might be evaluated from each of the connected cities
with respect to the average time it takes to get to any other
city. The consequence of such an evaluation process is that
vertices unsatisfied with the network’s current topology will
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try to adapt the network to improve their situation, using
some adaptation rule. In our examples this might cause a
person to make new friends, or a city to build a new freeway.
Since most edges in real-world networks come with a cost,
the number of changes in each time step will not be too big
and every vertex may only remove or build edges it partic-
ipates in. Another important point to note is that in most
cases it will not be totally clear for the unsatisfied vertex
which edges should be changed to improve the performance.
This can be easily seen in the case of social networks where
a person is only able to survey a small part of the whole
network, implying that the change of edges is partially a
random process. In summary, singular networks evolve in a
series of evaluation processes from single vertices within the
network, making small changes of their local edge sets in a
random process defined by some adapation rule.

Despite this randomness and the decentralized evolution
conducted by single vertices within the network, many prop-
erties of evolving singular networks seem to be quite stable,
e.g., the so-called small-world effect in social networks [8,
13]. These observations made on real-world networks gave
the motivation to formulate an abstract framework for the
self-organized evolution of singular networks. The frame-
work provides a way to describe this kind of self-organized
evolution and to analyze different adaptation rules with re-
spect to the expected runtime until a network with a satis-
fying topology has emerged. This kind of analysis has also
been conducted for other evolutionary algorithms and helps
to decide when these kind of algorithms can be efficiently
applied [9, 14, 11].

On the other hand the framework provides a way to im-
plement well chosen instances of the framework on small
communication devices to evolve ad-hoc communication net-
works with satisfying topologies in a self-organized way.

In Sec. 2 we present the formal framework for the evolu-
tion of singular and self-organized networks. To show both,
the analyzability and applicability of the model, we will then
introduce two different instances of the framework and an-
alyze the behaviour of the evolving network under these in-
stances in Sec. 3, followed by an instance with locally re-
stricted evaluation functions that may be interesting for the
design of self-organized communication networks in Sec. 4.
We conclude the article with a discussion in Sec. 5.

2. THE MODEL
We give an evolutionary algorithm that describes the evo-

lution of networks with the following properties:

1. There is only one, singular network at any time step.

2. The vertices evaluate the network’s fitness relative to
their own position in the network.

3. No vertex knows the adjacency matrix of the whole
network.

4. The network evolves so slowly that at any time step
only one vertex is active.

5. All vertices decide independently which edges to build
and which to remove.

6. Each vertex behaves selfishly, i.e., it will built a new
edge to improve its own situation, not to improve the
situation of others. This implies that a vertex will

Choose vertex v
randomly from V

0 0

Start:
Initialize with
G  = (V, E )

Gt+1 =Gt+1=

t

t minf(G ,v) > f t minf(G ,v) <= f

(V, (E \ N (v)) U C (v))t t t(V, (E \ N (v)) U C (v))+ −

Figure 1: The framework for the evolution of S3 net-
works. The model begins with a graph G0 = (V, E0).
In each time step t one of the vertices evaluates the
fitness of Gt with respect to itself by calculating the
value of f(Gt, v). If this is higher than a given min-
imal value fmin, the vertex will change its current
neighborhood Nt(v) to a neighborhood given by the
changing rule C+(v). If the evaluation yields a value
smaller or equal than the minimal value fmin the
vertex changes its current neighborhood according
to C−(v).

only remove edges it participates in and can only insert
edges it participates in.

The evolution of networks with these properties will be called
evolution of singular, selfish and self-organized (S3) net-
works. In the following paragraph we will formalize the evo-
lution of these networks.

Let Gt = (V, Et) denote the graph at time step t where
V is a set of vertices and Et is a subset of V × V . All edges
e = (u, v) will be regarded as undirected, i.e., (u, v) ∈ Et

iff (v, u) ∈ Et. G denotes the set of all possible graphs
on the set of vertices V . In this first introduction of the
model, V is static. The discussion in Sec. 5 will deal with
possible extensions for dynamic vertex sets. The fitness of
any graph G ∈ G is given by f : G × V → R, i.e., the
performance of any graph is evaluated with respect to one
vertex of the graph. This leaves room for designing a ’selfish’
or ’egoistic’ evaluation function. As we will discuss later, the
formulation allows that the value of f(G, v) is the same for
all vertices but as we understand our model it is important
to use functions that in principal give different values for
different vertices. Further, a desired, minimal performance
is defined for every vertex v by fmin : V → R. This is the
general case. In the following cases we will use a constant
value fmin for all vertices.

