
Towards a Self-Stopping Evolutionary Algorithm Using
Coupling From The Past

German Hernandez
Department of Computer and Systems

Engineering
National University of Colombia

Bogota, Colombia

gjhernandezp@unal.edu.co

Kenneth Wilder
Department of Statistics

The University of Chicago
Chicago, IL 60637

wilder@galton.chicago.edu

Fernando Nino
Department of Computer and Systems

Engineering
National University of Colombia

Bogota, Colombia

lfninov@unal.edu.co

Julian Garcia
Department of Computer and Systems

Engineering
National University of Colombia

Bogota, Colombia

julian.garcia@ieee.org

ABSTRACT
In this paper a stopping criterion for a particular class of evo-
lutionary algorithms is devised. First, a model of a generic
evolutionary algorithm using iterated random maps is pre-
sented. The model allows the exploration of a connection
between coupling from the past, and a stopping criterion
for evolutionary algorithms. Accordingly, a method to stop
a generic evolutionary algorithm is proposed. Some com-
putational experiments are carried out to test the stopping
criterion, using a modified version of coupling from the past.
Empirical evidence is shown to support the suitability of the
criterion.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Automatic analysis of algorithms; I.2.8 [Artificial Intelli-

gence]: Problem Solving, Control Methods, and Search —
Heuristic methods

General Terms
Algorithms, Experimentation

Keywords
Evolutionary Algorithms, Stopping Criteria, Coupling from
the Past, Optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

1. INTRODUCTION
One of the main concerns of the evolutionary computation

community is to find methods to determine when an evolu-
tionary algorithm (EA) has found a good solution. Never-
theless, despite the wide range of applications of such algo-
rithms, “there are few theoretical guidelines for determining
when to terminate the search” [1].

In recent years, a lot of effort has been devoted to ground
a theoretical basis for evolutionary computation. Particu-
larly, significant efforts have been undertaken to analyse the
long-term dynamics of evolutionary algorithms [4, 8]. Such
studies have mainly focused on convergence theorems, us-
ing stochastic processes such as Markov chains[7]. However,
work still needs to be done in order to determine how long
it will take to an EA to find a good solution.

In general, an EA can be viewed as a Markov chain (MC)
on the space of populations [4, 8]. Thus, it can be shown
that, under certain conditions, there exists a stationary dis-
tribution that characterises the long-term behaviour of the
EA. Once stationarity has been reached, the dynamics of
the EA may be thought of as a sampling procedure from
the stationary distribution. Particularly, it has been proved
that, for a Generic Evolutionary Algorithm (GEA)[4], this
distribution is supported on the set of populations whose
individuals are optimizers of the fitness function. Accord-
ingly, a straightforward stopping criterion for a GEA could
be to check whether the equilibrium distribution has been
reached or not. In this work a sampling procedure (Coupling
from the Past[10, 9]), based on Montecarlo Markov Chains
(MCMC) samplers will be used for this purpose.

In this work, a stopping criterion, for a particular class of
EAs termed GEA’s [4], will be proposed. Such algorithms
will be regarded as MCMC samplers on the space of popu-
lations. It has been shown that the equilibrium distribution
associated to a GEA, is supported on the set of popula-
tions made up of optimizers of the fitness function. Con-
sequently, an interesting idea to explore in order to devise
a self-stopping GEA, is to sample the associated equilib-
rium distribution using CFTP. The GEA should stop once

615

it reaches stationarity, i.e., once the underlying population
is made up of optimal individuals.

In previous work, a combinatorial approach established
bounds on the number of generations required by an EA
to explore all possible populations[1]. In contrast, this
work uses a probabilistic approach based on sampling tech-
niques,that allows a GEA to stop itself.

The rest of this paper is organized as follows. In section
2 some basics on coupling from the past are presented, and
some fundamentals on iterated random maps are summa-
rized. In section 3, a generic evolutionary algorithm is mod-
eled by iterated random maps. In section 4, a self-stopping
generic evolutionary algorithm, using CFTP, is presented.
The results of some experiments carried out to test the pro-
posed stopping criterion are reported in section 5. Finally,
some conclusions are devised in section 6.

