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ABSTRACT
We propose a new evolutionary approach to solve the 0/1
multiple knapsack problem. We approach the problem from
a new viewpoint different from traditional methods. The
most remarkable feature is the Lagrangian method. La-
grange multipliers transform the problem, keeping the op-
timality as well as decreasing the complexity. However, it
is not easy to find Lagrange multipliers nearest to the con-
straints of the problem. We propose an evolution strategy to
find the optimal Lagrange multipliers. Also, we improve the
evolution strategy by adjusting its objective function prop-
erly. We show the efficiency of the proposed methods by the
experiments. We make comparisons with existing general
approach on well-known benchmark data.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: NUMERICAL ANAL-
YSIS —Optimization

General Terms
Algorithms, Experimentation, Theory

Keywords
Zero/one multiple knapsack problem, Lagrange multiplier,
Evolution strategy

1. INTRODUCTION
The 0/1 multiple knapsack problem (0/1MKP) is a well-

known NP-complete problem [10] which is formally defined
as follows:

maximize v
T
x subject to x ∈ {0, 1}n, Wx ≤ b,
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where the weight W = (wij) is a d × n matrix with no
negative elements, the value v is an n-dimensional vector,
and the capacity b is a d-dimensional vector.

The knapsack problem has a number of applications in
various fields, e.g., cryptography, economy, etc. For the
knapsack problem with only one constraint, a simple heuris-
tic algorithm works well and there have been a number of
researches about the efficient approximation algorithm to
find the near-optimal solution [2, 16, 18, 27]. In this paper,
we are interested in the problem with more than one con-
straint, i.e., the multiple knapsack problem. The method to
solve the multiple knapsack problem has been extensively
studied in the past [4, 8, 9, 12, 19, 21, 31]. Also, a number
of genetic algorithms [14] to solve the problem have been
proposed [5, 6, 7, 15, 17, 25, 30].

However, most researches directly deal with the discrete
search space. In this paper, we try out a method that trans-
forms the search space of the problem to another space and
searches the solution in the transformed space instead of
managing the original space directly. Zero/one MKP is the
optimization problem with constraints. We transform it us-
ing the Lagrange multipliers [20]. However, we have a lot
of limitations since the domain is not continuous but dis-
crete. There have been a number of papers that studied
Lagrange multiplier method for the discrete problems [3,
11, 13, 28, 29, 32, 33, 34]. There were also a few methods
that used Lagrange multipliers for 0/1MKP. Typically, most
of them found just the upper bound and could not find the
exact solution [22]. One of the Lagrangian methods to find
the lower bound is the constructive heuristic proposed by
Magazine and Oguz [21] (MO-CONS). There was also the
method that improved the performance by combining MO-
CONS with genetic algorithms [24]. It used the real-valued
weight-codings to make a variant of the original problem
and then applied MO-CONS. It provided a new viewpoint
to solve 0/1MKP, but it just used MO-CONS for evaluation
and did not research in the aspect of Lagrange multipliers.
In this paper, we study the properties of Lagrange multipli-
ers and also propose a variant of MO-CONS. However, it is
not easy to obtain good solutions by just using the heuris-
tic. So we use the Lagrangian method combined with the
evolution strategy [1] and improve it by using the properties
of Lagrange multipliers.

The remainder of this paper is organized as follows. We
propose Lagrangian method for 0/1MKP in Section 2. In
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Section 3, we describe Lagrange duality and the limitations
arising from the fact that the domain of the problem is not
continuous. The tendency for searching optimal Lagrange
multipliers effectively is discussed in Section 4. We describe
a constructive heuristic to optimize Lagrange multipliers in
Section 5 and propose the method based on evolution strat-
egy in Section 6. Finally, we present the experimental results
in Section 7 and make conclusions in Section 8.

2. LAGRANGE MULTIPLIERS FOR
0/1MKP

Consider the following maximization problem with con-
straints:

maximize f(x) subject to x ∈ Ω, g(x) ≤ 0.