Let Nt(v) denote the set of edges adjacent to v in time
step t: Nt(v) = {(u, v)|(u, v) ∈ Et}. E(v) denotes the
set of all possible edge sets E(v) on v × {V \v}: E(v) =
{E(v)|E(v) ⊆ v × V \v}. Further, we define two functions
that change the set of edges adjacent to v: C+ : V → E(v)
and C− : V → E(v) . These are also called the changing
rules of the algorithm. Note, that every vertex can only
change its own vertex set, i.e., it can only build and re-

564



move edges attached to itself. This rule - together with the
evaluation of the network relative to itself - also reflects the
selfishness of vertices.

The evolution of a network can now be modeled by the
following steps (s. Fig. 1):

1. Initialize G0 with (V, E0).

2. In every time step t choose one vertex v randomly. If
f(Gt, v) > fmin(v) then the vertex will built a new
set of adjacent edges Nt+1(v) as the result of C+(v)
otherwise the new set of adjacent edges is the result of
C−(v). The new graph Gt+1 is thus built as the old
edge set without the old neighborhood of v, combined
with the new neighborhood, i.e.,

Gt+1 = (V, (Et\Nt(v)) ∪Nt+1(v)) (1)

This model describes an iterative process of evaluating
and manipulating the network’s structure in a decentralized
way and thus we consider it to be a kind of evolutionary
algorithm [7]. Note that the function f(Gt, v) can be seen
as an objective function that is personalized to v and that it
can be combined with any rules C+(v) and C−(v). In Sec. 3
we will give two instances of this evolutionary algorithm for a
function f(Gt, v) that is related to the diameter of a network
and where the rules are designed to minimize the diamter.
This is only to give a demonstration how the framework can
be analyzed for some given personalized objective function
f(Gt, v) and rules C+(v), C−(v). However, as mentioned
above, the framework itself works with any combination of
objective function f(Gt, v) and any set of C+(v) and C−(v).

In the following section we will show that the exact design
of these rules can be important: Analyzing two sets of rules
for minimizing the diameter of a tree, we can show that
the expected runtime, i.e. the number of timesteps, until a
favoured network structure arises, can be either exponential
or polynomial with only minor changes in the rules.

3. TWO EXAMPLES
The following definitions are needed:

3.1 Definitions
A path Pt(u, v) from vertex u to v is a set of vertices

{u = v1, v2, . . . , vk = v} with (vi, vi+1) ∈ Et. The path
length is defined as the number of edges on the path. The
distance d(u, v) between two vertices u and v is defined as
the minimal path length of any path between vertex u and
v. dt(u, v) denotes the distance of two vertices u, v in graph
Gt. The degree degt(v) of vertex v in time step t is given as
the cardinality of Nt(v): degt(v) = |Nt(v)|. The eccentricity
ecc(G, v) of a vertex v in graph G is defined as the maximal
distance of v to any other vertex y:

ecc(G, v) = max
y∈V

d(v, y) (2)

The diameter D(G) of a graph G is defined as the maximal
eccentricity of any vertex v in the graph:

D(G) = max
v∈V

ecc(v) (3)

Seen from the perspective of the vertex, the eccentricity rep-
resents something like a ’personalized diameter’ of a graph.
The closeness centrality close(G, v) of a vertex v in graph G

is defined as the sum over all distances from v to any other
vertex y:

close(G, v) =
X
y∈V

d(v, y) (4)

The Wiener index W (G) of a graph G is defined as the
sum over the distances between all pairs of vertices u, v.
This equals the sum over all closeness centrality values:

W (G) =
X
v∈V

close(v) (5)

A graph G is called a connected tree if there is exactly
one path between any pair of vertices of u, v in the graph.
Equipped with these definitions we can now introduce two
instances of the evolutionary algorithm for S3 networks and
analyze their expected run-time behaviour.

3.2 Analysis of expected runtime
The goal of the following two algorithms is to provide the

vertices in a network with adaptation rules that enable them
to reduce the diameter of the network to a desired value.
Since every vertex has only a limited view on the network
it cannot know which edge will be the best to build. Both
algorithms choose one vertex randomly in every time step. If
its current eccentricity is greater than the desired diameter
it follows that the current network has a diameter greater
than the desired diameter. The vertex then tries to insert a
new edge to improve its own situation.

