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Illinois Genetic Algorithms Laboratory

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

xllora@illigal.ge.uiuc.edu

David E. Goldberg
Illinois Genetic Algorithms Laboratory

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

deg@illigal.ge.uiuc.edu

ABSTRACT
Michigan-style learning classifier systems (LCSs), such as
the accuracy-based XCS system, evolve distributed problem
solutions represented by a population of rules. Recently,
it was shown that decomposable problems may require ef-
fective processing of subsets of problem attributes, which
cannot be generally assured with standard crossover opera-
tors. A number of competent crossover operators capable of
effective identification and processing of arbitrary subsets of
variables or string positions were proposed for genetic and
evolutionary algorithms. This paper effectively introduces
two competent crossover operators to XCS by incorporat-
ing techniques from competent genetic algorithms (GAs):
the extended compact GA (ECGA) and the Bayesian op-
timization algorithm (BOA). Instead of applying standard
crossover operators, here a probabilistic model of the global
population is built and sampled to generate offspring classi-
fiers locally. Various offspring generation methods are intro-
duced and evaluated. Results indicate that the performance
of the proposed learning classifier systems XCS/ECGA and
XCS/BOA is similar to that of XCS with informed crossover
operators that is given all information about problem struc-
ture on input and exploits this knowledge using problem-
specific crossover operators.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and
Search; I.5.1 [Pattern Recognition]: Models—Statistical;
Structural; Neural Nets
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1. INTRODUCTION
Standard variation operators in genetic algorithms (GAs),

such as crossover and mutation, may lead to highly ineffi-
cient evolutionary search due to their potential disruptive ef-
fects. One of the biggest challenges in genetic and evolution-
ary computation is the design of techniques that can adapt
to a problem and improve effectiveness of variation opera-
tors. Estimation of distribution algorithms (EDAs) [24, 21,
30] use probabilistic variation operators to identify and ex-
ploit problem structure effectively. The use of advanced vari-
ation operators such as those in ECGA [13] and BOA [29,
28] provides scalable solutions for decomposable problems of
bounded order. These problems are intractable using stan-
dard variation operators [12].

Most LCSs use genetic variation operators so that the
lessons learned from research in genetic and evolutionary
computation should carry over to LCSs. Despite impressive
results achieved with LCSs, research on LCSs has hardly
addressed the issue of recombination operators. This papers
replaces the potentially ineffective crossover operators with
competent crossover operators that adapt to the identified
problem structure on the fly.

Here we focus on the well-studied XCS classifier system
[37]. In XCS, the accuracy-based fitness results in an evo-
lutionary pressure towards higher accuracy and thus higher
specificity [7]. It was shown that for problems where recom-
bination of individual problem attributes improves accuracy,
uniform crossover can ensure successful learning [6].

This paper first characterizes BB-hard problems in LCSs,
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and the XCS system in particular. We then endow XCS with
mechanisms adopted from either ECGA [13] or BOA [29,
28]. In difference to previous ad-hoc substitutions of
crossover with EDA mechanisms [32], the additional mech-
anisms here are used to build a probabilistic model of the
global population. The model is then continuously adjusted
to the local distribution to sample local offspring. The re-
sults confirm that XCS combined with ECGA or BOA iden-
tifies and propagates BB structures effectively reaching per-
formance comparable to an informed BB processing mecha-
nism (that is, BB-wise uniform crossover).

The remainder of this paper first summarizes XCS and
some important XCS theory. Section 3 introduces several
hierarchical problems and indicates the need for more com-
petent recombination operators. Section 4 combines XCS
with mechanisms from ECGA and BOA. Section 5 presents
experimental results, which confirm the validity of the ap-
proach. Section 6 concludes the paper.

2. BRIEF OVERVIEW OF XCS
Like other LCSs [17, 2], XCS evolves a set of condition-

action rules, that is, a population of classifiers. Classifiers
evolve using a steady-state, niched GA. The fitness in the
XCS classifier system is based on the accuracy of reward pre-
dictions rather than on the reward predictions themselves.
Thus, XCS is designed to evolve not only the representation
of an optimal behavioral policy or classification, but rather
to evolve a representation of the expected payoff in each
possible situation-action combination.