Assume that there exists the maximum µ0. If the domain
Ω is convex, the real vector λ ≥ 0 such that

µ0 = max
x∈Ω

{f(x) − 〈λ, g(x)〉}

always exists, where 〈·, ·〉 is an inner product [20]. In this
case, if the objective function f(x) achieves the maximum
when x is x0, then 〈λ, g(x0)〉 = 0.

In particular, if f and g are differentiable, ∇f(x0) =
λi∇gi(x0) holds for each i. If we are lucky, we can easily
find the value of λ for the problem and solve the problem
by transforming the original problem with constraints into
the easier one without constraints. The method that solves
the problem by finding λ and transforming the given con-
strained problem into the unconstrained problem is called
Lagrange multiplier method.

Zero/one MKP is also the maximization problem with
constraints in the following formulation:

maximize v
T
x subject to x ∈ {0, 1}n, Wx − b ≤ 0.

We can not always apply Lagrange multiplier method to
0/1MKP because the domain {0, 1}n is not convex. How-
ever, for some constraints, their corresponding λ’s exist. As-
sume that the real vector λ corresponding to the constraints
is given. Then, it is possible to transform the original opti-
mization problem into the following problem using Lagrange
multipliers:

maximize {vT
x − 〈λ, Wx − b〉} subject to x ∈ {0, 1}n.

It is easy to find the maximum of the transformed problem
using the following formula.

v
T
x − 〈λ, Wx − b〉

=
n
X

i=1

vixi −
d
X

j=1

λj

 

n
X

i=1

wjixi

!

+ 〈λ, b〉

=
n
X

i=1

vixi −
d
X

j=1

n
X

i=1

λjwjixi + 〈λ, b〉

=
n
X

i=1

vixi −
n
X

i=1

d
X

j=1

λjwjixi + 〈λ, b〉

=
n
X

i=1

 

vixi −
d
X

j=1

λjwjixi

!

+ 〈λ, b〉

=
n
X

i=1

xi

 

vi −
d
X

j=1

λjwji

!

+ 〈λ, b〉.

LMMKP(λ)
{

for i = 1 to n
if vi >

Pd
j=1

λjwji then x∗
i = 1;

else x∗
i = 0;

b
∗ = Wx

∗;
µ∗ = vT x∗;
return µ∗, x∗, and b

∗;
}

λ = (λ1, λ2, . . . , λd) ∈ R
d

Figure 1: Lagrangian method for the 0/1 multiple
knapsack problem

To maximize the above formula for the fixed λ, we have to
set xi to be 1 only if vi >

Pd

j=1
λjwji for each i. Since

each vi does not have an effect on the others, getting the
maximum is fairly easy. Since this algorithm computes just
Pd

j=1
λjwji for each i, its time complexity becomes O(nd).

If we only find out λ for the problem, we get the optimal
solution of 0/1MKP in polynomial time. We may have the
problem that such λ never exists or it is difficult to find it
although it exists. However, this method is not entirely use-
less. For arbitrary λ, let the maximum of the above formula
be µ∗ and the vector x which achieves the maximum be x∗.
Since λ is chosen arbitrarily, we do not guarantee that x∗

satisfies the constraints of the original problem. Neverthe-
less, letting the capacity be b∗ = Wx∗ instead of b makes
µ∗ be the optimal solution by Theorem 1. We call this al-
gorithm Lagrangian method for the 0/1 multiple knapsack
problem(LMMKP). Figure 1 shows this algorithm.

Theorem 1. The vector x∗ obtained by applying LMMKP
with given λ is the maximizer of the following problem:

maximize v
T
x subject to x ∈ {0, 1}n, Wx ≤ b

∗.

Proof: Let x be an arbitrary element in {0, 1}n satisfying
Wx ≤ b∗. Then, for each i,

x∗
i

 

vi −
d
X

j=1

λjwji

!

≥ xi

 

vi −
d
X

j=1

λjwji

!

by LMMKP.

v
T
x

∗ =

n
X

i=1

x∗
i

 

vi −
d
X

j=1

λjwji

!

