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ABSTRACT
Augmenting an evolutionary algorithm with knowledge of its
target problem can yield a more effective algorithm, as this
presentation illustrates. The Quadratic Knapsack Problem
extends the familiar Knapsack Problem by assigning values
not only to individual objects but also to pairs of objects. In
these problems, an object’s value density is the sum of the
values associated with it divided by its weight. Two greedy
heuristics for the quadratic problem examine objects for in-
clusion in the knapsack in descending order of their value
densities. Two genetic algorithms encode candidate selec-
tions of objects as binary strings and generate only strings
whose selections of objects have total weight no more than
the knapsack’s capacity. One GA is naive; its operators ap-
ply no information about the values associated with objects.
The second extends the naive GA with greedy techniques
from the non-evolutionary heuristics. Its operators examine
objects for inclusion in the knapsack in orders determined
by tournaments based on objects’ value densities. All four
algorithms are tested on twenty problem instances whose op-
timum knapsack values are known. The greedy heuristics do
well, as does the naive GA, but the greedy GA exhibits the
best performance. In repeated trials on the test instances,
it identifies optimum solutions more than nine times out of
every ten.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Analy-
sis—Optimization; G.2.1 [Mathematics of Computing]:
Discrete Mathematics—Combinatorics; I.2.6 [Computing
Methodologies]: Artificial Intelligence—Learning

General Terms
Algorithms

Keywords
Quadratic Knapsack Problem, genetic algorithms, greedy
operators
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1. INTRODUCTION
Augmenting an evolutionary algorithm with knowledge

of its target problem often yields an algorithm that identi-
fies better solutions. We illustrate this general observation
with greedy, genetic, and greedy genetic algorithms for the
Quadratic Knapsack Problem. This problem extends the
familiar Knapsack Problem by assigning values not only to
individual objects that might go in the knapsack but also
to pairs of objects. When the knapsack holds both objects
of a pair, the pair’s value is added to the knapsack’s to-
tal. Section 2 below describes the problem in more detail,
Section 3 describes two related problems, and Section 4 de-
scribes twenty test instances for which optimum knapsack
values are known.

In the Quadratic Knapsack Problem, an object’s value
density is the sum of all the values associated with it di-
vided by its weight. Two greedy heuristics, which Section 5
describes, try to fit objects into the knapsack in decreasing
order of their value densities. One computes each object’s
value density with respect to all the other objects in the
problem instance, the other with respect to the objects in
the knapsack so far. The latter algorithm returns better
solutions on the test instances.

Two genetic algorithms represent candidate selections of
objects for the knapsack with binary strings, and both gen-
erate and manipulate only strings whose selections of objects
do not exceed the knapsack’s capacity. A naive GA, which
Section 6 presents, applies operators that do not use infor-
mation about objects’ values. It returns good but uneven
results on the test instances.

A greedy GA, which Section 7 presents, augments the
operators of the naive GA with greedy techniques from the
non-evolutionary heuristics. In particular, it chooses objects
in tournaments based on their value densities when it gen-
erates the chromosomes that make up its initial population,
in crossover, and in mutation. The resulting algorithm is
very effective, identifying optimum solutions on more than
90% of repeated trials on the test instances. On only one
instance is its performance worse than that of the naive GA.

While researchers have described evolutionary algorithms
for related problems, the GAs described here are, to my
knowledge, the first for the Quadratic Knapsack Problem.

2. THE PROBLEM
In the familiar Knapsack Problem (KP), we are given a

collection of n objects, each with a positive value vi and a
positive weight wi, and a knapsack with capacity C. The
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goal is to select objects to put in the knapsack whose total
value is as large as possible but whose total weight does
not exceed C. More formally, let x1, x2, . . . , xn be binary
variables that indicate the selection (xi = 1) or exclusion
(xi = 0) of each object. We seek to assign values to these
variables, indicating object choices, to maximize

V =
nX

i=1

xivi

while maintaining

W =
nX

i=1

xiwi ≤ C.