XCS represents its knowledge using a fixed-length popu-
lation [P ] of classifiers. Each classifier consists of five main
components. The condition part specifies in which situations
the classifier is applicable. The action part determines its
classification or action. The payoff prediction part estimates
the average expected reward. The prediction error part de-
termines the mean absolute error of the payoff prediction.
Finally, the fitness part reflects the current relative accuracy
of the classifier with respect to competing classifiers.

Learning usually starts with an empty population. Given
the current input consisting of the values of all attributes,
a match set [M ] is formed that consists of all classifiers in
[P ] whose conditions match the input. If an action is not
represented in [M ], a covering mechanism is applied. Given
a match set, XCS estimates the payoff for each possible ac-
tion and computes a prediction array P (A) that reflects the
fitness-weighted averages of the matching classifiers’ reward
predictions for each action. The payoff predictions deter-
mine the appropriate classification. During learning, XCS
chooses actions randomly. During testing, the action amax

with the highest value P (amax) is chosen. All classifiers in
[M ] that specify the chosen action comprise the action set
[A].

XCS iteratively updates [P ] with respect to the successive
problem instances. After the classification is selected and
executed, the problem provides scalar feedback. Classifier
parameters are updated in [A] with respect to the immediate
feedback. After rule evaluation and possible GA invocation,
the next iteration starts.

The aforementioned covering mechanism ensures that all
actions in a particular problem instance are represented by
at least one classifier. XCS applies a GA for rule evolution.
The GA selects two parental classifiers from the current ac-
tion set using set-size relative tournament selection [8]. Two

offspring are generated by applying crossover and mutation
to the two selected parents. Parents remain in the pop-
ulation, competing with their offspring. The population of
classifiers [P ] is of fixed size N . Excess classifiers are deleted
from [P ] with probability proportional to an estimate of the
size of the action sets that the classifiers occur in. If the
classifier is sufficiently experienced and its fitness F is sig-
nificantly lower than the average fitness of classifiers in [P ],
its deletion probability is further increased.

XCS strives to evolve a complete, accurate, and maxi-
mally general problem solution represented by maximally
accurate classifiers. Each classifier specifies a solution (that
is, a class) for the problem subspace defined by its condition
part. In combination, the population evolves a complete
problem solution.

Hereby, the combination of niche reproduction with popu-
lation-wide deletion results in a distributed, local search for
the global problem solution. Locally in each action set,
XCS searches for substructures that yield maximal accu-
racy. Globally, the combination of the identified substruc-
tures forms a global classification (or payoff prediction) land-
scape. Thus, crossover needs to combine globally effective
substructures locally searching for more accurate substruc-
tures. Simple crossover can only re-sample the current local
classifier distribution. Mutation (as long as general muta-
tion is applied) may extend the current structural informa-
tion to other syntactically neighboring problem subspaces.

3. XCS’S SEARCH FOR STRUCTURE
Except for in very small problems, XCS may only begin

its evolutionary search with very general classifier condi-
tions that are then specialized via mutation and classifier
recombinations to evolve a complete, maximally accurate
problem solution.1 Specializations that yield higher accu-
rate classifiers are then propagated via reproduction. Thus,
XCS evolves progressively higher accurate classifiers as long
as the problem structure provides sufficiently accurate in-
formation. The following examples clarify XCS search and
introduce BB-hard classification problems.

The multiplexer problem [10, 37, 38] is a suitable prob-
lem to illustrate accuracy levels and consequent problem
search in XCS. Table 1 shows some exemplar classifier con-
dition parts and the corresponding average reward predic-
tion and reward prediction error estimates for classifiers with
action part 1. Accuracy somewhat guides towards the cor-
rect specializations. Initially, though, only the specialization
of the value bits increases accuracy. Once some value bits
are specialized in a condition, specialization of the address
bits decreases accuracy further.When starting with complete
generality, relying on mutation for the first specializations,
specificity initially raises more in the value attributes of the
classifiers. Only later, specificity in the address attributes
takes over [6].

