
The Blob Code is Competitive with Edge-Sets
in Genetic Algorithms for the Minimum
Routing Cost Spanning Tree Problem

Bryant A. Julstrom
Department of Computer Science

St. Cloud State University
St. Cloud, MN, 56301 USA

julstrom@stcloudstate.edu

ABSTRACT
Among the many codings of spanning trees for evolution-
ary search are those based on bijections between Prüfer
strings—strings of n−2 vertex labels—and spanning trees on
the labeled vertices. One of these bijections, called the Blob
Code, showed promise as an evolutionary coding, but EAs
that use it to represent spanning trees have not performed
well. Here, a genetic algorithm that represents spanning
trees via the Blob Code is faster than, and returns results
competitive with those of, a GA that encodes spanning trees
as edge-sets on Euclidean instances of the minimum rout-
ing cost spanning tree problem. On instances whose edge
weights have been chosen at random, the Blob-coded GA
maintains its time advantage, but its results are inferior to
those of the edge-set-coded GA, and both GAs are hard
pressed to keep up with a simple stochastic hill-climber on
all the test instances.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Analy-
sis—Optimization; G.2.1 [Mathematics of Computing]:
Discrete Mathematics—Combinatorics; I.2.6 [Computing
Methodologies]: Artificial Intelligence—Learning

General Terms
Algorithms

Keywords
Spanning trees, codings, Blob Code, edge-sets, routing cost

1. INTRODUCTION
Given a connected, weighted, undirected graph G, the

familiar algorithms of Prim and Kruskal identify minimum

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

spanning trees on G in times that are polynomial in the num-
ber n of G’s vertices. Searching the space of G’s spanning
trees is often NP-hard, however, when the trees are con-
strained, as by bounding their degrees or numbers of leaves,
or when the objective function is other than a tree’s weight,
as its diameter or number of leaves. In cases like these, we
turn to heuristics, including evolutionary algorithms.

Researchers have described a variety of codings of span-
ning trees for evolutionary search [20, pp.119–198]. Among
them, edge-sets [19] represent spanning trees directly as lists
of their edges. Other codings are based on Cayley’s formula,
which tells us that the number of spanning trees in a com-
plete graph on n vertices is nn−2 [4] [5, pp.103–4]. Prüfer [18]
described inverse one-to-one mappings between the strings
of length n − 2 over an alphabet of n vertex labels and the
spanning trees on n vertices. We call the strings Prüfer
strings; when they represent spanning trees via Prüfer’s
mapping, they are Prüfer numbers. Positional genetic oper-
ators like k-point crossover and position-by-position muta-
tion can be applied to Prüfer numbers, but this combination
does not support effective evolutionary search [8] [16] [21].

Among the many other bijections between Prüfer strings
and spanning trees, the Blob Code [17] appears to have good
qualities for evolutionary search using positional operators.
In particular, it exhibits much greater locality and heritabil-
ity under positional crossover and mutation than do strings
decoded with the Prüfer mapping [12]. However, EAs us-
ing the Blob Code have not performed as well as EAs using
other representations, in particular edge-sets, on problems
that search spaces of spanning trees [19].

The routing cost of a tree is the sum of the weights of
all the paths in the tree that connect distinct pairs of ver-
tices. Given a graph G, the minimum routing cost spanning
tree problem seeks a spanning tree on G of minimum rout-
ing cost. Two genetic algorithms for this problem encode
spanning trees as edge-sets and as Prüfer strings decoded
via the Blob Code. On Euclidean problem instances, the
Blob-coded GA is faster than the edge-set-coded GA, and
its results are competitive with those of the latter algorithm.
On instances whose edge weights have been chosen at ran-
dom, the Blob-coded GA maintains its time advantage, but
its results are not as good as those of the edge-set-coded
GA. On all the test instances, both GAs are less effective
than a simple stochastic hill-climber.

585

u

v

0.6 0.4 0.7

Figure 1: A spanning tree on ten vertices. The
routing cost of the path connecting u and v is
0.6 + 0.4 + 0.7 = 1.7.

The following sections describe the minimum routing cost
spanning tree problem; edge-sets; the Blob Code; genetic al-
gorithms that implement the two codings; the hill-climber;
and comparisons of the three algorithms on a variety of prob-
lem instances, both Euclidean and with randomly-chosen
weights.