+ 〈λ, b∗〉

≥
n
X

i=1

xi

 

vi −
d
X

j=1

λjwji

!

+ 〈λ, b∗〉

= v
T
x − 〈λ, Wx − b

∗〉
≥ v

T
x. (∵ λ ≥ 0 & Wx − b

∗ ≤ 0.) �

In particular, in the case that λk is 0, the kth constraint is
ignored. That is, x∗ is the maximizer of the problems which
have the capacities c’s such that ck ≥ b∗k and ci = b∗i for all
i 6= k. In general, the following theorem holds.
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Figure 2: The alternative way to solve 0/1MKP
(n : the number of objects, d: the number of constraints)

Theorem 2. In particular, if LMMKP is applied with λ

such that λk1
= 0, λk2

= 0, . . . , and λkm
= 0, replacing the

capacity b∗ by c such that


ci = b∗i , if i 6= kj for all j,
ci ≥ b∗i , otherwise

in Theorem 1 makes the theorem still hold.

Proof: Omitted since it is similar to Theorem 1.
Instead of finding the optimal solution of the original

0/1MKP directly, we consider the problem of finding λ cor-
responding to given constraints. That is, we transform the
problem of dealing with n-dimensional binary vector x into
the one of dealing with d-dimensional real vector λ (see Fig-
ure 2). If there are Lagrange multipliers corresponding to
given constraints and we find them, we easily get the op-
timal solution of 0/1MKP. If there are no such Lagrange
multipliers, we try to get the solution close to the optimum
by devoting to find Lagrange multipliers which satisfy given
constraints and are nearest to them.

3. GAPS AND DUALITY
Lagrange multipliers may not exist for all 0/1MKP in-

stances. Now, we investigate the constraints whose corre-
sponding Lagrange multipliers do not exist.

3.1 Notations
We denote several notations for convenience of describing

the next definition and theorem.

Ω = {0, 1}n

ω(z) = max
x∈Ω,Wx≤z

v
T
x

ϕb(λ) = max
x∈Ω

{vT
x − 〈λ, Wx − b〉}

x(λ) = arg max
x∈Ω

{vT
x − 〈λ, Wx − b〉}

b(λ) = W · x(λ)

λ corresponds to {x(λ), b(λ)} by the LMMKP.

3.2 Gaps
The condition for the capacity c of Theorem 2 means that

〈λ, Wx∗ − c〉 = 0 and Wx∗ ≤ c. Using the above notation,
Wx∗ is equal to b(λ). We define gap using b(λ).

Definition 3 (gap). A capacity b is called gap if there
is no λ ≥ 0 such that 〈λ, b(λ) − b〉 = 0 and b(λ) ≤ b.

Intuitively, gap is the capacity of the constraints whose
corresponding Lagrange multipliers do not exist. So, if the
capacity of given 0/1MKP is a gap, LMMKP does not guar-
antee the optimal solution. Instead, we can try to find
the nearest solution to the optimum by searching the most
similar capacity of the constraints whose corresponding La-
grange multipliers exist. The gap is highly related with the
property of duality in the next subsection.

3.3 Lagrange Duality
If Ω is convex, it is known that the maximum of the ob-

jective function subject to the constraints is the same as the
minimum of ϕb(λ) for λ [20]. This property is called duality.
Since the domain of 0/1MKP is not convex, this property
does not hold in general. Nevertheless, we can compare the
values of the optimum and ϕb(λ) in the following theorem.
This is an example of weak duality in general integer pro-
gramming [23, 26].

Theorem 4 (Weak duality).

max
z≤b

ω(z) ≤ min
λ≥0

ϕb(λ).

Proof: For any λ ≥ 0,

ϕb(λ) = max
x∈Ω

{vT
x − 〈λ, Wx − b〉}

≥ max
x∈Ω,Wx≤b

{vT
x − 〈λ, Wx − b〉}

≥ max
x∈Ω,Wx≤b

v
T
x

= ω(b)

= max
z≤b

ω(z). (∵ ω is increasing.)