KP is an archetypal problem of constrained combinato-
rial optimization. It is NP-hard [9, p.65]. A simple greedy
heuristic for it sorts the objects by their “value densities:”
the ratios vi/wi of their values to their weights, scans the ob-
jects in descending order of these ratios, including all those
that fit in the knapsack, then returns either the selected ob-
jects or the one object of largest value, whichever has the
largest total value. The objects this algorithm selects always
have total value at least half that of an optimum selection.

The Quadratic Knapsack Problem (QKP) extends the
Knapsack Problem by introducing quadratic terms into the
value computation. In QKP, in addition to the value vi asso-
ciated with each object alone, there is a non-negative value
vij that accrues when the knapsack contains both object i
and object j. Thus,

V =
nX

i=1

xivi +

n−1X

i=1

nX

j=i+1

xixjvij . (1)

The weight computation and the capacity constraint are un-
changed from KP. QKP is NP-hard by restriction to KP; set
all the quadratic values vij to zero.

The Quadratic Knapsack Problem was first described by
Gallo, Hammer, and Simeone [8], who presented a branch-
and-bound algorithm for it. Exact algorithms for QKP have
applied branch-and-bound [4] [11], Lagrangian relaxation
[1] [4], semidefinite programming [12], mixed-integer pro-
gramming [3], and other techniques. Kellerer, Pferschy, and
Pisinger [15, Ch.12] present a thorough introduction to QKP
and exact and approximate algorithms for it.

QKP arises in a variety of applications, including finance
[17], VLSI design [7], and location problems [24]. Also, var-
ious problems in graphs can be presented as instances of
QKP [13] [21].

3. RELATED PROBLEMS
QKP is related to Binary Quadratic Programming (BQP),

also called Unconstrained 0-1 Quadratic Programming, in
which the values vi and vij may be positive, zero, or negative
and there are no weights or capacity constraint. Another
generalization of the 0-1 Knapsack Problem is the Multi-
dimensional Knapsack Problem, also called the Multicon-
strained Knapsack Problem. In this problem, each object
has a value vi and a resource demand sik for each of m re-
sources. Of each of these resources k there is a fixed supply
Sk, and the goal is to choose objects of maximum total value

without demanding more of each resource than is available:

nX

i=1

xisik ≤ Sk, k = 1, . . . , m.

Researchers have described a variety of evolutionary algo-
rithms for Binary Quadratic Programming [14] [18] [19] [20]
and for the Multidimensional Knapsack Problem [5] [10] [16]
[22] [23].

4. SOME QKP INSTANCES
An instance of the Quadratic Knapsack Problem consists

of its number n of available objects, linear object values vi,
quadratic object values vij , object weights wi, and knap-
sack capacity C. A significant feature of a QKP instance,
not to be confused with the value densities of its objects, is
the proportion of its quadratic values vij that are non-zero.
This proportion is called the density of the instance, and it
indicates the level of interaction between the instance’s ob-
jects. The lower an instance’s density, the more independent
are objects’ contributions to a knapsack’s value; the higher
its density, the more objects’ contributions depend on the
other objects in the knapsack.

Another feature of a QKP instance is the ratio C/
P

wi of
the instance’s capacity to the sum of all its objects’ weights.
This ratio corresponds roughly to the proportion of the ob-
jects likely to appear in an optimum solution.

Billionnet and Soutif, who have written extensively on
the Quadratic Knapsack Problem, provide an on-line col-
lection of randomly generated QKP instances1. The algo-
rithms that the next three sections describe were tested on
twenty of these instances. Ten of the instances consist of
n = 100 objects. These instances have density 0.25 and ra-
tios C/

P
wi ranging from 0.06 to 0.93. The remaining ten

instances consist of n = 200 objects. These have density
1.00 and ratios C/

P
wi ranging from 0.03 to 0.93. All have

been solved to optimality [2] [3], and the web site reports
their optimum values. The left half of Table 1 summarizes
the instances.

5. GREEDY HEURISTICS
The genetic algorithm of Section 7 applies greedy vari-

ation operators. This section presents two simple greedy
heuristics on which those operators are based and reports
on their performance on the test QKP instances.