2. PRELIMINARIES

2.1 Coupling from the Past
MCMC samplers are intended to generate samples from

an arbitrary probability distribution. The keystone of
MCMC methods is to build a MC whose equilibrium dis-
tribution is the target distribution[5]. Accordingly, to sam-
ple an arbitrary distribution using an MCMC sampler, it
is necessary to wait for an unknown “burn-in” time, until
the equilibrium distribution is reached. Once the “burn-in”
time has passed, samples can be considered to follow ap-
proximately the target distribution[5].

Unfortunately, in practice, there is no certainty on what
the “burn-in” period should be. However, Coupling from
the Past (CFTP) addresses this problem; this technique can
be used to determine the number of iterations a MCMC
sampler needs to reach stationarity.

A MCMC sampler will have reached stationarity in in-
finite time, thus, if you started running the chain at time
t = −∞, the chain would reach equilibrium at time zero.
Propp and Wilson[10] [6] [3] proved that using couplings, it
is not necessary to run the chain from t = −∞, but from a
finite (but stochastic) time in the past. They developed an
algorithm called “Coupling From The Past (CFTP)” which
determines such time, allowing to obtain perfect samples
from a MCMC sampler.

Coupling is a probabilistic technique that defines two or
more random processes jointly on a common probability
space, and based on their realizations, draws conclusions
about their distributions. In order to simulate a finite MC,
it is convenient to consider a function φ(Xn, u), which yields
the next state of the chain given the present state Xn, using
a uniform random number u in [0, 1] to simulate the transi-
tion. Such function is termed update function. CFTP uses
coupling by running several Markov chains using the same
random number in the update function that determines the
next state of the chains. Hence, the chains are said to be
coupled since their transitions are being produced by the
same sequence of random numbers. Rather than running
the coupled chains from the present to the future, the CFTP
algorithm runs the chains from a distant point in the past to
the present, but that point in the past is at a finite distance,
which is determined by the algorithm itself.

The CFTP algorithm works as follows: a MC for each
possible state is run starting at time −t in the past; the
chains are run forward to time zero, using the same random

number in the update function for all the chains at each
time step. Clearly, if two chains end up in the same state
at the same time, they will run together from that time on.
When this happens, the chains are said to have coalesced[5].
Thus, the chains are started at all possible states, and all
of the states have coalesced by time zero, the observations
from time zero on will follow the stationary distribution[10].
If the chains have not coalesced by time zero, then, the algo-
rithm runs the chains starting at an earlier time (e.g., −2t).
Hence, the “burn-in” time is determined during the run of
the algorithm itself.

For the sake of clarity, a simple CFTP example will
be shown next(see figure 1). Consider a MC with state
space {0, 1, 2, 3}, and transition probabilities pij = 1

4
for

i, j = 0, ..., 3. The MC has a uniform equilibrium distribu-
tion on {0, 1, 2, 3}, which will be sampled using CFTP. First,
a transition for each initial state is simulated starting at time
t = −1 (see Figure 1(a)). Given that the realizations of the
MC’s do not coalesce, the algorithm goes back in time and
starts at t = −2, and simulates again a transition for each
initial state, which in turn is composed with the transition
simulated for t = −1 (see Figure 1(b)); since there is no co-
alescence again, the algorithm goes back in time and starts
now from t = −3, in this case the composition yields a coa-
lesced state at time t = −0, then it is guaranteed that from
this point on the samples may be considered to be perfect
(see Figure 1(c)).

2.2 Iterated Random Maps
An iterated random map (IRM) is a discrete dynamical

system governed by a collection of functions chosen ran-
domly in accordance to some probability distribution. Al-
though such probability distribution may depend on the
state of the system, here, it will be considered that the prob-
ability distribution is the same for all states.

In this work, an IRM will be denoted as

{X; f1, f2, ..., fk; p1, p2, ..., pk},

where X denotes the state space, fi are functions defined
on X, and pi is a probability associated to the function fi,
such that p1 +p2 + ...+pk = 1. Accordingly, an IRM defines
a random discrete dynamical system 〈X,F 〉, where

F (x) =

����� ����
f1(x) with probability p1

f2(x) w.p. p2

...
...

fk(x) w.p. pk.

