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ABSTRACT

This paper describes the methodology and application of Cross
Entropy (CE) to the optimal design problem of a water
distribution system (WDS). The CE method is a new powerful
evolutionary iterative technique based on the concept of rare
events (or the Kullback-Leibler distance measure of information).
The optimal design problem of a WDS is to find its component
characteristics (e.g., pipe diameters, pump heads and maximum
power) which minimize its capital and operational costs such that
the system hydraulic laws are maintained (i.e., Kirchoff's Laws
No. 1 and 2), and constraints on quantities and pressures at the
consumer nodes are fulfiled. The CE methodology is
demonstrated using a well known bench-mark problem reported in
the WDSs research literature, reaching the best solution already
obtained and suppressing the computational effort required to
achieving it.

Categories and Subject Descriptors

J.2 [Computer Applications]: Physical Science and Engineering
— engineering. J.6 [Computer Applications]: Computer-Aided
Engineering — computer —aided design (CAD). G.3 [Mathematics
of Computing]: Probability and Statistics — probabilistic
algorithms, random number generator.

General Terms
Algorithms, Performance, Design.
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1. INTRODUCTION

A WDS is a collection of hydraulic control elements connected
together to convey quantities of water from sources to consumers.
The behavior of a WDS is governed by: (1) the physical laws
which describe flow and quality distributions; (2) the consumer’s
demands; and (3) the system layout. The problem of WDS optimal
design attracted numerous papers over the last four decades,
concentrating on two main schemes: the linear programming
gradient (LPG) approach introduced by Alperovits and Shamir [1]
in which an "inner" linear programming problem is solved for a
fixed set of flows in the pipes, while the flows are altered at an
"outer" problem using a gradient type scheme; and the general
genetic algorithm (GA) approach [e.g., Savic and Walters, 4].
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This paper describes the methodology and application of CE [6,7]
to the optimal design problem of a WDS.

The CE method utilizes a supplementary random mechanism
which translates the combinatorial optimization problem (COP)
into an associate stochastic problem (ASP) by randomizing the
original deterministic problem. The CE algorithm involves two
main stages in each of the ASP iterations: (1) generation of a
random sample data according to the supplementary random
mechanism and the calculation of the associated objective
function, and (2) updating the parameters of the ASP on the basis
of the data of stage (1) in the direction of solutions improvements.
The CE algorithm employs a discrete distribution which
converges to unities and zeros, where the associated unit elements
of the final distribution uniquely define the optimal decision
variables of the problem in hand.

2. CE METHOD FOR OPTIMIZATION
The method utilizes its rational from simulation techniques for the
estimation of rare events probabilities:

Estimate: P,(S(x)=Yy) (1)
where x is a random vector with probability distribution p on
the set X, § is a performance function on X and y is some

real value. Next, the CE method is employed as an optimization
method:

Determine: max S(x) 2)

xOx

The corresponding state at which the maximum is reached is
indicated by:
max §(x) = S =y’ 3)
*0x

Instead of finding the optimal solutions x* to a particular
problem directly, the CE method aims to find the most favorable
sampling distribution p". This distribution is considered to be

optimal if only optimal (or near optimal) solutions can be
generated from it. The CE process entails the following general
iterative procedure:

1. Choosing an initial reference vector p in the ASP with some

components P(X =x,)=p,, i=L..,m.Sett=1.

2. Generate N sample vectors X,, i =1,...N using a predefined
random mechanism with p =p,_; and compute the value of
y, to be the (1 - p) evaluation of S(X), where p isa

parameter in the range of: 10> < p<107™".

647



3. Fora fixed y,_, obtain the probability distribution vector p,
from the solution of: mfx% i I(Swzy) In f(x,,p).

4. Smooth the probability distribution vector using a smoothing
parameter 0.3 <a <0.9 through: p, =a [p, +(1-a) [P, .

5. Check if stopping criterion is met, for example: if for some
t2d ¥, =Y 1= = Vg

and , as the estimate of y"; otherwise - set # =¢ +1.

stop; Set # =T - final iteration

3. NETWORK DESIGN PROBLEM

The physical behavior of a WDS is governed by a set of linear and
non-linear equations, which includes energy and mass
conservation equations and the head loss formulas. In addition, a
set of constraints are defined which consist of design constraints,
minimum pressure requirements and the delivery of the prescribed
demand flows. Out of the many different possible designs that can
be randomly generated by the CE algorithm, only few can actually
form the design of the network. Given that non-feasible solutions
can not constitute the design of the network, only the feasible
solutions are candidates. This requires the definition of
supplementary mechanisms that can distinguish the non-feasible
solutions from the feasible ones, and guarantee that only the
available pipe diameters can uniquely be chosen for each pipe.
These are incorporated in the
main CE algorithm for solving the
optimal WDS design problems.
The CE method for minimal cost
design is demonstrated on the
two-looped network (Figure 1)
introduced by Alperovits and
Shamir [1], which was used
intensively as a bench-mark
problem.

Reservoir
+210

Figure 1. Two Looped Network

The layout of the network can be viewed as a graph G(V,E),
with the full system data in [1]. Each one of the eight pipes in the
network can have one of 14 commercially available pipe
diameters with its corresponding unit costs. The entire set of
available diameters is incorporated by adding fictitious nodes into
the system with every fictitious node representing its
corresponding pipe diameter, randomizing the network at the
nodes. The selection of the diameters is represented by the
partition of the nodes into two subsets V' ={V1’Vz} , Where {V}

holds the non-selected nodes and {Vz} holds the selected nodes.

The partition vector is then associated with the reference
parameter, which is defined as a random vector X with
independent components and the discrete probability distribution
of P(X=x)=p, Ui.

4. NUMERICAL RESULTS

The CE optimization method was applied to three well explored
bench-mark water distribution systems: the Two Looped network
[1], the Hanoi network [2], and the New York Tunnels system [5].
The CE algorithm developed herein is demonstrated on the two-
looped problem. The CE parameters used, were: sample size of
N =4480, p=0.01 and a =0.7. Defining the converging

criterion for the probabilities as p, <107 or 1-p, <107 the

average number of iterations until convergence was 8. The
number of the objective function evaluations was approximately
15,000 whereas when using GA it was around 10° [4]. The
optimal solution found was $419,000 which coincides with the
best solution reported using GA and AC [3,4] and is shown in

Table 1. The probabilities were initialized to be: p, = %4 . As the

algorithm evolves the probability distribution approaches to
unities and zeros as shown in Figure 2.

Table 1. Two-Looped Network — Optimal Design

Link 1 2 3 4 5 6 7 8

18 10 | 16 4 16 | 10 | 10 1

Diameter [inch]
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Figure 2: Updating probabilities
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