5.1 Absolute Greed
An obvious greedy heuristic for the Quadratic Knapsack

Problem imitates the heuristic for the simple Knapsack Prob-
lem given in Section 2. Let the absolute value density di of
an object i in a QKP instance be the ratio of the sum of all
the values associated with the object to its weight:

di =
vi +
P

j �=i vij

wi
. (2)

Compute the value densities of all the instance’s objects and
sort the objects into descending order of these values. Then
scan the objects in their sorted order. Include in the solution
all the objects that fit into the knapsack; that is, whose
inclusion does not cause the sum of the included objects’

1http://cermsem.univ-paris1.fr/soutif/QKP/QKP.html
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weights to exceed C. The following sketch summarizes this
simple greedy heuristic; S is the solution it builds.

compute objects’ value densities;
sort the objects by their value densities;
S ← ∅;
weight ← 0;
for the objects in sorted order

i← next object;
if ( weight + wi ≤ C )

S = S ∪ {i};
weight ← weight + wi;

evaluate and report S;

Computing the value density of one object requires time
that is O(n), so finding all the value densities is O(n2). Sort-
ing the objects is O(n log n). Scanning the objects requires
only linear time, and evaluating the resulting solution is
O(n2), so the entire algorithm requires time that is O(n2).

5.2 Relative Greed
The value densities di are called absolute because each is

computed with respect to all the objects in a QKP instance,
regardless of whether or not they appear in a particular
solution. A second heuristic applies value densities based
on the objects currently in a growing solution.

Let the relative value density ri of an un-included object
i with respect to a (partial) solution S be

ri =
vi +
P

j∈S vij

wi
; (3)

that is, the numerator sums only the quadratic values as-
sociated with i and the objects currently in S. The second
heuristic begins with each object in turn and repeats the
following steps. It computes the relative value densities of
the un-included objects with respect to the included ones
and adds to the solution the object i that fits and has the
largest ri, continuing until no more objects can be added to
the solution. It then reports a solution with the largest total
value.

Call this algorithm the relative greedy heuristic. In the
following sketch, T is each candidate solution, and S is the
best solution so far.

v ← 0;
for each object i from 1 to n

T ← {i};
repeat

for each object j �∈ S
update rj with respect to S;

add to T the legal object j with largest rj ;
until no more objects can be added;
vT ← value of T ;
if vT > v

S ← T ;
v ← vT ;

report S and v;

Within the innermost loop, updating the excluded ob-
jects’ relative value densities requires only linear time: For
each excluded object j, add vij/wj to rj , where i is the ob-
ject just included. This step is repeated no more than n
times, so the construction of one solution T is O(n2). This
construction is repeated for each object as the first object,
so the entire algorithm’s time is O(n3).

5.3 Tests
The heuristics just described and the genetic algorithms

below were implemented in C++ and executed on a Pentium
4 with 256 megabytes of memory running at 2.53 GHz under
Red Hat Linux 9.0.

Table 1 presents the results obtained when the two heuris-
tics were run on the twenty QKP instances of Section 4. For
each heuristic on each instance, the table gives the value of
the solution the heuristic identified, the percentage by which
that value falls short of the known maximum value, and the
time in seconds that the algorithm required.

The simple greedy heuristic is fast but not always effec-
tive. On the 100-object instances with density 0.25, it found
an optimum solution on one, but missed two by about 4%
and another by over 11%. On average, the values of its so-
lutions fell short of the optimum values by about 2.9%. On
the 200-object instances with density 1.0, it performed bet-
ter. It again found one optimum solution, and on average
fell short of the optima by only 0.7%. On every instance but
two, it selected objects whose total values were within 1%
of their instances’ optima.

The relative greedy heuristic took much longer but per-
formed much better. On the 100-object instances, it found
an optimum solution five times. All the remaining solutions
were within 1% of their respective optima, and the aver-
age error was less than 0.2%. On the 200-object instances,
it found one optimum, every solution was within 0.5% of
optimum, and its average error was again less than 0.2%.

6. A GENETIC ALGORITHM
This section presents a straightforward genetic algorithm

for the Quadratic Knapsack Problem. This GA is naive in
that its operators do not use objects’ absolute or relative
value densities when they construct chromosomes.