Iterated random maps offer a method to represent and
study a MC in terms of its steady state distribution [2].
Intuitively, a MC on the state space X can be constructed
by applying iterating random functions on X. Therefore,
the dynamics of the system is given by the composition of
the functions fi, randomly chosen according to µ, i.e., X0 =
x0, X1 = fi1 (x0), X2 = (fi1 ◦ fi2)(x1), ..., where the values
ij are independent draws from the probability distribution
µ[2].

616

1

0

2

-1-2-3

T = -1 not colaescence at t = 0

(a)

1

0

2

3

-1-2-3

T = -2 not colaescence at t = 0

(b)

1

0

2

3

-1-2-3

T = -3 colaescence at t = 0

(c)

Figure 1: A simple CFTP example

3. GENERIC EVOLUTIONARY
ALGORITHMS AS ITERATED
RANDOM MAPS

An EA can be thought of as a random dynamical system
that describes the changes of a population, under the action
of operations that emulate natural evolution (selection and
variation) throughout time. The state space of such system
is the set of all possible populations � , and its dynamics is
defined by a stochastic transition operator E. A popula-
tion in � will be represented as an n-tuple of elements of I,
termed space of individuals, where an individual can appear
more than once.

A Generic Evolutionary Algorithm (GEA), introduced in
[4], is an EA with three generic operators: selection, local
mutation and global mutation.

Specifically, the dynamics of the GEA is given by a
stochastic operator E : � → � , defined as

E(x) =

�� � S(x) with probability pS

S ◦ V ε
L(x) w.p. pL

S ◦ VG(x) w.p. pG.

where S is the selection operator, V ε
L is the local mutation

operator, and VG is the global mutation operator. Thus, pS ,
pL and pG are the probabilities of applying the evolutionary
operators as specified above. Clearly, pS + pL + pG = 1.
Such operators will be described next.

The selection operator is an elitist selection operator that
takes a population x in � , and randomly produces a new
population such that only the fittest individuals in x can be
chosen to become part of the new population.

For the local mutation operator, the space of individu-
als is considered to be endowed with a meaningful metric.
This operator introduces a “small” change in one individ-
ual. Given a population x, �

ε
(x) will denote the set of

populations that can be produced from x by replacing any
individual in x with an individual that is at a distance less
than or equal to ε (a real-valued parameter); Thus, the op-
erator V ε

L will choose a population in �
ε
(x) with uniform

probability.
In contrast, the global mutation operator introduces a

“strong” variation in one individual of the population.
Given a population x, let � (x) denote the set of popula-
tions that can be produced from x by replacing any individ-
ual in x with an arbitrary individual in I. The operator VG

applied to a population x produces a population in � (x),
chosen with uniform probability.

In [4] it was shown in that when this algorithm is used
to solve an optimization problem, its dynamics converges
to a set of populations made up of optimizers of the fitness
function F : I → � .

The iteration of a GEA on a population x is modeled
by E(x). This iteration can be simulated using the update
function φE : � × [0, 1]s → � , where s is the number of
uniform random numbers required to simulate an iteration
of the algorithm. In other words, given a population x, the
iteration produces a new population y = φE(x,W), where
W is a vector of s independent uniform random numbers in
[0, 1] needed to run an iteration of the GEA. Accordingly, an
iteration of the GEA at time step t can be thought of as the
result of the application of a random map ψt = φE(·,Wt) :� → � on the current population. Notice that the random
map ψt is implicitly defined once Wt is set.

Consequently, the discrete dynamical system 〈 � ,E〉 de-
fined by a GEA can be also described as an IRM

{ � ;ψ1, ψ2, ..., ψL; p1, p2, ..., pL}

Notice that there is no need to define the correspondent pi

probabilities, since the simulation will use uniform random
numbers that implicitly define the particular random map
ψi to be used at each iteration. Details about functions ψi

are discussed next.
A pseudocode for the GEA is presented next.

GEA()
1 t← 0
2 xt ← generate initial population()
3 while stopping criterion not met
4 do ψt ← create random map()
5 xt+1 ← ψt(xt)
6 t← t+ 1
7 return xt

Notice that the function create random map() is reduced
to generate the random vector W, and returns ψt =
φE(·,Wt). The array W is composed of n+3 random num-
bers, one of this random numbers is used to choose the oper-
ator applied; n of this random numbers are used to simulate
selection (using each one of them to pick at ramdom one of
the best elements in the current population to be part of the

617

next population), and the two remaining random numbers
are used to simulate mutations (one of them is used to pick
the element that is mutated, and the other one is used to
pick at random one of the possible mutations of that ele-
ment).