The hidden parity problem [18] is harder than the multi-
plexer problem because only once all relevant attributes are
specialized, accuracy increases. Thus, we need to ensure a
sufficient initial supply of BBs, which in this case consist of
classifiers that specialize all parity bits [6]. This is similar to

1Several mechanisms in XCS additionally assure the search
for a maximally general problem solution [37, 7]. This fea-
ture of XCS is not further investigated in this paper but
explains the found highly general problem solutions.
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Table 1: Expected reward prediction and reward
prediction error measures for exemplar condition
parts in several typically-used Boolean function
problems for classifiers with action part A = 1.

6-Multiplexer Problem Hidden 4-Parity Problem
C p ε

###### 500.0 500.0
1##### 500.0 500.0
0##### 500.0 500.0
##1### 625.0 468.8
##0### 375.0 468.8
##11## 750.0 375.0
##00## 250.0 375.0
0#1### 750.0 375.0
0#0### 250.0 375.0
0#11## 1000.0 0.0
001### 1000.0 0.0
10##1# 1000.0 0.0
000### 0.0 0.0
01#0## 0.0 0.0

C p ε
##### 500.0 500.0
1#### 500.0 500.0
0#### 500.0 500.0
11### 500.0 500.0
1##1# 500.0 500.0
00### 500.0 500.0
111## 500.0 500.0
000## 500.0 500.0
101## 500.0 500.0
1110# 1000.0 0.0
0100# 1000.0 0.0
0000# 0.0 0.0
1010# 0.0 0.0
1111# 0.0 0.0

the needle-in-the-haystack problem studied in optimization
where all solutions are equal except for the global optimum.
Table 1 shows the four hidden parity problem (the fifth bit is
irrelevant). Error only drops to zero once all four attributes
are specified.

The two problems illustrate that the existence of accu-
racy guidance, that is, substructures that yield progressively
higher accuracy, depends on the problem structure. As ex-
hibited in the hidden-parity problem, sometimes it might
not be sufficient to specify one attribute to gain accuracy
but several attributes may need to be specified. In this case,
learning time becomes polynomial in the number of irrele-
vant attributes where the order of the polynomial equals the
number of attributes that need to be specified at once [6, 5].
Thus, learning may be significantly delayed.

Even worse, what if several of those accuracy blocks need
to be combined to reach optimal performance? In this case,
many subsolutions need to be maintained in parallel. Mu-
tation alone, however, would not be able to combine subso-
lutions but would need to detect the accuracy blocks rather
independently for each subsolution. Thus, mutation can be
expected to take a very long time until the complete solu-
tion is found. Only a recombination operator that combines
substructures effectively can improve learning speed in such
problems.

To illustrate the necessity of block processing, we define
a problem structure constructing a two-level hierarchy as
has been done for standard GAs and EDAs [36, 28]. On
the lower level, small-order Boolean functions are evaluated
to provide the input to the higher level. The higher level is
evaluated using the output of these functions as input. As an
example, we can consider a parity, multiplexer combination
in which the lower-level blocks are evaluated by the parity
function. The results of the parity functions are then fed
into the higher-level multiplexer function, which determines
the overall class of the problem instance.

Note that we are not interested in creating a problem to
force BB processing for its own sake. In fact, many indica-
tions in nature and engineering suggest that typical natu-
ral problems are structured in a hierarchical, decomposable

Table 2: Expected reward prediction and reward
prediction error measures for exemplar condition
parts in the hierarchical 3-parity / 6-multiplexer
problem for classifiers with action part A = 1. For
readability reasons, the lower level 3-parities are
tightly coded and separated by spaces.