6.1 Coding
Binary strings of length n encode candidate solutions—

selections of objects for the knapsack—as described, for ex-
ample, by Lodi, Allemand, and Liebling [18] and Merz and
Freisleben [19] for Binary Quadratic Programming and by
Chu and Beasley [5] and Raidl [22] for the Multidimensional
Knapsack Problem: In a chromosome c[·], c[i] = 1 indi-
cates the inclusion of object i; c[i] = 0 indicates its exclu-
sion.

The GA handles the capacity constraint C by never gen-
erating chromosomes whose solutions violate it; no repair
of penalty mechanism is necessary. To generate a random
chromosome, for example, the GA considers the objects in
random order and includes those whose presence in the chro-
mosome’s solution do not cause its total weight to exceed C,
following the example of Raidl [22].

A chromosome’s fitness,which the GA seeks to maximize,
is the total value (1) of the solution it represents.

6.2 Variation Operators
The GA applies two variation operators that generate

novel chromosomes from existing ones. These operators al-
ways build valid chromosomes.

Crossover builds one offspring from two parent chromo-
somes. It begins by including in the offspring all the objects
that are common to the parents. It then scans the remain-
ing parental objects in random order, adding to the offspring

609



Table 1: Performance of the simple greedy heuristic HEU and the relative greedy heuristic R-HEU on the
twenty QKP instances. For each instance, the table lists its number n of objects, number, optimum value,
and ratio C/

P
wi. For each heuristic on each instance, it lists the value of the solution the heuristic identified,

the percentage %E by which it fell short of the optimum, and the time in second that the algorithm ran.

Instance HEU R-HEU
n Num Opt C/

P
wi Value %E Time Value %E Time

100 1 18558 0.26 17903 -3.53 < 0.01 18546 -0.06 0.33
2 56525 0.85 56339 -0.33 < 0.01 56525 0.00 0.45
3 3752 0.06 3326 -11.35 < 0.01 3717 -0.93 0.15
4 50382 0.76 50157 -0.45 < 0.01 50382 0.00 0.44
5 61494 0.93 61494 0.00 < 0.01 61494 0.00 0.45
6 36360 0.54 35941 -1.15 < 0.01 36360 0.00 0.40
7 14657 0.19 14049 -4.15 < 0.01 14545 -0.76 0.30
8 20452 0.26 19651 -3.92 < 0.01 20452 0.00 0.35
9 35438 0.57 34958 -1.35 < 0.01 35370 -0.19 0.40

10 24930 0.40 24287 -2.58 < 0.01 24926 -0.02 0.37
200 1 937149 0.93 935700 -0.15 < 0.01 935700 -0.15 6.76

2 303058 0.27 300313 -0.91 < 0.01 302644 -0.14 5.29
3 29367 0.03 28455 -3.11 < 0.01 29222 -0.49 1.76
4 100838 0.10 99610 -1.22 < 0.01 100838 0.00 3.39
5 786635 0.78 785441 -0.15 < 0.01 786051 -0.07 6.65
6 41171 0.04 41171 0.00 < 0.01 41171 0.00 2.12
7 701094 0.69 698566 -0.36 < 0.01 699795 -0.19 6.56
8 782443 0.76 779605 -0.36 < 0.01 780064 -0.30 6.66
9 628992 0.63 626668 -0.37 0.01 628000 -0.16 6.45

10 378442 0.36 376219 -0.59 < 0.01 377138 -0.34 5.68

those whose inclusion does not cause the offspring’s solution
to violate the capacity constraint.

Mutation builds one offspring from its one parent. It be-
gins by building two complementary lists, one of the objects
the parent includes, the other of the objects it excludes.
With a probability based on the number of included objects,
it may remove each of them from the offspring. It then, as in
crossover, scans the excluded objects in random order and
includes in the offspring all that fit. While crossover, which
examines only parental objects, may leave room in offspring
for additional objects and therefore for greater total value,
mutation examines all the excluded objects and thereby fills
its offspring to capacity.