It is clear that different adaption rules might solve this
problem, even a totally random insertion and removal of
edges. Here, we will show that the design of efficient adap-
tion rules is essential for the efficiency of the algorithm in
constructing a network topology with the desired property.
For this, we analyze the expected runtime of two algorithms
given below, following the general idea of similar analyzes
in [9, 14, 11]. The expected runtime denotes in this case the
expected number of time steps t from G0 to a graph Gt such
that for all time steps t′ > t Gt′ = Gt, i.e. the evolutionary
process has come to a steady state.

We will now discuss the algorithms in more detail.

3.2.1 Algorithm 1
Let G0 be a connected tree on a set of vertices V . Fitness

of the tree is evaluated by the eccentricity of the chosen
vertex:

f(G, v) = ecc(v) (6)

fmin can be set to any value between n− 1, the maximal
possible eccentricity, and 2, the minimal possible diameter
for any tree with more than two vertices. In every time
step t, choose one vertex v from V at random and calculate
f(Gt, v). Adaptation rule C+(v) is defined as follows (s.
Fig. 2):

1. Choose one of the non-leaf vertices z in distance 2 to
v at random. Let w be the vertex that is connected to
both, v and z.

2. Generate a new graph G∗
t (v, z) by replacing edge (v, w)

by edge (v, z).

3. If ecc(G∗
t (v, z), v) ≤ ecc(Gt, v) then set Gt+1 = G∗

t (v, z),
else Gt+1 = Gt.
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Figure 2: In algorithm 1, one vertex v is chosen at
random from V in every time step. If its eccentric-
ity is greater than fmin it will try to connect to a
non-leaf vertex in distance 2 (black vertex). Let z
be the second neighbor chosen and w be the vertex
connecting both. Then edge (v, w) will be replaced
by edge (v, z) if the eccentricity of v does not increase
due to this process.

Note that we ignore second neighbors z with degree 1 (a
leave), since they will always increase the eccentricity of v if
the edge to z would be built.

This rule will maintain the graph’s connectedness and
thus, the graph will be a tree at any time. Furthermore,
v will only remove edges that it participates in and can only
initiate the building of edges it participates in. Thus, C+

manipulates the direct neighborhood of v. There will be no
change of the graph if f(Gt, v) ≤ fmin, i.e., C−(v) = Nt(v).

In the following we want to show that the above given
evolutionary algorithm will eventually build a tree with a
diameter smaller or equal to fmin, independent of the initial
tree. It is easy to see that a graph Gt with D(Gt) ≤ fmin will
not change any more, and thus the runtime of algorithm 1 is
defined as the number of time steps until such a tree is built.
First, we will show that the process can be described as a
Markov chain. We define the set S of states {s1, s2, . . . , sk}
as the set of connected trees on vertex set V . Since any
subset of graphs on a given set of vertices is finite, S is
also finite. Let every state si represent one connected tree
si = (V, Ei). State si is connected to sj if their edge sets Ei

and Ej obey the following relation:

∃ v, w, z ∈ V |Ej = (Ei ∪ (v, z))\(v, w), (7)

deg(z) > 1 and ecc(sj , v) ≤ ecc(si, v) (8)

The weight on this edge equals the probability that a tree
si in time step t will be changed into tree sj . This proba-
bility is equal to 1/n2(v), where n2(v) denotes the number
of non-leaf vertices w that are in distance 2 to v, also called
the non-leaf second neighbors of v. Since this number is only
depending on the structure of Ei, the transition probability
between two states is independent from how the network
has evolved and is thus constant in time. Note, that in the
Markov chain the edges are directed, i.e., there is a des-
ignated source and target vertex. We will denote directed
edges as [si, sj ]. Both edges, [si, sj ] and [sj , si], exist iff Ei

and Ej obey Equ. 7 and ecc((V, Ei), v) = ecc((V, Ej), v). All
states si with D(si) ≤ fmin will be denoted as final states.

We will first state that the network will eventually evolve
into a network with a diameter smaller than fmin.

Lemma 1. For t →∞, D(Gt) ≤ fmin.