C p ε
### ### ### ### ### ### 500.0 500.0
111 ### ### ### ### ### 500.0 500.0
#1# ### #11 #1# #11 ### 500.0 500.0
### ### 111 ### ### ### 625.0 468.8
### #1# ### 100 ##1 ### 625.0 468.8
### 0## ### ### 000 ### 375.0 468.8
### 111 ### 010 ### ### 750.0 375.0
##1 111 ##0 100 #0# ### 750.0 375.0
101 ### 111 ### ### ### 750.0 375.0
### 000 ### ### 000 ### 250.0 375.0
101 111 ### 100 ### ### 1000.0 0.0
101 000 111 ### ### ### 1000.0 0.0

structure [35, 11, 12]. Similarly, in the world of classification
and prediction, interacting factors can be expected to deter-
mine the result where the factors should be expected to be
modularized as well. Thus, we believe that the introduced
class of problems is an important problem class and should
be solvable by a rather general machine learning system such
as the XCS system.

How can XCS solve this problem? Clearly, the lower level
parity blocks need to be identified first to enable the dis-
covery of the higher level function. Table 2 shows exem-
plar conditions with corresponding average reward predic-
tions and prediction errors for the hierarchical 3-parity, 6-
multiplexer problem. In contrast to the plain multiplexer
problem or count ones problem, in these hierarchical prob-
lems, the lower-level BBs (here, for example, parity blocks)
need to be identified and then processed effectively. The
next section shows that only if the detected blocks are not
disrupted, XCS is able to solve the problem. Additionally,
only if the BBs are recombined effectively, XCS can solve
the problem efficiently.

In the remainder of this paper we focus on XCS perfor-
mance in the parity, multiplexer combination. Nonetheless,
any other type of Boolean function combination in the pro-
posed hierarchical manner is possible. Additionally, it is not
necessary that all BBs on the lower level are evaluated by
the same Boolean function nor do they need to be of equal
length. Certainly, though, all these potential manipulations
may lead to different population size and learning-time re-
quirements as outlined elsewhere [4].

Exemplar performance of XCS in the hierarchical 3-parity,
6-multiplexer problem is shown in Figure 1.2 It can be
seen that XCS is not able to solve the problem if uniform

2If not stated differently, all results are averaged over ten
experiments. Performance is assessed by test trials in which
no learning takes place and the better classification is cho-
sen. During learning, classifications are chosen at random.
If not stated differently, parameters were set as follows:
N = 20000, β = 0.2, α = 1, ε0 = 10, ν = 5, θGA = 25,
χ = 1.0, µ = 0.01, θdel = 20, δ = 0.1, θsub = 20, and
P# = 0.6 (see e.g. [4] for details). GA subsumption was
applied.
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Figure 1: In the loosely coded hierarchical 3-parity,
6-multiplexer problem all simple crossover operators
cause disruption (uniX= uniform crossover, oneX =
one-point crossover, twoX = two-point crossover).
Mutation alone is able to solve the problem but per-
formance is strongly delayed (noX = mutation only).
Only BB-wise uniform crossover (infX = informed
crossover) solves the problem quickly, reliably, and
effectively.

crossover is applied. Due to the disruptive effects of uni-
form crossover—as already suggested in Holland’s original
schema theory [16]—XCS is not able to process the lower
level building blocks but tends to disrupt them. Addition-
ally to standard crossover operators of uniform, one-point,
and two-point crossover, we applied an informed crossover
operator, called BB-wise uniform crossover. BB-wise uni-
form crossover is designed using the information about BBs
so that it creates new classifiers by exchanging all attributes
in each BB partition between the two parents with proba-
bility 50%. The BB-wise uniform crossover operator thus
proceeds similarly to uniform crossover, but instead of ex-
changing individual attributes, it exchanges groups of at-
tributes according to the BB structure of the problem.