∴ max
z≤b

ω(z) ≤ min
λ≥0

ϕb(λ). �

From this theorem, the minimum of ϕb(λ) is greater than
or equal to the maximum of the original problem. We use
this fact to find out a good upper bound for the optimal
solution of 0/1MKP. The (near) minimum among ϕb(λ)’s is
chosen for an upper bound.

If b is not a gap, the property of general duality holds.
This is given in the next corollary.

Corollary 5 (Strong duality). If the capacity b is
not a gap,

max
z≤b

ω(z) = min
λ≥0

ϕb(λ).

Proof: Since b is not a gap, there exists a λ0 ≥ 0 such that
〈λ0, b(λ0) − b〉 = 0 and b(λ0) ≤ b. Then,

min
λ≥0

ϕb(λ) ≤ ϕb(λ0) = v
T
x(λ0) = ω(b(λ0))

≤ ω(b) = max
z≤b

ω(z).

Hence, by Theorem 4,

max
z≤b

ω(z) = min
λ≥0

ϕb(λ). �
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4. THE TENDENCY OF THE LAGRANGE
MULTIPLIERS FOR 0/1MKP

If we are to find the solution of 0/1MKP using our La-
grangian method, we have to choose the maximum of vT x(λ)
for nonnegative real vector λ such that b(λ) ≤ b. However, if
we use randomly generated Lagrange multipliers, they may
not satisfy the constraints or it is probably hard to find the
capacity close to the original one. The following theorem
makes it easy to adjust Lagrange multipliers.

Theorem 6. Suppose that λ and λ′ corresponds to {x, c}
and {x′, c′} by the LMMKP, respectively. Let λ = (λ1, λ2,
. . . , λd) and λ′ = (λ′

1, λ
′
2, . . . , λ

′
d), where λi = λ′

i for i 6= k
and λk 6= λ′

k. Then, if λk < λ′
k, ck ≥ c′k and if λk > λ′

k,
ck ≤ c′k.

Proof: Since λ corresponds to x,

n
X

i=1

xi

 

vi −
d
X

j=1

λjwji

!

≥
n
X

i=1

x′
i

 

vi −
d
X

j=1

λjwji

!

.

Similarly, since λ′ corresponds to x′,

n
X

i=1

x′
i

 

vi −
d
X

j=1

λ′
jwji

!

≥
n
X

i=1

xi

 

vi −
d
X

j=1

λ′
jwji

!

.

By summing above two inequalities,

n
X

i=1

xi

 

vi −
d
X

j=1

λjwji

!

+
n
X

i=1

x′
i

 

vi −
d
X

j=1

λ′
jwji

!

≥
n
X

i=1

x′
i

 

vi −
d
X

j=1

λjwji

!

+
n
X

i=1

xi

 

vi −
d
X

j=1

λ′
jwji

!

.

By cancellation and multiplying both sides by −1,

n
X

i=1

xi

d
X

j=1

λjwji +

n
X

i=1

x′
i

d
X

j=1

λ′
jwji

≤
n
X

i=1

x′
i

d
X

j=1

λjwji +

n
X

i=1

xi

d
X

j=1

λ′
jwji.

Since λk 6= λ′
k and λi = λ′

i for i 6= k,

n
X

i=1

xiλkwki +
n
X

i=1

x′
iλ

′
kwki ≤

n
X

i=1

x′
iλkwki +

n
X

i=1

xiλ
′
kwki.

Substitute ck for
Pn

i=1
xiwki and c′k for

Pn

i=1
x′

iwki. Then,

λkck + λ′
kc′k ≤ λkc′k + λ′

kck.

Now, we obtain the following inequality.