Proof. If D(G0) ≤ fmin, then ∀t : D(Gt) = D(G0). Let
now D(G0) be greater than fmin. Then, there is at least
one vertex v with ecc(Go, v) > fmin. We will now show

a)

b)

z

vw

Figure 3: a) The graph has a diameter of 7, the cho-
sen vertex v has an eccentricity of 4. If v now chooses
second neighbor z and replaces edge (v, w) by (v, z),
its eccentricity will not change but the diameter of
the graph has actually increased to 8. b) All ver-
tices in black have an eccentricity of 3 but even if
fmin was to be 2, none can change the edge set if
strict improvement of eccentricity was required for
an edge replacement.

that there is always a path from state s0, representing G0,
to a tree Gt′ at time t′ with D(G′

t) ≤ fmin . Let z, z′ be
two vertices with maximal distance in Gt. Let P (z, z′) =
{z, z1, z2, . . . , z

′} be the path between z and z′. If now z is
being chosen it has an eccentricity greater than fmin, and if
itself chooses its second neighbor z2 then the eccentricity of z
will not increase. Thus, edge (z, z2) will replace edge (z, z1).
If in each time step only vertices with maximal eccentricity
are chosen, this process will eventually lead to a tree with a
diameter decreased by one and eventually to a tree with the
desired diameter. The probability for such a way through
the states is small but non-zero.

Since every tree having a diameter of at most fmin (final
state) will not be changed any more and there is always a
path with non-zero probability from every state si to some
final state, the system will eventually reach one of these
states and stay there.

Fig. 3 a) shows that the rule given above holds some prob-
lems: Due to the change of perspective on the evaluation of
the network in every step, it can easily happen that a step
in the ’right’ direction, i.e., to a tree with lower diameter,
is reverted in the following step by another vertex that can-
not ’see’ the improvement of the last step. This is the one
problem. Another problem arises if many vertices have to
move together in the same direction before the diameter of
the whole tree decreases. An example for such a situation is
given in Fig. 3 b): If fmin = 2 is required, this can only be
fulfilled if n−1 vertices are connected to one, central vertex,
i.e. a star evolves. In the example given in Fig. 3 this implies
that either of the three vertices of one side have to flip to the
other side. The inner vertices will never change their edge
set, and any outer vertex chosen will instantly flip sides be-
cause its only non-leaf second neighbor is the opposite inner
vertex. After the first timestep there will be four vertices
on the one side and two on the other. The only way to pro-
ceed to the star is that after this step one of the remaining
two vertices changes side, and after that the remaining last
vertex flips sides. Let x be the number of vertices on one
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Figure 4: In the network depicted above, vertex
v1 has been chosen at random, and afterwards it
chooses one of its second neighbors at random, in
this case z1. w1 is the neighbor of both. v1 will
replace edge (v1, w1) by (v1, z1) if |Tz1 | > |Tw1 |.

side and n− 2− x the number of vertices on the other side.
W.l.o.g. let x ≤ n−2−x. The probability that any vertex of
the minority flips sides is thus x/(n−2) and the probability
that one of the majority flips sides is 1− (x/(n− 2)). This
situation can be described as the famous ’urn of Ehrenfest’
model and we can use Ehrenfest’s analysis on the expected
number of steps until all vertices of one side have flipped
which results in 1

n−2
2n−2(1 + O(n− 2)) [2].

Theorem 1. There is a family of graphs such that with
algorithm 1 and fmin = 2, the expected runtime is bounded
by Ω( 1

n
2n).

Note that for fmin(v) = 2 any tree will evolve into this
situation sooner or later.

From this, it seems obvious that the changing rule C+(v)
is not constructed sensibly: Of course, backward steps could
be prevented by allowing only those steps that lead to a
strict improvement of the vertex’ eccentricity. But, as Fig. 3
b) shows this small adjustment will eventually lead to trees
in which none of the vertices can change anything despite
the fact that the tree still has a diameter that is higher than
desired. We will show next how the changing rule can be
adapted such that it is possible to improve the expected
runtime to O(n5).

3.2.2 Algorithm 2
Algorithm 2 does only differ in the formulation of C+(v)

from Algorithm 1:

1. Choose one of the vertices z in distance 2 to v at ran-
dom. Let w be the vertex that is connected to both, v
and z.

2. Generate a new graph G∗
t (v, z) by replacing edge (v, w)

by edge (v, z).

3. If close(G∗
t (v, z), v) < close(Gt, v) then set Gt+1 =

G∗
t (v, z), else Gt+1 = Gt.