4. STOPPING A GEA USING CFTP
GEAs as optimization problem solvers may be seen as

MCMC samplers of a probability distribution supported on
the set of populations composed of optimal solutions. There-
fore, using CFTP, a GEA should be stopped once it reaches
optimal solutions.

Although, in this research, a stopping criterion will be
applied to GEAs, similar stopping criteria based on CFTP
could be applied to other EAs as long as it can be shown
that the stationary distribution of a MC associated to an
EA is supported on optimizers of the problem.

In general, CFTP requires to simulate as many MC re-
alizations as states in the state space. Thus, to run CFTP
on the MC associated to the GEA, it is necessary to run as
many MC realizations as elements in the population space
(| � | = |I|n). Since the size of the space of populations is
usually very large, this may be computationally intractable.

In this work, a modified version of CFTP, termed sampled
CFTP is used. Instead of running a MC realization for each
possible population, sampled CFTP runs a small number r
of MC realizations; where r is small in comparison with the
size of the state space . The r initial states of the MCs are
uniform independent samples from the state space (in this
case, the population space). The algorithm will stop once
the r MC realizations coalesce.

Next, sampled CFTP is summarized. The parameters
of the algorithm are r, the number of MC realizations,
and n, the number of individuals in a population. In the
pseudocode below, P [1 · · · r] is an array of populations,
ψ[1 · · · r] is an array of random maps, and T is the time in
the past where the MC realizations are started.

Sampled CFTP GEA(n, r)
1 P [1 · · · r]← generate initial populations()
2 ψ[1]← create random map()
3 T ← 1
4 while the MC realizations do not coalesce
5 do for t← 1 · · ·T
6 do for j = 0 · · · r

7 do P [j]← ψ[t] � P [j] 	
8
9 for t← (T + 1) · · · (2 ∗ T)

10 do ψ[t]← create random map()
11
12 T ← 2 ∗ T
13 return P [1]

In practical terms, the self-stopping criterion is applied by
running several realizations of a GEA in parallel, using the
same random values in all iterations. The algorithm should
stop when the underlying populations are the same for all
the realizations.

In practical applications, a commonly used method is to
perform r independent runs of an EA, and then choose the
best amongst the r found solutions. Two points are worth
to be emphasized in order to support the practical relevance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2: F(u) = 1− 4(u − 1

2
)2 + 1

10
sin(8πu).

of the proposed approach: The probability to find a good
solution is increased by coupling the r GEA instances; and,
the procedure requires less computational resources by gen-
erating less random numbers than in the case of the r inde-
pendent runs.

Notice that, in principle, this modified version of CFTP
does not guarantee perfect samples, i.e., it does not assure
that optimal solutions will be always obtained. However,
it is hypothesized that sampled CFTP will stop the GEA
at good solutions. Although there is no theoretical proof
of this hypothesis, strong evidence that it may be valid is
shown by the experiments that were perform, which will be
described in detail in the next section.

5. EXPERIMENTS
This section reports the experimental results of the pro-

posed sampled CFTP GEA. Since this work intends to ex-
plore a theoretical approach to serve as a basis to a practical
EA stopping criterion, a set of toy optimization problems
were chosen to test the potential of the proposed algorithm.
However, work still needs to be done to mature the tech-
nique in order to make it more suitable to solve real-world
problems.

For each optimization problem, the average coalescence
time (number of iterations that the algorithm requires to
reach a population composed only of optimal solutions) and
the experimental distribution of the coalescence time are
presented. Also, the estimated experimental probability
that the algorithm reaches a population of this type is re-
ported.

The general setting of the optimization problem consid-
ered is as follows: maximize a function F : I → I, where

I = {0.0, 0.02, 0.04, ..., 0.98, 1}

(I has size 50). The metric on I is dI (i, j) = |i − j|, and� = I × I. In all cases, the parameters of the GEA were
pS = 0.5, pL = 0.3, pG = 0.2 and ε = 0.01.