2. THE PROBLEM
Let T be a spanning tree on a connected, weighted, undi-

rected graph G = (V, E). Any two vertices u, v ∈ V are
connected by a unique path in T ; the sum of the weights of
the path’s edges is the path’s routing cost cT (u, v). Figure 1
shows a spanning tree on ten vertices. The routing cost of
the path connecting vertices u and v is 0.6+0.4+0.7 = 1.7.
The routing cost or total path length C(T) of T is the sum
of the routing costs of the paths in T between all the distinct
pairs of vertices:

C(T) =
�

u,v∈V

cT (u, v).

The minimum routing cost spanning tree (MRCST) problem
seeks a spanning tree on G with minimum routing cost C(T).

Hu [10] first described the MRCST problem as a case of
the optimum communications spanning tree (OCST) prob-
lem, which specifies communications requirements r(u, v)
between each pair of vertices u, v ∈ V in addition to the
edge weights of the graph. Both problems are NP-hard [11].
Fischetti et al. [6] explored exact algorithms and Wu et al.
[24] described a polynomial-time approximation scheme for
the MRCST problem.

Several researchers have developed evolutionary algorithms
for the OCST problem, including Palmer and Kershenbaum
[16], Berry et al. [3], Li and Bouchebaba [15], Rothlauf et
al. [22], Gaube and Rothlauf [7], and Li [14]. Julstrom [13]
described a genetic algorithm, reprised in Sections 3 and 5
below, for the MRCST problem.

To determine the routing cost of a tree, it is not necessary
to make explicit every path within it. The contribution of
each edge to the routing cost, called the edge’s routing load,
is the edge’s weight times the number of paths on which it
lies, and that number of paths is the product of the num-
bers of vertices in the two components created by removing
the edge from the tree. The routing cost is the sum of the
routing loads over the tree’s edges, and a traversal of the
tree, starting at any vertex, can identify all the component
sizes and accumulate the edges’ routing loads. If adjacency
lists [1, pp.232–3] represent the tree, traversal requires time
that is linear in the number of edges, which is n − 1, thus
the time to find the routing cost is O(n).

Edge-set: {(1,6), (2,4), (3,4),
(4,7), (5,10), (6,0), (7,6),
(8,7), (9,4), (10,4), (11,8)}

Blob Code:
(6 4 4 7 10 6 7 4 4 8)

0

12
3

4

5

6

7

8
9

10 11

Figure 2: A spanning tree on twelve vertices and
two encodings of it: an edge-set and a Prüfer string
that represents the tree via the Blob Code.

3. THE EDGE-SET CODING
Edge-sets represent spanning trees directly as lists of their

edges [19]. Figure 2 shows a spanning tree on twelve vertices
and an edge-set that represents it. To find the routing cost
of the tree an edge-set represents, scan its edges and build
corresponding unordered adjacency lists. Then traverse the
tree, using the adjacency lists, to sum the edges’ routing
costs as Section 2 described. The time to build the lists is
linear in n, so the time for evaluation remains O(n).

A Kruskal-based crossover operator builds one offspring
edge-set from two parents. It copies the edges common to
the parents into the offspring, then chooses from the remain-
ing parental edges, discarding those that create cycles, until
the offspring represents a tree on all the vertices. An effi-
cient implementation of this operator begins by sorting the
parental edge-sets to facilitate finding their common edges
and uses a union-find partition [1, pp.180–9] to track the
connected components as it builds the offspring. The sort-
ing step determines the operator’s time complexity, which is
O(n log n).

Mutation scans a parent edge-set and, with a small prob-
ability pmu, replaces each edge. When an edge is replaced,
a union-find partition identifies the two components. Tarjan
[23] and, more recently Harfst and Reingold [9], have shown
that the time of a sequence of operations, appropriately im-
plemented, on a union-find partition grows as the product
of the number of operations and an inverse of Ackermann’s
function. Identifying the two components created when an
edge is removed requires n− 2 such operations, so the time
mutation requires is just more than linear in n.