As before, only vertices with an eccentricity higher than
fmin will be allowed to change the current network. How-
ever, the decision, whether a new edge will actually replace
one of the old edges is made by a comparison of the closeness
centrality in the possible new tree with the closeness central-
ity in the current tree. Note, that this time the new value
has to be strictly smaller than the value before. Nonethe-
less, the change in the formulation of C+(v) from algorithm

v2
w2 z2 z1 w1

v1

z2T
v1

T

w1
Tw2

T

v2T z1T

Figure 5: Vertices v1 and v2 are maximally distant
to each other, i.e., dt(v1, v2) = D(Gt). As sketched in
Fig. 4 the tree can be partitioned into three differ-
ent subtrees for each pair of vertices v1, z1 and v2, z2,
namely Tv1 , Tw1 , Tz1 and Tv2 , Tw2 , Tz2 .

1 to 2 is actually quite small: Recall, that the eccentricity of
a vertex v is the maximal distance of v to any other vertex
w while the closeness centrality is the sum over all distances
from v to any other vertex w. Thus, in the latter case, we
use much more information about the current tree but the
calculation of eccentricity and closeness centrality values in
a tree takes the same time, namely O(n), with a simple vari-
ant of a single-source shortest path algorithm [3]. We will
now prove the following theorem:

Theorem 2. In Algorithm 2, the expected runtime is
bounded by O(n5).

Proof. The proof is based on the following two lemmata.

Lemma 2. In every connected tree T with D(T ) > fmin

there is at least one vertex v with a second neighbor z such
that close(G∗

t (v, z)) < close(Gt, v)

Proof. Let Gt be a tree with D(Gt) > fmin. Let v1 and
v2 denote two vertices with distance dt(v1, v2) = D(Gt). It is
clear that these vertices have to be leaves, i.e., vertices with
only one edge. Let w1 and w2 be the respective neighbor ver-
tices of v1 and v2. The path P (v1, v2) between v1 and v2 will
contain w1 and w2: P (v1, v2) = {v1, w1, z1, . . . , z2, w2, v2}.
Since v1 and v2 are in distance D(Gt) of each other, all
vertices neighbored to w1 other than z1 have to be leaves,
otherwise v1 and v2 could not be in maximal distance within
the graph. Let now vertex v1 be chosen by the algorithm
and try to insert an edge to z1.

As can be seen in Fig. 4, the closeness centrality of vertex
v1 in G∗

t (v1, z1) is given by:

close(G∗
t (v1, z1), v1) = close(Gt, v1) + |Tw1 | − |Tz1 | (9)

where |TX | denotes the number of vertices contained in sub-
tree TX , as depicted in Fig. 4. Subtree TX denotes the sub-
tree containing vertex X that emerges if edges (v1, w1) and
(w1, z1) are removed from Gt. Equ. 9 states that the dis-
tance from v1 to vertices from Tw1 is increased by one, and
that the distance from v1 to vertices from Tz1 is decreased
by one in G∗

t (v1, z1). If this new closeness centrality value
is smaller than close(Gt, v1) then the new edge will be built
and the old edge will be removed from the network and the
case is proven. Let us now assume that the closeness cen-
trality value in G∗

t (v1, z1) is not smaller than the one in tree
Gt. It follows, that

|Tw1 | ≥ |Tz1 | (10)
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Figure 6: To test the runtime of algorithm 1 and
algorithm 2 in worst-case scenarios, we began with
chains of n vertices and fmin = 2, i.e., the network
evolves to a star. The number of time steps needed
by algorithm 1 are depicted as black boxes, algo-
rithm 2 is represented by grey boxes. It can be
clearly seen that algorithm 2 is not only much faster
but also that the deviation in runtime is much less
compared with algorithm 1. All points were sam-
pled over 35 instances.

We will now show that in this case any vertex v2 with
d(v1, v2) = D(Gt) would decrease its closeness centrality
value by replacing edge (v2, w2) with (v2, z2) where z2 is a
second neighbor of v2 on the path to v1 (see Fig. 5).

close(G∗
t (v2, z2), v2) = close(Gt, v2) + |Tw2 | − |Tz2 | (11)

As can be seen in Fig. 5, Tz2 can be expressed as follows:

|Tz2 | = |Tz1 | − (|Tw2 |+ |Tv2 |) + |Tw1 |+ |Tv1 | (12)

Inserting this in Equ. 11 and regarding that |Tv1 | = |Tv2 | =
1, yields:

close(G∗
t (v2, z2), v2) = close(Gt, v2)+2·|Tw2 |−(|Tw1 |+|Tz1 |)

(13)
With |Tw1 | ≥ |Tz1 | > |Tw2 | it follows that
close(G∗

t (v2, z2), v2) < close(Gt, v2).