XCS with BB-wise uniform crossover solves the problem
efficiently. This indicates that processing subsets of at-
tributes as opposed to individual attributes can sometimes
allow solutions to problems intractable with standard recom-
bination operators. Since many complex real-world systems
are composed of smaller sub-systems, many real-world prob-
lems can be expected to contain decomposable structures.
Decomposition exploited in XCS with standard crossover
operators is severely limited and does not yield efficient so-
lutions for problems where blocks of attributes must be pro-
cessed, as illustrated in the investigated hierarchical prob-
lems. Thus, a mechanism in XCS is necessary that is able
to identify the lower-level BB structure. Once identification
is successful, effective BB processing and recombination can
be applied.

Further studies of the complexity of the problem showed
that the performance of XCS with BB-wise uniform
crossover is nearly independent of the mutation type
used [4]. The results were also replicated in several other
hierarchical problem representations [4].

4. BUILDING BLOCK IDENTIFICATION
To meet the challenge of effective exploration in XCS by

identifying and processing important BBs, it is necessary to
develop a mechanism that can do this online. Estimation
of distribution algorithms [24, 30, 19] seem to be most ap-
propriate for this purpose for three basic reasons: (1) EDAs
enable automated identification of BBs given only a limited
sample of candidate classifiers, (2) EDAs enable the use of
prior information to make BB identification more efficient,
and (3) EDAs provide information about BBs in the form
of a probabilistic model, which can be used and modified
in several different ways in order to ensure effective explo-
ration.

The evolutionary component in XCS differs from the usual
GA application in several respects, though. Due to XCS’s
niched reproduction in action sets and since action sets are
generally rather small compared to the whole population,
it is difficult to identify BB structures using an action set
alone. On the other hand, identifying BBs using the whole
population results in a model that may not accurately en-
code classifiers in an action set. Thus, the inclusion of an
EDA mechanism in XCS is not completely straight-forward.

This section integrates the BB-identification mechanism
used in ECGA [13] to identify and process BBs. Next, the
section integrates the more powerful Bayesian network mod-
els, which are used in BOA [29]. We show that both mech-
anisms are suitable to learn the global lower-level problem
structure and can be used to generate or improve local classi-
fier offspring. The generation and improvement of the local
offspring depends on the current action set similar to the
original XCS crossover operators.

To ensure that the learned model is of appropriate com-
plexity and that it encodes only relevant dependencies,
ECGA as well as BOA use measures based on Occam’s razor
and penalized marginal likelihood in model construction to
balance model accuracy with model complexity.

4.1 BB-identification in the ECGA
To identify and combine BBs, ECGA uses marginal prod-

uct models (MPMs), which can encode non-overlapping
BBs. Considering the binary-string representation of indi-
viduals, an MPM clusters all string positions into groups of
positions. The goal of clustering string positions is to iden-
tify groups of string positions so that interactions between
string positions in each group are of much higher magnitude
than interactions between the groups. To learn the model,
the best individuals in the current population are used where
the best individuals can be selected by any standard GA se-
lection method. The model is then learned greedily to fit
the dependencies identified in the selected set of solutions
and the resulting model is sampled to generate offspring.

The greedy model building algorithm is controlled by a
minimum description length (MDL) metric, in which mod-
els that allow higher compression of data (including the de-
scription of the model) are favored. The algorithm starts
with each string position forming a separate group. In each
iteration two groups are merged that yield highest increase
in the model quality measured by the MDL metric. If no
two groups can be merged to improve the model quality,
the learning is terminated. New candidate solutions are
then generated by sampling each group of positions inde-
pendently according to the distribution of instances of this
group in the selected population.
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ECGA was shown to be able to identify BBs and solve
problems with BBs of bounded order (such as deceptive trap
problems) in a scalable manner [13, 33]. Due to its rather
straight-forward approach and the various successful appli-
cations, it appears a valuable candidate for integration into
XCS. For the integration we made use of the relevant parts
of the available ECGA implementation [22].

4.2 BB-identification in BOA
BOA uses a more powerful class of models called Bayesian

networks in order to identify, encode, and recombine BBs.
The overall learning mechanism in BOA is similar to the one
applied in ECGA. A Bayesian network is first built from a
selected population of individuals. The build network is then
sampled to generate offspring.