4. THE BLOB CODE
The Blob Code [12] [17] is one of many one-to-one map-

pings between Prüfer strings—strings of length n − 2 over
an alphabet of n symbols—and spanning trees on n ver-
tices. In the Blob decoding algorithm, which makes explicit
the directed tree a string represents, the blob itself is a set
of vertices. Assuming that the vertices are numbered from
0 to n− 1, the blob initially contains all the vertices except
vertex 0. Each of the algorithm’s iterations removes a vertex
from the blob and records a directed edge in the spanning
tree. Ignoring the edges’ directions yields the undirected
spanning tree that the string represents.

The decoding algorithm uses two functions: successor(v)
returns the vertex w if (v → w) is among the edges currently
in the spanning tree, and path(v) returns TRUE if the di-
rected path from v towards vertex 0 intersects the blob,
FALSE if it does not. The following sketch summarizes the
Blob algorithm; in it, a1a2 . . . an−2 is a Prüfer string and T
is the directed spanning tree.

586

blob ← {1, 2, . . . , n− 1};
T ← {(blob→ 0)};
for i from 1 to n− 2 do

blob ← blob −{i};
if path(ai)

T ← T ∪ {(i→ ai)};
else

T ← T ∪ {(i→ successor(blob))};
T ← T − {(blob → successor(blob))};
T ← T ∪ {(blob → ai)};

blob ← (n− 1) in all edges;
return T ;

Figure 2 includes a Prüfer string—(6 4 4 7 10 6 7 4 4 8)—
that represents the spanning tree shown there via the Blob
Code. Consider the algorithm’s actions as it identifies the
tree’s edges.

Initially, the blob contains vertices 1 through 11, and the
tree consists of the single edge (blob → 0). The algorithm’s
first iteration removes vertex 1 from the blob. a1 = 6, and
the blob contains vertex 6, so that path(6) is TRUE and
the edge (1→ 6) is added to the tree.

The second iteration removes vertex 2 from the blob. a2 =
4, path(4) is TRUE, and the edge (2→ 4) is added to the
tree. This process continues through seven more iterations,
each of which increases the number of the tree’s edges by
one, and then the blob itself is replaced by vertex 11.

The Blob decoding algorithm’s worst-case time is O(n2),
but on average it appears to be much faster. An efficient
implementation of it represents the tree T by an array t[·]
in which t[u] = v represents the directed edge (u→ v) and
the value n − 1 represents the blob. Build adjacency lists
that represent the undirected tree by scanning this array,
then identify the tree’s routing cost by traversing the tree.

Every Prüfer string represents a unique tree via the Blob
Code, so traditional positional operators are appropriate. In
particular, the crossover operator is two-point crossover, and
the mutation operator is position-by-position mutation, in
which, with a small probability pmu, each symbol is replaced
with a random one from {0, 1, . . . , n − 1}. Both operators’
times are O(n).

5. TWO GENETIC ALGORITHMS
Two genetic algorithms for the MRCST problem encode

spanning trees as edge-sets (ES-GA) and as Prüfer strings
decoded with the Blob Code (B-GA), respectively. The GAs
are generational, and they initialize their populations with
random chromosomes of the appropriate types: ES-GA de-
codes random Prüfer strings to spanning trees, and the ini-
tial population of B-GA contains random Prüfer strings.

The GAs select chromosomes to reproduce in k-tourna-
ments, and they apply crossover and mutation independently;
one operator or the other builds each offspring. They im-
plement 1-elitism—the best chromosome in the current gen-
eration survives into the next—and they run through fixed
numbers of generations.

On a MRCST problem instance with n vertices, the GAs’
populations contain 40

√
n chromosomes and they run through

250
√

n − 1 generations, so that they evaluate 10000n chro-
mosomes, including those in their initial populations. Their
selection tournaments involve k = 2 contestants, and a tour-
nament’s winner is always selected to reproduce. In the
edge-set-coded GA, the probability that crossover generates

Table 1: Parameters of the two genetic algorithms
that depend on the problem size: population size
= 40

√
n, generations = 250

√
n− 1, and pmu = 2/n.

n PopSize Gens pmu

50 283 1767 0.040
100 400 2499 0.020
250 632 3952 0.008
300 693 4329 0.007

an offspring is 80%, and the probability of mutation is there-
fore 20%. In the Blob-Coded GA, these probabilities are
60% and 40%, respectively. In both GAs, mutation replaces
an edge or a symbol with probability 2/n.