We will now prove the following lemma regarding the non-
increasing Wiener index of the evolving trees:

Lemma 3. Whenever Gt+1 has emerged from Gt due to
an edge replacement, then W (Gt+1) < W (Gt).

Proof. Let Gt+1 be evolved from Gt by the replacement
of edge (v1, w1) with edge (v1, z1) according to algorithm
2. Let again denote Tv1 , Tw1 , Tz1 the subtrees as depicted
in Fig. 4. It is clear that the distance of vertices has only
changed for pairs of vertices x, y where x is either in Tw1

or Tz1 and y is in Tv1 . The distance of vertices from Tw1

to vertices in Tv1 (and vice versa) has increased by one, the
distance of vertices from Tz1 to vertices in Tv1 (and vice

versa) has decreased by one. Thus, the Wiener index of the
graph changes as follows

W (Gt+1) = 2 · (|Tw1 | − |Tz1 |) · |Tv1 |+
X
x∈V

close(Gt, x) (14)

Since edge (v1, w1) has been replaced by (v1, z1) it is clear
that |Tw1 | < |Tz1 | and the lemma proven.

Combining both lemmata now yields Theorem 2: The first
lemma states that there is at least one pair of vertices v, z
such that G∗

t (v, z) has a smaller closeness centrality for v.
The expected number of time steps until this pair is chosen is
bounded from above by O(n2). The maximal Wiener index
is bounded from above by O(n3) when the tree is arranged
as a chain. Since every edge replacement implies a decrease
of the Wiener index of at least 1, the expected runtime of
algorithm 2 is thus bounded from above by O(n5).

Fig. 6 shows a comparison of the runtimes of algorithm 1
and algorithm 2 for trees with different number of vertices.
The two instances of evolutionary algorithms for the evolu-
tion of networks given above serve very well to show how
a small change in the adaptation rule can make the differ-
ence between polynomial and exponential expected runtime.
Although there might be applications for the algorithms in-
troduced so far, they suffer from the need to flood the whole
network to evaluate the eccentricity or closeness centrality of
a vertex. In the next section we want to present an algorithm
that uses a local evaluation function and shows very robust
behaviour and interesting properties, but on the other hand
is not as easy to analyze as the other algorithms.

4. LOCALLY RESTRICTED EVALUATION
G0 is initialized as a k-next-neighborhood graph G, where

n vertices are placed in a metric space, e.g., Euclidian space,
and every vertex is connected to its k geometrically next
vertices.

In some scenarios, it might be required that every vertex
holds as few edges as possible, e.g. to reduce the number of
communications needed in a one-to-all broadcast, without
increasing the diameter too much. It seems natural that
triangles of the sort described above give a reasonable way to
reduce the number of edges in the graph with the following
algorithm.

4.1 Algorithm 3
Start with G0, a k-next-neighborhood graph in a metric

room. In every time step choose one vertex v at random.
The fitness f(G, v) is given by the number of triangles v
participates in and fmin is set to 0. C+(v) chooses one of
the triangles at random and removes one of the two edges
connected to v.

Note that this rule will keep a connected network con-
nected. It is especially appealing because it uses only infor-
mation of the direct neighborhood of v. Furthermore, many
of the operations could be conducted simultaneously with-
out fearing any inconsistent information on the network. On
the other hand, there are worst case scenarios in which the
diameter will increase from O(