6.3 The GA
A generational genetic algorithm applies these operators.

The GA initializes its population with random chromosomes
and selects chromosomes to be parents in k-tournaments
without replacement. It applies crossover and mutation in-
dependently; each offspring is generated by one operator or
the other, never both. It is 1-elitist, preserving the best
chromosome of the current generation unchanged into the
next, and it runs through a fixed number of generations.

Crossover could have been followed by mutation to pro-
duce each offspring, but the present organization allows con-
venient control of the operators’ probabilities. In any case,
the interactions of an EA’s representation with its operators
are more important in determining its performance than is
the organization of its operators’ application.

In the tests the next section describes, when run on a QKP
instance with n objects, the GA’s population contained n
chromosomes. The size of its selection tournaments was two,
and each tournament’s winner was in fact selected to be a

parent with probability 0.90, its loser therefore with prob-
ability 0.10. The probability that crossover generated each
offspring chromosome was 0.70, the probability of mutation
therefore 0.30, and in mutation, the probability that each
parental object was excluded from the offspring was 2/I ,
where I was the number of objects in the parental solution.
The GA ran through 10n generations.

6.4 Tests
The genetic algorithm just described was run 50 indepen-

dent times on each of the twenty QKP instances. Table 2
summarizes the results of these trials. For each instance, it
lists the number of trials that identified an optimum solu-
tion, the value of the best solution found, the average of the
trials’ best solutions, the average percentage by which the
GA’s solutions fell short of the optimum, the standard de-
viation of the GA’s solutions, and, for the trials that found
an optimum solution, the minimum and mean numbers of
generations and the mimimum and mean times in seconds
that this required. The table also reports the total number
of trials that found optimum solutions out of the 500 trials
on each set of instances.

As Table 2 shows, the GA’s performance varies widely
over the test QKP instances. It quickly finds optimum so-
lutions on two of the 100-object instances, and 48 times out
of 50 on a third, but on the last two 100-object instances,
it almost never hits. Overall, on the 100-object instances, it
finds optima on 281 trials out of 500, and its average error
is just under 0.2%. On all the instances but the ninth, the
shortest time the GA required to find an optimum solution
was less than the greedy heuristic’s running time, and on
two instances, the GA’s average time to an optimum solu-
tion was less than the heuristic’s time.
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Table 2: Results of 50 trials of the naive genetic algorithm on each of the test QKP instances. For each
instance, the table lists the number of trials on which the GA found an optimum solution (Hits) the maximum
and mean values of the solutions the GA found, the mean percent by which the GA’s solutions fell short of
the optimum, the standard deviation of the 50 values, and the minimum and mean number of generations
and minimum and mean time in seconds that the GA used to find an optimum solution, when it did.

Instance Mean Gens to Opt Time to Opt
n Num Hits Max Mean %E StdDev Min Mean Min Mean

100 1 18 18558 18527.2 -0.17 37.58 38 286.28 0.24 4.50
2 50 56525 56525.0 0.00 0.00 12 40.78 0.08 0.25
3 26 3752 3734.9 -0.46 18.10 16 117.85 0.10 3.29
4 31 50382 50370.8 -0.02 18.67 28 117.65 0.18 2.73
5 50 61494 61494.0 0.00 0.00 5 13.66 0.04 0.09
6 15 36360 36217.6 -0.39 98.05 39 549.33 0.25 5.23
7 37 14657 14632.0 -0.17 46.33 21 182.62 0.14 2.40
8 48 20452 20447.2 -0.02 24.21 21 107.90 0.14 0.88
9 2 35438 35298.1 -0.39 112.51 707 720.00 4.29 5.98

10 4 24930 24894.2 -0.14 52.02 43 162.25 0.27 5.65
Total hits: 281/500
200 1 50 937149 937149.0 0.00 0.00 20 43.88 0.98 2.08

2 37 303058 303020.8 -0.01 69.74 48 176.57 2.31 30.31
3 48 29367 29364.2 -0.01 14.05 18 39.83 0.89 5.55
4 50 100838 100838.0 0.00 0.00 26 47.08 1.27 2.25
5 21 786635 786102.7 -0.07 1531.89 45 658.71 2.14 66.60
6 49 41171 41149.4 -0.05 152.88 16 21.33 0.80 2.89
7 26 701094 701010.2 -0.01 112.73 49 239.42 2.34 50.34
8 30 782443 782415.9 -0.00 44.46 46 240.47 2.19 43.78
9 15 628992 628572.1 -0.07 947.53 54 349.60 2.59 69.87