6. A STOCHASTIC HILL-CLIMBER
Hill-climbing is a search heuristic that begins with a ran-

dom solution to the target problem instance and then incre-
mentally improves it. A hill-climber repeatedly generates
one or several neighboring solutions and moves to the best
of the current solution and the neighbors. Hill-climbers are
distinguished by how they generate and examine neighbors.
A simple stochastic hill-climber (SHC) repeatedly generates
one random neighbor and moves to it if it is better than the
current solution:

S ← a random solution;
while (not done)

S1 ← a random neighbor of S;
if (S1 is a better solution than S)

S ← S1;
report S;

In a SHC for the MRCST problem, solutions are spanning
trees represented by edge-sets, neighboring solutions differ
in one edge, and a solution S1 is better than another S if it
has smaller routing cost. The hill-climber begins with a ran-
dom spanning tree and runs through 10000n iterations, so
that it performs as many evaluations as do the two genetic
algorithms. If the hill-climber reaches a local minimum, it
stays there, as no neighbor can improve on the current so-
lution and the algorithm does not start over.

7. COMPARISONS
The edge-set-coded GA, the Blob-coded GA, and the sto-

chastic hill-climber were compared on 35 instances of the
MRCST problem. Twenty-one of these instances are Eu-
clidean, seven each of n = 50, 100, and 250 vertices. They
are listed in Beasley’s OR-Library1 [2] as instances of the
Euclidean Steiner problem. Each consists of n points in
the unit square; we treat the points as vertices of complete
graphs whose edge weights are the floating-point distances
between the points.

The library lists fifteen instances of each size (and others);
we use the first seven of each group. The remaining four-
teen instances, seven each of n = 100 and 300 vertices, are
complete graphs with edge weights chosen at random on the
interval [0.01, 0.99]. Table 1 shows the values of the GAs’
parameters that depend on the problem size.

1http://people.brunel.ac.uk/˜mastjjb/jeb/info.html

587

Table 2: Results of the trials of the two genetic algorithms and the hill-climber on the twenty-one Euclidean
(EUC) and fourteen random-weight (RAN) MRCST problem instances. For each set of 30 trials, the table
lists the routing cost of the best tree found and the mean and standard deviation of the trials’ 30 routing
costs. The smaller best and mean values for ES-GA and B-GA are underlined. The smallest best and mean
values for all three algorithms are bold.

Type Edge-Set-Coded GA Blob-Coded GA Stochastic Hill-Climber
n Inst Best Mean SD Best Mean SD Best Mean SD

EUC 1 984.8 998.1 17.1 987.6 1008.1 15.6 985.1 1003.5 23.9
50 2 901.4 907.8 6.7 902.3 912.2 12.5 902.0 912.6 13.3

3 888.3 913.1 21.8 889.9 935.5 31.7 888.3 908.7 18.4
4 778.2 793.8 18.8 777.1 797.3 17.4 776.9 792.5 18.5
5 847.9 858.3 15.1 848.1 865.5 20.4 847.9 860.8 30.2
6 818.4 825.5 6.1 819.3 843.3 34.4 818.1 829.0 22.7
7 865.6 881.5 14.8 865.9 889.1 16.6 865.9 886.3 16.7

EUC 1 3538.4 3585.5 56.9 3525.5 3592.8 65.0 3513.2 3553.5 47.1
100 2 3315.2 3400.2 48.5 3342.7 3407.3 46.3 3310.6 3359.7 52.8

3 3576.0 3641.8 56.7 3573.9 3665.6 76.1 3566.9 3610.7 38.4
4 3464.5 3541.3 57.0 3468.1 3551.2 57.6 3458.4 3504.0 39.9
5 3652.8 3764.3 83.7 3641.9 3737.8 63.0 3639.9 3707.6 62.9
6 3455.0 3487.1 19.9 3443.3 3501.3 37.5 3436.8 3461.3 18.8
7 3730.1 3783.5 61.2 3733.8 3819.5 76.2 3711.6 3741.8 29.0

EUC 1 22545.7 23225.3 556.1 22543.0 23013.6 306.9 22177.2 22568.3 359.6
250 2 23286.6 24310.7 590.7 23149.1 23834.0 563.1 22961.9 23433.1 464.9