Four objective functions were considered, (three one di-
mensional and one two dimensional functions). Different
population sizes (n) and number of MC realizations (r) were
considered in each experiment. For each objective function
and some specific combinations of r and n, the algorithm
was run 1000 times.

5.1 Experiment 1
In this experiment, a sampled CFTP GEA is used to max-

imize the function F(u) = 1 − 4(u − 1/2)2 + 0.1 sin(10πu),
F(u) is shown in figure 2. Notice that this function has sev-
eral local maxima. In this case, the values considered for r
were 10, 20 and 30, and for n, 8, 16 and 32. Thus, a total of
9000 runs of the algorithm were performed.

618

r n
T
p
10 8 394.642 1.0
20 8 438.192 1.0
30 8 435.296 1.0
10 16 726.912 1.0
20 16 771.512 1.0
30 16 772.864 1.0
20 32 1424.192 1.0
10 32 1460.352 1.0
30 32 1427.2 1.0

Table 1: Results of experiment 1.

In table 1,
T is the average coalescence time of the 1000
independent runs of the algorithm, and
p is an estimation
of the probability of success, i.e., the probability that the
algorithm stops at a population composed of solutions to
the optimization problem. Notice that, in all cases, the al-
gorithm stopped at an optimum solution.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

8192409620481024512256128

Figure 3: Experimental probability distribution

function of T for the 1000 simulations in experiment

1; r = 30, n = 32. The values of T are powers of 2.

Figure 3 shows the experimental distribution function of
T . Notice that it is “approximately normal”, which is the
expected result according to Central Limit Theorem, given
that in each one of the 1000 runs, an independent identically
distributed observation of the random variable T is obtained.

5.2 Experiment 2
Now, the function considered is F(u) = |sin(4πu)| (see

figure 4). Again F has several local maxima. As in experi-
ment 1, the values considered for r were 10, 20 and 30, and
for n 8, 16 and 32.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: F(u) = |sin(4πu)|.

As in the previous experiment, the algorithm stopped at
an optimum solution in all cases (see table 2).

r n
T
p
10 8 1402.236 1.0
10 16 3069.714 1.0
10 32 6524.672 1.0
20 8 1507.032 1.0
20 16 3108.096 1.0
20 32 6470.528 1.0
30 8 1518.504 1.0
30 16 3099.648 1.0
30 32 6808.128 1.0

Table 2: Results of experiment 2.

5.3 Experiment 3
In this case, the function to be maximized is F(u) = 1 −

4(u − 1

2
)2 + 1

10
sin(32πu), which is shown in figure 5. Now,

a larger space of individuals I = {0.0, 0.001, 0.002, ..., , 1} is
considered; the size of I is 1000. Thus, in this experiment,
the combinations of values of r and n considered were: n = 8
and r = 10, 20, 30; n = 16 and r = 10, 20, 30, 40, 50, and
n = 32, r = 10, 20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5: F(u) = 1− 4(u− 1

2
)2 + 1

10
sin(32πu).

r n
T
p
10 8 1945.036 0.771
20 8 2491.91 0.891
30 8 2924.982 0.933
10 16 2372.318 0.851
20 16 2811.68 0.934
30 16 2915.412 0.963
40 16 2938.97 0.973
50 16 2972.856 0.984
10 32 2521.528 0.923
20 32 2813.184 0.966

Table 3: Results of experiment 3.

It is important to emphasize that, on average, sampled
CFTP GEA required less than 3000 iterations to find an
optimal solution with very high probability (see table 3).

5.4 Experiment 4
In this experiment, the two dimensional function
F(u, v) = � 2 − 4(u − .5)2 + 0.1sin(32πu) � - � 4(v − 0.5)2 +

0.1sin(32πv) � is maximized (see figure 6). Now, the space

619

0
10

20
30

40
50

60

0

10

20

30

40

50

60
0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6: F(u, v) = � 2 − 4(u − 1

2
)2 + 1

10
sin(32πu) � + � −

4(v − 1

2
)2 + 1

10
sin(32πv) � .

of individuals is I × I, with I the space of individuals con-
sidered in experiments 1 and 2, therefore, the size of I is
2500. The distance d between individuals (a, b) and (c, d) is
given by dI ((a, b), (c, d)) = |a− c| + |b− d|. In this experi-
ment, the combinations of values of r and n considered were:
n = 10, 20 and r = 20, 30, 40, 50; and n = 30 and r = 50.

r n
T
p
20 10 8069.12 0.594
20 20 10835.56 0.722
30 10 12688.96 0.716
30 20 13816.32 0.857
40 10 14806.08 0.771
40 20 13667.2 0.884
50 10 13250.6 0.817
50 20 15772.16 0.942
50 30 14831.36 0.970

Table 4: Results of experiment 4.