10 35 378442 378410.8 -0.01 56.32 54 264.83 2.59 36.58
Total hits: 361/500

On the 200-object instances, the GA’s performance is bet-
ter. On two of these instances, it quickly finds an optimum
solution on every trial, and 49 times out of 50 on a third.
On no instance does it find an optimum solution fewer than
fifteen times. Overall, it hits on 361 trials out of 500, and
its average mean error is only 0.023%. The GA’s shortest
time to an optimum solution is always less than the greedy
heuristic’s running time, as was the GA’s average time to
an optimum solution on two of the 200-object instances.

7. WITH GREEDY OPERATORS
The performance of the genetic algorithm just described

can be improved by introducing into it greedy techniques
from the algorithms of Section 5. The resulting greedy GA
favors objects with higher value densities when it builds ran-
dom chromosomes, in crossover, and in mutation. In all
three operators, this strategy depends on a parameter called
T BIAS, chosen on the interval (0.5, 1.0].

7.1 Operators
As in the naive GA, all the operators generate only chro-

mosomes whose solutions satisfy the capacity constraint.
To build chromosomes for its initial population, the greedy

GA begins by computing the absolute value densities (2) of
all the objects. To build each chromosome, the GA consid-
ers the objects one at a time. The object to consider next
is determined by a tournament with replacement of two ob-
jects randomly chosen from those not previously considered.
With probability T BIAS, the object with larger value den-

sity is considered next; with probability (1 − T BIAS), it’s
the object with smaller value density. If this object fits in the
knapsack, it is included; otherwise not. In either case, that
object cannot be considered again, though its competitor in
the tournament can and will. This process continues until
all the objects have been considered. (Initialization could
compare objects’ relative value densities (3) for all objects
after the first, but this strategy was found to lead the GA
to inferior solutions.)

Crossover begins, as in the naive GA, by initializing its
offspring with the objects common to both parents. It next
computes the relative value densities (3) for the remaining
parental objects with respect to the common objects. It
completes the offspring by considering the remaining ob-
jects in an order determined by 2-tournaments with param-
eter T BIAS, as in initialization but based on the objects’
relative value densities, which it updates after an object is
included in the offspring.

Mutation also begins as in the naive GA. It makes two
lists, of the parental objects and of the objects the parent
solution does not contain, and it probabilistically removes
some of the included objects. It computes the relative value
densities of the excluded objects with respect to the remain-
ing included ones and, as in crossover, scans the excluded
objects in an order determined by 2-tournaments with pa-
rameter T BIAS. These tournaments compare objects’ rel-
ative value densities, which are updated after an object is
added to the offspring. Again, crossover may not fill its
offspring to capacity, but mutation does.
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Table 3: Results of 50 trials of the greedy genetic algorithm on each of the test QKP instances. For each
instance, the table lists the number of trials on which the GA found an optimum solution (Hits) the maximum
and mean values of the solutions the GA found, the mean percent by which the GA’s solutions fell short of
the optimum, the standard deviation of the 50 values, and the minimum and mean number of generations
and the minimum and mean time in seconds that the GA used to find an optimum solution, when it did.

Instance Mean Gens to Opt Time to Opt
n Num Hits Max Mean %E StdDev Min Mean Min Mean

100 1 50 18558 18558.0 0.00 0.00 7 44.88 0.08 0.37
2 50 56525 56525.0 0.00 0.00 1 3.24 0.02 0.03
3 36 3752 3742.2 -0.26 15.87 12 183.56 0.12 3.53
4 23 50382 50368.5 -0.03 12.59 3 96.48 0.03 3.92
5 50 61494 61494.0 0.00 0.00 0 0.58 < 0.01 0.01
6 50 36360 36360.0 0.00 0.00 7 26.10 0.06 0.21
7 50 14657 14657.0 0.00 0.00 5 9.22 0.05 0.09
8 50 20452 20452.0 0.00 0.00 5 7.72 0.05 0.08
9 37 35438 35419.4 -0.05 31.78 4 235.05 0.04 3.10
10 50 24930 24930.0 0.00 0.00 6 11.14 0.07 0.10