3 22394.7 23094.2 519.7 22237.0 22821.4 420.6 22055.7 22473.7 310.7
4 23725.8 24824.2 743.9 23837.3 24647.0 607.1 23598.3 23903.2 293.8
5 22604.0 23352.8 455.0 22739.4 23264.8 306.3 22458.1 22880.5 256.3
6 22662.0 23326.6 448.8 22507.4 23102.6 407.4 22334.3 22559.3 171.1
7 23390.0 23853.7 538.7 23238.2 23781.2 328.5 23039.9 23226.9 190.5

RAN 1 598.5 628.0 33.8 625.8 724.4 86.9 597.9 609.8 18.4
100 2 586.0 640.7 37.1 623.0 730.5 53.2 586.0 601.6 26.6

3 607.7 668.9 49.5 678.2 756.5 48.1 607.0 637.3 55.8
4 607.3 636.8 20.2 628.3 715.9 66.3 598.4 610.9 16.9
5 628.4 668.4 34.9 641.7 757.1 74.8 624.4 643.1 19.1
6 615.6 655.1 30.2 639.1 732.8 54.9 615.5 615.5 0.0
7 514.9 539.0 24.7 531.3 646.8 66.4 514.7 514.8 0.1

RAN 1 4926.3 5444.7 316.9 5361.7 6048.2 618.6 4131.1 4259.8 119.4
300 2 4957.5 5488.0 314.2 5236.3 6017.8 413.5 4040.7 4237.6 180.7

3 5013.1 5452.4 300.8 5093.5 5917.3 396.3 4134.8 4259.5 87.3
4 5012.4 5773.5 378.4 5320.0 6135.4 472.9 4229.3 4397.1 163.8
5 4622.4 5433.1 362.7 5118.2 6010.7 423.7 3951.9 4132.3 177.4
6 5259.9 5641.2 222.3 5408.8 6083.7 360.4 4314.4 4517.6 80.2
7 4868.3 5468.5 342.1 5342.6 599.02 442.9 4093.9 4268.5 144.9

All tests were performed on a Pentium 4 processor with
256 megabytes of memory, running at 2.53 GHz under Red
Hat Linux 9.0.

The three algorithms were each run 30 independent times
on each instance. Tables 2 and 3 summarize the results of
these trials. For each algorithm on each instance, Table 2
lists the smallest routing cost found and the mean and stan-
dard deviation of the 30 routing costs. In the comparison
of the edge-set-coded GA ES-GA and the Blob-coded GA
B-GA, the better smallest and mean values are underlined.
In the comparison of all three algorithms, the best smallest
and mean values are bold. For each algorithm on each kind
and size of instance, Table 3 lists typical wall-clock times in
seconds that they required.

Consider first the edge-set-coded GA and the Blob-coded
GA on the Euclidean instances. On the smallest instances,

ES-GA almost always identifies trees of smaller routing cost,
both best and mean. On the instances with 100 vertices, the
two algorithms’ performances are similar. B-GA finds the
better best tree more often, the better mean routing cost
less often, than does ES-GA. On the instances with n=250
vertices, B-GA is almost always better, finding the better
best tree on five instances and the better mean routing cost
on every instance.

On the random-weight instances, the Blob-coded GA’s
performance is consistently worse than that of the edge-set-
coded GA. On all these instances, ES-GA returns better best
and mean values than does B-GA, and the differences are
large. The Blob-coded GA’s performance on these instances
is poor.

Table 3 shows that B-GA is consistently faster than ES-
GA. On all the test instances, its time is about 40% of that

588

Table 3: Typical wall-clock times in seconds that
each algorithm required on each size of each kind of
MRCST problem instance.

Type n ES-GA B-GA SHC
EUC 50 21.2 9.2 9.6
EUC 100 91.3 36.6 40.0
EUC 250 618.2 231.1 258.4
RAN 100 92.6 37.4 40.1
RAN 300 905.5 351.7 377.8

of ES-GA, and this advantage increases slightly as the in-
stances get larger.

These are the project’s main results: On Euclidean in-
stances of the MRCST problem, a genetic algorithm that
encodes trees as Prüfer strings decoded with the Blob Code
returns results competitive with those of a GA that encodes
candidate trees as edge-sets. The Blob-coded GA’s advan-
tage over the edge-set-coded GA becomes more consistent
as the instances grow larger. On all the instances, the Blob-
coded GA requires only about 40% as much time as does
the edge-set-coded GA.