Bayesian networks (BNs) [26, 23] combine statistics with
graph theory providing a modular graphical model of the
analyzed data. BNs can be used to estimate and sam-
ple probability distributions as well as to do inference. A
Bayesian network is defined by its structure and parame-
ters. The structure is usually encoded by a directed acyclic
graph with the nodes corresponding to the attributes and
the edges corresponding to conditional dependencies. The
parameters are represented by a set of conditional proba-
bility tables (CPTs) specifying a conditional probability for
each variable given any instance of the variables that the
variable depends on.

As the ECGA structure assumes the independence of the
blocks, also a Bayesian network encodes a set of implicit
independence assumptions. Each variable in a BN is inde-
pendent of all its non-descendants given the values of this
variable’s parents [23]. To encode an MPM with a Bayesian
network, the network would for example contain an edge be-
tween every pair of nodes in one cluster of variables but no
edges between pairs of nodes from two different clusters of
variables. Thus, BNs are more expressive that MPMs.

Like in ECGA, a greedy algorithm is used to learn a
BN. The algorithm starts with an empty BN and itera-
tively adds that edge to the network that improves the
quality of the network maximally. Network quality is mea-
sured by a combination of the Bayesian Dirichlet metric
with likelihood equivalence [9, 14] and the Bayesian informa-
tion criterion [34]. The metrics weigh network complexity
against gained data compression following the MDL prin-
ciple. Learning terminates when no more improvement is
possible.

The sampling of a BN can be done using probabilistic
logic sampling (PLS) [15]. In PLS the variables are ordered
topologically and values are generated following the topo-
logical order. As a result, once the value of a variable xi

is to be generated, its parents Πi are assured to have been
generated already. Thus, the probabilities of different values
of xi can be directly extracted from the CPT for xi using
the known values of Πi. We made us of Pelikan’s BOA im-
plementation available on the net [27], which uses decision
graphs—a more efficient variant of BNs.

4.3 Learning Dependency Structures in XCS
BB-identification mechanisms of ECGA and BOA can be

used to identify building blocks in a population of high-
quality classifiers selected from the global population. How-
ever, relative accuracy may not be an appropriate measure
since different problem niches may currently be differently

Table 3: Sample classifiers (from the multiplexer
problem) and their corresponding binary encoding
for the structure learning mechanism. Spaces are
added for clarity. If an attribute is a don’t care
symbol, the second bit in the corresponding binary
code is chosen randomly. The class bit is flipped, if
the reward prediction is below 500.

C A p ε binary encoding
##11## 1 750.0 375.0 10 11 01 01 11 10 1

##00## 1 250.0 375.0 11 11 00 00 10 11 0

0#1### 0 250.0 375.0 00 01 11 11 11 10 1

0#0### 0 750.0 375.0 00 00 10 11 10 10 0

0#11## 1 1000.0 0.0 00 11 01 01 11 10 1

0#11## 0 1000.0 0.0 00 11 01 01 11 11 0

001### 1 1000.0 0.0 00 00 01 10 10 10 1

10##0# 0 1000.0 0.0 01 00 11 11 00 10 0

000### 1 0.0 0.0 00 00 00 11 10 10 0

01#1## 0 0.0 0.0 00 01 11 01 11 11 1

populated resulting in different relative accuracies. Conse-
quently, relative accuracy and thus fitness as the selection
criterion may be misleading in this case.

To eliminate this problem, we use a filtering mechanism
that extracts the most accurate classifiers out of the current
population. Additionally, we require a minimum experience
to avoid misleading information in young classifiers (as has
been done before in XCS). The mechanism selects those clas-
sifiers that have a minimum experience θbe, a minimum nu-
merosity θbn, and a minimum error θbε. The parameters
were set to θbe = 20, θbn = 1, θbε = 400 throughout the sub-
sequent experiments filtering out the young and high-error
classifiers. Since predictions below the average reward of
500 can be considered as predictions of the opposite class
with higher reward, we switch the class of those classifiers
that predict a reward of less than 500. Note that this class
switching can only be applied in classification problems in
which only two types of reward (e.g. 1000/0) are possible.