Total hits: 446/500
200 1 50 937149 937149.0 0.00 0.00 15 469.40 0.80 22.72

2 50 303058 303058.0 0.00 0.00 29 103.12 1.95 6.22
3 50 29367 29367.0 0.00 0.00 12 18.90 0.90 1.37
4 50 100838 100838.0 0.00 0.00 12 20.32 0.92 1.47
5 50 786635 786635.0 0.00 0.00 16 48.78 0.95 2.61
6 50 41171 41171.0 0.00 0.00 11 13.42 0.83 1.01
7 50 701094 701094.0 0.00 0.00 18 196.16 1.12 10.25
8 6 782443 782398.1 -0.01 27.44 1079 1570.50 54.50 98.23
9 50 628992 628992.0 0.00 0.00 15 65.66 0.98 3.65
10 50 378442 378442.0 0.00 0.00 39 178.82 2.47 10.31

Total hits: 456/500

7.2 The GA
Structurally, the greedy GA is identical to its naive pre-

decessor. It is generational and 1-elitist; it applies crossover
and mutation independently; and it runs through a fixed
number of generations. With one exception, its parameters
have the same values as well. On a QKP instance with n ob-
jects, its population contains n chromosomes; in selection,
the probability that a tournament’s winner is selected in
0.70 (rather than 0.90 as in the naive GA); the probability
that crossover generates each offspring is 0.70; the probabil-
ity that mutation removes each included object is 2/I ; and
the GA runs through 10n generations.

The greedy GA also includes the parameter T BIAS, which
controls the favor given objects of higher value densities in
initialization, crossover, and mutation. For the 100-object
instances with C/

P
wi = 0.25, T BIAS is set to 1.00. For

the 200-object instances with C/
P

wi = 1.00, it is 0.75.

7.3 Tests
The greedy genetic algorithm was run 50 independent

times on each of the twenty QKP instances. Table 3 sum-
marizes the results of these trials, in the same format as
Table 2.

As expected, the greedy GA was more effective than the
naive algorithm. It found better solutions in general and
optimum solutions more quickly. On the ten 100-object in-
stances, every trial found an optimum solution on seven, and
always in very few generations. On one instance, the min-
imum number of generations to an optimum solution was

zero, indicating that greedy initialization alone was, at least
once, enough to solve the instance. On the remaining three
instances, the numbers of hits were 36, 23, and 37, and the
mean errors were all much less than 1%. The total num-
ber of hits over all ten instances was 446 in the 500 trials.
The times the GA required to find optimum solutions were
smaller than those of the naive GA on nine of the ten in-
stances, and its mean times to optimum solutions were less
on eight instances, often by large margins.

On the ten 200-object instances, the greedy GA’s perfor-
mance was even better. On nine of the instances, it always
found an optimum solution, and the average number of gen-
erations it required to do so was in general small, ranging
from 13.42 to 469.40, with five of these averages below 100.
The greedy GA found an optimum solution in 456 of the
500 trials on these instances. It was also fast. On seven
instances, its shortest time to an optimum solution was less
than that of the naive GA, as was its mean time to an op-
timum solution on eight instances. The greedy operators’
improved performance more than makes up for the addi-
tional time that they require.

The eighth 200-object instance is an anomaly. Only on
this instance did the greedy GA sometimes fail to find an
optimum solution and only on this instance was the greedy
GA’s performance worse than that of the naive GA. Thirty
of the 50 trials of the naive GA found an optimum solution to
this instance, but only six of the 50 trials of the greedy GA.
This suggests that the structure and values in this instance
conspire to mislead greedy heuristics, even relatively gentle
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ones such as the greedy operators with T BIAS = 0.75. On
the other hand, the average error of the greedy GA’s trials
on this instance was still just 0.01%.