When all three algorithms are compared, the hill-climber
consistently wins. On the smallest Euclidean instances, ES-
GA does best, then SHC, then B-GA, but the differences
are small. On the remaining instances, SHC is always best,
often by a large margin, though B-GA is always slightly
faster than SHC.

The overall effectiveness of the hill-climber is probably
due, as suggested in [13], to the fact that it conserves ev-
ery improvement it finds in its one tree. In the GAs, good
partial solutions must propagate through the populations to
encounter each other. Further, the GAs evaluate and record
offspring that may not encode improved trees and that may
not participate in reproduction, in which case the informa-
tion they contain is lost.

The fact that the hill-climber climbs effectively suggests
that the landscape it searches, though not without local min-
ima, is relatively smooth. This in turn suggests that the
genetic algorithms, particularly ES-GA, whose landscape is
similar to SHC’s, would eventually catch up, and their popu-
lations of solutions provide a chance to escape local minima.

Figure 3 supports this observation. It shows the three
algorithms’ average performances on the first Euclidean in-
stance with 250 vertices. The hill-climber identifies good so-
lutions quickly, but the two GAs are still identifying better
solutions when they terminate. The number of evaluations
allowed the algorithms appears ample for SHC but, partic-
ularly on the larger instances, too small for the GAs to do
all they can.

8. CONCLUSION
The strings of length n− 2 over an alphabet of n symbols

can be placed in one-to-one correspondence with the span-
ning trees on n vertices via a large number of mappings.
One of these, the Blob Code, has shown promise as a rep-
resentation of spanning trees for evolutionary search, but
evolutionary algorithms using it have not performed as well
as EAs that encode spanning trees in other ways, such as
edge-sets. Here, a genetic algorithm that represents span-

ning trees as Prüfer strings decoded with the Blob Code
competes effectively with another that uses edge-sets on
Euclidean instances of the minimum routing cost spanning
tree problem, though it performs poorly on instances with
randomly-chosen edge weights, and both algorithms cannot
keep up with a simple stochastic hill-climber. On all the
test instances, the Blob-coded GA requires less than half
the time of the edge-set-coded GA.

This inquiry raises additional questions and possibilities.
The hill-climber’s success relative to both genetic algorithms
suggests that an EA augmented with local search—or par-
allel hill-climbers augmented with crossover—might be ef-
fective on the minimum routing cost spanning tree problem.
Operators that incorporate domain knowledge, say by favor-
ing edges of lower weight, might improve the performance
of the hill-climber and the edge-set-coded GA.

It is not clear why the Blob-coded GA is competitive on
the Euclidean instances of the MRCST problem but not on
the random instances. Apparently the operators the GA
applies to Prüfer strings, the Blob Code mapping, and the
structure of the problem instances interact beneficially when
the instances are Euclidean and not when their edge weights
are chosen randomly, but the nature of that interaction re-
mains a mystery. More generally, there are likely other span-
ning tree problems on which Blob-coded EAs might be ef-
fective, as well as other mappings from Prüfer strings to
spanning trees that better support evolutionary search of
spaces of spanning trees.

9. REFERENCES
[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D.

Ullman. Data Structures and Algorithms.
Addison-Wesley, Reading, MA, 1983.

[2] J. E. Beasley. OR-library: Distributing test problems
by electronic mail. Journal of the Operational

Research Society, 41:1069–1072, 1990.

[3] L. T. M. Berry, B. A. Murtagh, S. J. Sugden, and
G. B. McMahon. Application of a genetic-based
algorithm for optimal design of tree-structured
communication networks. In Proceedings of the

Regional International Teletraffic Conference, pages
361–369, Pretoria, South Africa, 1995.

[4] A. Cayley. A theorem on trees. Quarterly Journal of

Mathematics, 23:376–378, 1889.

[5] Shimon Even. Algorithmic Combinatorics. The
Macmillan Company, New York, 1973.

[6] Matteo Fischetti, Giuseppe Lancia, and Paolo
Serafini. Exact algorithms for minimum routing cost
trees. Networks, 39(1):161–173, 2002.

[7] Thomas Gaube and Franz Rothlauf. The link and
node biased encoding revisited: Bias and adjustment
of parameters. Technical Report 2001011, Illinois
Genetic Algorithms Laboratory, University of Illinois
at Urbana-Champaign, 2001.