(λk − λ′
k)(ck − c′k) ≤ 0. �

Let b = (b1, b2, . . . , bd) and Wx∗ = (b∗1, b
∗
2, . . . , b

∗
d) for x∗

that is obtained by LMMKP with λ = (λ1, λ2, . . . , λd). By
the above theorem, if b∗k > bk, choosing λ′ = (λ1, . . . , λ

′
k, . . . ,

λd) such that λ′
k > λk and applying LMMKP with λ′ makes

the value of b∗k smaller. It makes the kth constraint satis-
fied or the exceeded capacity decreased. Of course, another
constraint may become violated by this operation. Also,
which λk to be changed is at issue in the case that several
constraints are not satisfied. Hence, it is necessary to set

CH(MKP instance)
{

λ = 0;
I = {1, 2, . . . , n};
do

k = random integer in [1, d];
for i ∈ I

αi = (vi −
Pd

j=1
λjwji)/wki;

λk = λk + mini∈I αi;
I = I \ {argmini∈Iαi};
(µ∗,x∗, b∗) = LMMKP(λ);

until x∗ satisfies all the constraints;
return µ∗;

}

Figure 3: Constructive heuristic for LMMKP
(A variant of MO-CONS [21])

efficient rules about which λk to be changed and how much
to change it. If good rules are made, we can find out better
Lagrange multipliers than randomly generated ones quickly.

5. CONSTRUCTIVE HEURISTIC FOR
LMMKP

Magazine and Oguz [21] proposed a constructive method
using Lagrange multipliers. We devise a method similar to
it to find λ for LMMKP.

First, λ is set to be 0. Consequently, xi becomes 1 for each
vi > 0. It means that all positive-valued objects are put in
the knapsack and so almost all constraints are violated. If λ

is increased, some objects become taken out. We increase λ

adequately for only one object to be taken out. We change
only one Lagrange multiplier at a time. We randomly choose
one number k and change λk.

Reconsider

v
T
x − 〈λ, Wx − b〉 =

n
X

i=1

xi(vi −
d
X

j=1

λjwji) + 〈λ, b〉.

Making (vi −
Pd

j=1
λjwji) be negative by increasing λk let

xi = 0 by LMMKP. For each i such that xi = 1, let αi be the
increment of λk to make xi be 0. Then, (vi −

Pd

j=1
λjwji −

αiwki) have to be negative. That is, if we increase λk by

αi such that αi > (vi −
Pd

j=1
λjwji)/wki, the ith object is

taken out. So, if we just change λk to λk + mini αi, leave
λi as it is for i 6= k, and apply LMMKP again, exactly one
object is taken out. We take out objects one by one in this
way and stop this procedure if every constraint is satisfied.

Figure 3 shows this constructive algorithm. The number
of operations to take out the object is at most n, and com-
puting αi for each i takes O(d) time. Hence, the total time
complexity becomes O(n2d).

6. EVOLUTIONARY APPROACH
We apply evolution strategy (ES) [1] for obtaining an up-

per bound and a lower bound of 0/1MKP. ES has been show-
ing good performance for the problem which deals with real-
valued encoding. We use (1 + λ)-ES, in which population
size is one and the parent produces λ offspring. Offspring
are produced by a simple Gaussian mutation. That is, for
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each i = 1, 2, . . . , n,

σ′
i = σi · exp(τ ′ · N(0, 1) + τ · Ni(0, 1)),

x′
i = xi + σ′

i · Ni(0, 1),

where τ = 1/
p

2
√

n and τ ′ = 1/
√

2n. The best individual
is chosen among the current population and their offspring
to the next population.

6.1 Upper Bound
A simple method to find an upper bound is to compute

the values ϕb(λ)’s for randomly generated λ’s and choose
the minimum among them. We get a better upper bound by
using λ found by ES instead of determining it randomly. We
search Lagrange multipliers by letting the objective function
be ϕb(λ) and executing ES.

6.2 Lower Bound
We search Lagrange multipliers closer to the constraints

by applying Theorem 6 to ES. Standard mutation operator
of ES decreases or increases the value of λi. We modify it to
increase each λi only when b∗i > bi, i.e., the ith constraint is
not satisfied, and decrease it otherwise. Then, we can find
the solution which satisfies the constraints more easily. The
following formula shows the modified mutation operator.

λ′
i =



λi + σ′
i · |Ni(0, 1)|, if b∗i > bi,

λi − σ′
i · |Ni(0, 1)|, otherwise.