8. DISCUSSION
The results above support the effectiveness of the heuris-

tics implemented in the greedy GA, but they also raise ques-
tions about the test instances and the algorithms.

The non-evolutionary heuristics and both GAs perform
well on the test instances, which suggests that the instances
are easy and that they might be more economically ad-
dressed by a simple randomized hill-climber. The instances
were randomly generated [2] [3] and therefore are not struc-
tured to challenge or mislead the heuristics. Drezner, Hahn,
and Taillard [6] described instances of the quadratic assign-
ment problem designed to mislead the heuristics commonly
applied to that problem; it should be possible to similarly
design QKP instances tht challenge the present heuristics.
Also, test instances could simply be larger.

The probability that the winner of a selection tournament
is in fact selected to be a parent was set to 0.90 in the naive
GA, but to 0.70 in the greedy GA. When the genetic opera-
tors are naive, selection pressure can be higher, but when the
operators greedily identify improved chromosomes, lower se-
lection pressure, achieved by reducing the probability that
a tournament’s winner reproduces, helps the GA preserve
diversity in its population and avoid convergence to inferior
solutions.

In the greedy GA’s initialization, crossover, and muta-
tion, the parameter T BIAS is the probability that, in a 2-
tournament of candidate objects, the one with higher value
density will be considered next. The GA is sensitive to
this parameter, which was set to 1.00 for the 100-object
instances, whose density—proportion of non-zero quadratic
values—was 0.25, and to 0.75 on the 200-object instances,
whose density was 1.00. These values suggest that when the
density of the target instance is low—when a strong major-
ity of its quadratic values are zero—operators can be aggres-
sively greedy because interaction between object choices—
the epistasis of the representation—is low. When the target
instance’s density is high, there is in general much interac-
tion between object choices, and excessive favor to objects
of high value density stumbles on this interaction.

Tables 2 and 3 list the minimum and mean times that the
two GAs require to identify optimum solutions, when they
do, to the test problem instances. In general, however, we do
not know the optimum values of problem instances, and the
algorithms must run through their assigned 10n generations.
For the naive GA, this takes about 6.1 seconds on the 100-
object instances and about 93 seconds on the 200-object
instances. For the greedy GA, these times average about 7.3
and 113 seconds, respectively. The greedy GA’s improved
performance is worth the small additional time it requires.

9. CONCLUSION
The Quadratic Knapsack Problem extends the familiar

Knapsack Problem by associating values both with individ-
ual objects and with pairs of objects. KP is then a restricted
version of QKP in which the pairs’ values are all zero.

Two simple greedy heuristics perform well on twenty in-
stances of QKP. Both build solutions by choosing objects
according to their value densities: the sum of their individ-

ual and paired values divided by their weights. The heuris-
tic that computes value densities with respect to the objects
chosen so far is both slower and returns better solutions than
the heuristic that computes value densities with respect to
all the objects.

A straightforward genetic algorithm for the problem en-
codes candidate solutions as binary strings and applies op-
erators that always yield valid chromosomes. That is, the
total weight of the objects they specify never exceeds the
knapsack capacity. This GA produces good but varying re-
sults on the test instances. On average, the values of its
solutions are never more than 0.5% below the optimum val-
ues, and they are often much closer, but the GA often fails
to identify an optimum solution.

A greedy genetic algorithm applies operators that imple-
ment the strategies of the non-evolutionary heuristics. Its
operators probabilistically favor objects of high value den-
sity; generating random chromosomes compares absolute
value densities, while crossover and mutation compare rela-
tive value densities. This GA outperforms the naive one. It
finds optimum solutions more often, and its average error is
smaller. On only one test instance are its results inferior to
those of the naive GA. These results illustrate the power of
evolutionary algorithms augmented with heuristic strategies
to achieve good results on combinatorial problems like the
Quadratic Knapsack Problem.
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[2] Alain Billionnet and Éric Soutif. An exact method
based on Lagrangian decomposition for the 0-1
quadratic knapsack problem. European Journal of
Operational Research, 157(3):565–575, 2004.

[3] Alain Billionnet and Éric Soutif. Using a mixed
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