[8] Jens Gottlieb, Bryant A. Julstrom, Günther R. Raidl,
and Franz Rothlauf. Prüfer numbers: A poor
representation of spanning trees for evolutionary
search. In L. Spector et al., editors, Proceedings of the

Genetic and Evolutionary Computation Conference,

GECCO–2001, pages 343–350, San Francisco, CA,
2001. Morgan Kaufmann. July 7–11, San Francisco,
CA.

589

0 500 1000 1500 2000 2500
Thousands of Evaluations

22000

24500

27000

29500

32000

Stochastic
hill-climber

Blob-coded
GA

Edge-set-
coded GA

Figure 3: Average performances of the three algorithms on the first Euclidean MRCST instance with n =
250 points.

[9] Gregory C. Harfst and Edward M. Reingold. A
potential-based amortized analysis of the union-find
data structure. SIGACT News, 31(3):86–95, 2000.

[10] T. C. Hu. Optimum communication spanning trees.
SIAM Journal on Computing, 3(3):188–195, 1974.

[11] D. S. Johnson, J. K. Lenstra, and A. H. G. Ronooy
Kan. The complexity of the network design problem.
Networks, 8:279–285, 1978.

[12] Bryant A. Julstrom. The Blob Code: A better string
coding of spanning trees for evolutionary search. In
Annie S. Wu, editor, 2001 Genetic and Evolutionary

Computation Conference Workshop Program, pages
256–261, San Francisco, CA, 2001. July 7.

[13] Bryant A. Julstrom. A genetic algorithm and two
hill-climbers for the minimum routing cost spanning
tree problem. In H. R. Arabnia and Youngsong Mun,
editors, Proceedings of the International Conference

on Artificial Intelligence, volume III, pages 934–940.
CSREA Press, 2002.

[14] Yu Li. An effective implementation of a direct
spanning tree representation in GAs. In Egbert J. W.
Boers et al., editors, Proceedings of EvoWorkshops

2001, pages 11–19, Berlin, 2001. Springer-Verlag.

[15] Yu Li and Youcef Bouchebaba. A new genetic
algorithm for the optimal communications spanning
tree problem. In Cyril Fonlupt et al., editors, Artificial

Evolution: 4th European Conference, number 1829 in
Lecture Notes in Computer Science, pages 162–173,
Berlin, 1999. Springer-Verlag.

[16] Charles C. Palmer and Aaron Kershenbaum.
Representing trees in genetic algorithms. In
Proceedings of the First IEEE Conference on

Evolutionary Computation, volume 1, pages 379–384,
June 1994.

[17] Sally Picciotto. How to encode a tree. PhD thesis,
University of California, San Diego, 1999.

[18] H. Prüfer. Neuer beweis eines satzes über
permutationen. Archives of Mathematical Physics,
27:142–144, 1918.

[19] Günther R. Raidl and Bryant A. Julstrom. Edge-sets:
An effective evolutionary coding of spanning trees.
IEEE Transactions on Evolutionary Computation,
7(3):225–239, 2003.

[20] Franz Rothlauf. Representations for Genetic and

Evolutionary Algorithms, volume 104 of Studies in

Fuzziness and Soft Computing. Physica-Verlag,
Heidelberg, 2002.

[21] Franz Rothlauf and David Goldberg. Tree network
design with genetic algorithms – An investigation in
the locality of the Pruefernumber encoding. In Scott
Brave and Annie S. Wu, editors, Late Breaking Papers

at the 1999 Genetic and Evolutionary Computation

Conference, pages 238–243, 1999.

[22] Franz Rothlauf, David E. Goldberg, and Armin
Heinzl. Network random keys – a tree network
representation scheme for genetic and evolutionary
algorithms. Technical Report No. 8/2000, University
of Bayreuth, Germany, 2000.

[23] R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. Journal of the ACM, 22:215–225,
1975.

[24] Bang Ye Wu, Guiseppe Lancia, Vineet Bafna,
Kun-Mao Chao, R. Ravi, and Chuan Yi Tang. A
polynomial time approximation scheme for minimum
routing cost spanning trees. SIAM Journal on

Computing, 29(3):761–768, 1999.

590