We use

v
T
x

∗ − γ
X

b∗
i

>bi

(b∗
i − bi)

as the objective function to maximize, which is the function
obtained by subtracting the penalty from the objective func-
tion of 0/1MKP. γ is a constant which indicates the degree
of penalty and it can be tuned appropriately.

7. RESULTS

7.1 Test Set and Test Environment
We test the proposed algorithms on benchmark data. Most

of them are the same data used in Chu and Beasley [6]. They
are composed of 120 instances with 10 constraints. Thirty
instances with 1, 000 objects are newly generated by the
procedure of [8].1 All tested data have different number of
objects and different tightness ratios. The tightness ratio
means α such that bj = α

Pn

i=1
wji for each j. The class of

instances are briefly described below.

• d.n-α : d constraints, n objects, and tightness ratio α.
Each class has 10 instances.

The proposed algorithms were implemented with gcc com-
piler on a Pentium PC (1.75GHz) using Linux operating
system. As the measure of performance, we used the per-
centage difference-ratio 100×|LP optimum−output|/output
which was used in [6].2 It has a value in the range [0, 100].
The smaller the value, the smaller the difference from the
optimum. To compare our algorithms, we used the construc-
tive heuristic and the hybrid genetic algorithm proposed by
Cotta and Troya [7].
1The remaining 90 instances were generated in [6] with the
same procedure.
2LP optimum is the optimal solution of the linear program-
ming relaxation over R.

Table 1: Upper Bounds
Instances LM-Random LM-ES

10.100-0.25 98.31 0.02
10.100-0.50 98.27 0.01
10.100-0.75 98.58 0.01
10.250-0.25 99.27 0.01
10.250-0.50 99.31 0.00
10.250-0.75 99.26 0.00
10.500-0.25 99.59 0.00
10.500-0.50 99.56 0.00
10.500-0.75 99.59 0.00

Average percentage difference-ratio over 10 instances.

Table 2: Comparison of Constructive Heuristics
Instances CT-CONS [7] LM-CONS

10.100-0.25 22.95 10.78
10.100-0.50 11.97 7.02
10.100-0.75 5.70 3.18
10.250-0.25 18.80 10.35
10.250-0.50 7.81 5.94
10.250-0.75 4.46 3.33
10.500-0.25 15.03 9.83
10.500-0.50 6.87 5.30
10.500-0.75 3.51 3.11
10.1000-0.25 13.90 8.88
10.1000-0.50 8.36 4.84
10.1000-0.75 5.47 2.74

Average percentage difference-ratio over 10 instances.

7.2 Upper Bound
Table 1 shows the performance of our ES. Our ES is

(1+30)-ES and stops after 104 generations. LM-Random
means the best result among randomly generated 3×105 La-
grange multiplier vectors. LM-Random performed poorly.
However, when Lagrange multipliers are optimized by ES
(LM-ES), we obtained high-quality upper bounds.

The average percentage difference-ratio of the upper bounds
by LM-ES decreases as the number of objects increases.
In particular, the values of the instances with 500 objects
were very close to zero. Thus, it provides a rational reason
for using the upper bound obtained by LM-ES instead of
LP optimum for the instances with more than 500 objects.
Since we do not know LP optimum’s of the newly generated
instances with 1, 000 objects, we will use the upper bound
by LM-ES in computing the percentage difference-ratio of
the lower bound for the instances with 1, 000 objects.

7.3 Lower Bound
We compare our algorithms with traditional approaches

that search the domain {0, 1}n directly. First, we compare
constructive heuristics. To compare our constructive heuris-
tic (LM-CONS), we adopted the constructive heuristic of [7]
(CT-CONS). CT-CONS was designed from a typical con-
structive heuristic for the simple knapsack problem with one
constraint. It chooses the value δi = minj{bjvi/wji} as the
profit density of each object i. Table 2 shows their perfor-
mance. For all classes of instances, LM-CONS outperformed
CT-CONS.