√
n) to Θ(n). Our empirical

results have shown that this simple rule is nonetheless very
robust and shows only slight increases of the original diam-
eter. Furthermore, the number of time steps until nearly all
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Figure 7: The left network is a k-next neighborhood
graph with 1000 vertices, each connected to its ten
geometrically next vertices. On the right, the same
network is shown after the random removal of tri-
angles as described in algorithm 3. The diameter of
the network has increased from 24 to 30 while the
average distance between vertices has only slightly
increased from 10.4 to 12.5 .
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Figure 8: Empirical results for algorithm 3. All
values have been obtained from 35 samples, each
with n vertices, connected as a k-next-neighborhood
graph with k = 7. Algorithm 3 was stopped after
timestep t′ when in n subsequent steps no change of
the edge set had occured, the runtime is thus given
by t = t′ − n. The left diagram shows the runtime
(black boxes) of algorithm 3. For fixed k it is lin-
ear with n and shows small deviation. Gray boxes
indicate the number of edges after the process has
stopped. The deviation is so small that it cannot be
seen in this scaling. On average, the number of edges
of the beginning graph (n · k) has been reduced to a
third. The right diagram shows the diameter of the
initial graph (black boxes) and after the process has
stopped (grey boxes) and the corresponding average
path lengths (black and grey diamonds). The em-
pirical results show that the diameter and average
path length is only slightly increased by the proce-
dure despite the fact that approximately two thirds
of the edges have been removed.
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vertices have no more triangles they participate in is quite
low (cf. Fig. 7 and Fig. 8).

Some ad-hoc communication networks like sensor networks
are often modeled as unit-disk networks where every vertex
is connected to all other vertices within its unit-disk [6]. If
the devices are uniformly distributed this comes near to a
k-next-neighborhood graph. To guarantee connectedness, k
might be quite large at the beginning, but for most com-
munication protocols it is better to reduce the number of
edges in the graph subsequently. Here, the algorithm de-
picted above might be an interesting protocol to reduce the
number of edges without increasing the diameter too much.
Of course, the above given algorithm can easily be altered
to guarantee a certain diameter: the chosen vertex could ad-
ditionally evaluate its current eccentricity and then decide
whether it will remove an edge. Similarly, vertices with an
eccentricity that is too high could also begin to build new
triangels. Further research will have to show which kind of
rules are best applicable to which specific situation.

5. DISCUSSION
In this article we have presented a new class of evolution-

ary algorithms, suitable to model the evolution of those S3

networks persisting over time where the constituent vertices
change their edge set dynamically to adapt the network to
a given situation. Two instances of this class were ana-
lyzed with respect to the expected runtime and it could be
shown that the local adaptation rule can make the differ-
ence between an expected exponential or polynomial run-
time. Additionally, we have presented a possible practical
implementation of such an evolutionary algorithm for ad-
hoc communication networks and shown how stable it is for
a given k-next-neighborhood topology.

The evolutionary algorithms presented here differ in some
aspects from conventional evolutionary algorithms and they
have some things in common with them. From one perspec-
tive, the evolution of networks is just a change of their ad-
jacency matrix A(G) and since there is only one parent and
one offspring in each generation, these evolutionary algo-
rithms could be regarded as (1+1) evolutionary algorithms
((1 + 1)EA). But there are three main differences: The
first is that every vertex will only evaluate its own situa-
tion within the graph and will only try to improve its own
situation at any time step (Egoism).

Second, the algorithm does not aim for minimality regard-
ing the evaluation function f(G, v) but only that it is low
enough, i.e.,

P
v∈V f(G, v) ≤ n · fmin (Satisfying topol-

ogy). Regarding this might protect a network from becom-
ing overly adapted to a given environment.

A third aspect is that the evaluation of the network is de-
centralized which can reduce the number of messages to be
sent over the network in many cases (Dezentralized Eval-
uation). Note, that we define a calculation to be decentral if
no vertex needs to know the whole adjacency matrix for its
evaluation but only its own neighborhood. Thus, all func-
tions that can be evaluated with a memory space of O(n)
and some communication protocol are suitable. It seems
necessary to define the term decentral so wide because even a
test for connectedness in a network needs a flooding protocol
in which all vertices participate. Of course, the implemen-
tation of any rule will be the more interesting in a practical
sense the more ’local’ it is, i.e., the less communication has
to take place in order to evaluate it (s. Sec. 4).

Although the general framework given above allows to
construct normal (1+1)EAs, it seems most fruitful to us to
regard the basic properties mentioned above for modeling or
designing the evolution of self-organized networks.

In the framework given above the vertex set is static for
reasons of simplicity. Most real-world networks will show
both, a dynamic edge set and a dynamic vertex set, and
this can easily be implemented in the framework, either by
moves of nature that change the vertex set from outside or
by adaptation rules that allow the vertices to incorporate
new vertices into a network or to disconnect parts of the
network. Along with the analysis of other adaptation rules
and the incorporation of constraints, e.g., on the number of
edges a vertex can hold, this sketches the field where our
future research is directed to.
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