As in experiment 3, on average, sampled CFTP GEA
stopped in less than 3000 iterations at an optimal solution
with high probability (see table 4).

The experiments above showed that the proposed method
is succesful in all cases. It is also important to emphasize
that the sample size is small in comparison to the size of the
population space, and that the probability that the algo-
rithm stops at optimal solutions gets higher as the number
of realizations of the GEA increases.

6. CONCLUSIONS
In this work, a model for a GEA based on iterated random

maps was developed. In addition, a self-stopping criterion
for a GEA was proposed. It is based on a modified version of
CFTP, called sampled CFTP, which deals with the problem
of running as many MC realizations as states in the state
space. In contrast to CFTP, it only tracks a small number
of MC realizations.

In practice, the self-stopping criterion is applied by run-
ning simultaneously several realizations of a GEA, using the
same random values in all iterations. The algorithm should
stop when the underlying populations are the same for all
the realizations.

Even though, there is not theoretical proof that sample
CFTP GEA, applied to solve an optimization problem, will
stop at optimal solutions, the experimental results of this

work are encouraging. In all the experiments, the stopping
criterion was successful, i.e., the algorithm stopped at opti-
mal solutions with high probability, which may be an up to
standard level from the practicioneers point of view.

From the experiments, it can be seen that the probability
that the algorithm stops at optimal solutions becomes higher
as the number of realizations of the GEA increases.

In further work, sampled CFTP GEA should be studied
in a more theoretical fashion, specifically a theoretical proof
of its effectiveness should be explored. Also, additional work
is required to elucidate the relationship between parameters
such as: size of the population, size of the population space
and size of the sample used to start the sampling CFTP
procedure.

Particularly, a mechanism to determine an appropriate
sample size should be devised. Notice that in this work,
population samples are chosen according to a uniform dis-
tribution, hence, other sampling procedures are worth fur-
ther studies. Finally, CFTP GEA should be tested on more
complex high-dimensional benchmark problems.

7. REFERENCES
[1] H. Aytug and G. J. Koehler. New stopping criterion

for genetic algorithms. Technical report, Charlotte NC
and Gainesville FL, 4 1996.

[2] P. Diaconis and D. Freedman. Iterated random
functions. SIAM Review, 41(1):45–76, Mar. 1999.

[3] J. Fill. An interruptible algorithm for perfect sampling
via markov chains. The Annals of Applied Probability,
8(1):131–162, 1998.

[4] G. Hernandez, F. Nino, D. Dasgupta, and J. Garcia.
On geometric and statistical properties of a generic
genetic algorithm. In Proceedings of the Congress on
Evolutionary Computation (CEC-04), Portland, OR,
2004. IEEE Press.

[5] J. Liu. Monte-Carlo strategies in scientific computing.
Springer-Verlag, New York, 2001.

[6] J. Propp and D. Wilson. Coupling from the past: a
user’s guide. In Microsurveys in Discrete Probability,
D. Aldous and J. Propp (eds), volume 41, pages
181–192. American Mathematical Society, 1998.

[7] G. Rudolph. Finite Markov chain results in
evolutionary computation: A tour d’horizon.
Fundamenta Informaticae, 35(1–4):67–89, 1998.

[8] M. D. Vose. The simple genetic algorithm: foundations
and theory. MIT Press, Cambridge, MA, 1999.

[9] D. B. Wilson and J. G. Propp. Exact sampling with
coupled markov chains and applications to statistical
mechanics. Jan. 1996.

[10] D. B. Wilson and J. G. Propp. How to get an exact
sample from a generic Markov chain and sample a
random spanning tree from a directed graph, both
within the cover time. In Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 448–457, Atlanta, Georgia, 28–30
Jan. 1996.

620