Next, we compare evolutionary algorithms. To compare
our evolution strategies (LM-ES and LM-ES-AP), we adopted
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Table 3: Comparison of Evolutionary Algorithms
Instances CT-GA [7] LM-ES LM-ES-AP†

Ave CPU Ave CPU Ave CPU
10.100-0.25 3.25 15.2 5.05 60.8 4.11 60.8
10.100-0.50 1.60 16.0 2.05 60.9 1.75 60.3
10.100-0.75 0.93 16.5 1.28 60.4 1.13 60.4
10.250-0.25 1.31 71.1 2.95 137 2.03 138
10.250-0.50 0.83 72.4 1.66 138 0.84 138
10.250-0.75 0.44 72.9 0.87 137 0.62 137
10.500-0.25 3.54 250 2.48 266 1.29 265
10.500-0.50 1.97 248 1.01 264 0.62 266
10.500-0.75 1.14 254 0.71 264 0.34 264
10.1000-0.25 8.30 937 1.40 522 0.79 524
10.1000-0.50 5.24 943 0.99 525 0.47 525
10.1000-0.75 2.66 952 0.59 521 0.18 522

Average percentage difference-ratio over 10 instances.

Each run stops after 105 generations.

CPU seconds on Pentium 1.75GHz.

(† It did not perform better than the state-of-the-art methods

proposed in [6] and [25].)

LM−CONS

b b b b b b b b b b10987654321

LM−ES

Capacity
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 155000
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 195000

Constraints

Capacity

Figure 4: Constraints corresponding to Lagrange
multipliers optimized by each method: an example
case 10.500-0.75

the hybrid genetic algorithm of [7] (CT-GA). Our ESs are
(1+10)-ES and stop after 105 generations. LM-ES has a
fixed value 0.7 as the penalty degree γ, but LM-ES-AP ad-
justs γ from 1.0 down to 0.1; as the initial value, γ is 1.0,
and then γ decreases by 0.001 per 100 generations. Table 3
shows their performance. The difference-ratios of our ESs
were inversely proportional to n and α. LM-ES-AP domi-
nated LM-ES for all instances. For the instance classes with
small numbers of objects (n = 100, n = 250), CT-GA per-
formed best. However, for the classes with large numbers
of objects (n = 500, n = 1000), our ESs outperformed CT-
GA. The results show the superiority of our ESs for instances
with d � n.

LM-ES outperformed LM-CONS (see Table 2 and Ta-
ble 3). We also investigated constraints corresponding to
Lagrange multipliers optimized by each method. That is,
for x∗ which is the solution obtained by each method, we
computed the corresponding capacity b∗j =

Pn

i=1
wjix

∗
i for

each constraint j. This value means the amount put in each
knapsack. LM-CONS has a defect that some constraints
are poorly satisfied. Figure 4 shows a typical example. In
this example, we observed that the seventh value of LM-
CONS is much lower than that of LM-ES. However, with

the Lagrange multipliers optimized by ES, constraints were
fit more evenly than those by LM-CONS.

8. CONCLUSIONS
In this paper, we proposed Lagrangian method for the 0/1

multiple knapsack problem. We also provided some theoret-
ical arguments supporting our Lagrangian method. Our La-
grangian method is fast and guarantees optimality with the
constraints which may be different from the original prob-
lem. However, it is not easy to find Lagrange multipliers
that accord with all the constraints. We found high-quality
Lagrange multipliers by combining Lagrangian method with
evolution strategy. We computed upper bounds using ES
from duality theorem. Also, we computed lower bounds us-
ing ES with the modified mutation operator from tendency
theorem and improved the performance of ES by adjust-
ing the penalty in objective function. We obtained a sig-
nificant performance improvement over Cotta and Troya’s
method [7] on the instances with a large number of objects.
Although our methods did not dominate the state-of-the-art
methods such as [6] and [25], we believe that there is room
for further improvement because we just used a simple ES.
Also, we guess that the performance highly depends on the
distribution of gaps of given instance. More studies about
gaps are left for future study.
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