In order to use the available code for learning and sam-
pling probabilistic models, classifiers need to be transformed
into a binary string representation of fixed length. Since
specificity is of high importance in XCS, an explicit distinc-
tion between a specific (zero or one) and a general (don’t
care) attribute was expected to provide relevant structural
information. Thus, we decided to code each conditional at-
tribute by two bits: The first bit encodes if the attribute
is general (that is, don’t care) or specific. The second bit
encodes the value of the attribute. If the attribute is a don’t
care symbol, we choose zero or one uniformly randomly for
the second bit. The classification (class) is coded as yet an-
other bit. If there are more than two classes, more bits will
have to be used to encode the class. Encoding of the clas-
sification part may yet play a special role and future work
may indicate that it is better to build models for each classi-
fication separately. Table 3 shows a set of classifiers and the
corresponding encoding that is used to learn the probability
structure.

With a binary coded set of individuals at hand, we are
able to identify building blocks by applying the learning al-
gorithms used in ECGA or BOA to the filtered population
of binary-string classifiers. Note that since XCS applies a
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steady-state, niched GA, rebuilding the model in each iter-
ation would be computationally expensive and unnecessary.
Since the changes in each time step are small, it is more ef-
ficient to re-build the network after a fixed number of time
steps θbs, usually set to 10, 000 in our experiments. Exper-
iments showed that the threshold is only slightly problem
dependent. In general, the lower the threshold, the more
often the model is rebuilt resulting in a potential faster ad-
justment to newly discovered dependencies but also a po-
tential waste of computation time for rebuilding unchanged
dependency structures.

4.4 Sampling from the Dependency Struc-
tures

The learned dependency structure is used to generate new
classifiers instead of using standard crossover operators. As
long as the learned model reflects important BBs, it can
be expected that the resulting recombination will be less
disruptive and much more directed towards generating off-
spring that combines already successfully learned substruc-
tures effectively searching in the neighborhoods defined by
the substructures. Additionally, since the model is built
from the global population, the resulting recombination can
be expected to bias the offspring towards global structural
dependencies.

We investigate two approaches to sample the built model:
(1) sample classifiers directly from the model using Proba-
bilistic Logic Sampling (PLS) [15], and (2) use the Markov
Chain Monte Carlo (MCMC) [25] method to update the
structure of a selected classifier probabilistically based on
the model. We also consider another variant in which the
probabilities in the global model are reset to values reflect-
ing the local distribution. This is done by selecting several
classifiers in the current action set via tournament selection
and using those classifiers to determine the probabilities. In
this way, XCS uses the dependency structure encoded in the
whole population but still biases the generation of new clas-
sifiers to the current action set distribution. Figure 2 shows
the different potential methods for offspring generation us-
ing a probabilistic model.

PLS starts by ordering the attributes based on the built
Bayesian network so that no attribute can follow an at-
tribute that depends on it. Then, the values of all attributes
are generated one by one in this ordering. Because of the
ordering, all attributes that an attribute depends on must
have been generated once this attribute is going to be sam-
pled.

MCMC sampling starts with one classifier from the action
set. It proceeds by making small changes to this classifier,
accepting each change with a probability that is equal to the
ratio of the likelihood after the modification and the sum of
the likelihoods before and after the modification.

In XCS we select the classifier to serve as the starting
point for MCMC via tournament selection in the current
action set. We then apply MCMC by flipping bits in the
binary classifier representation at random and determining
the likelihood of the classifier structure before and after the
flip using the probabilistic model. If the likelihood increases
by flipping the particular bit, the probability of accepting
the change is higher than the probability of accepting a flip
that decreases the likelihood. To avoid zero likelihoods, all
conditional probabilities are linearly normalized to values
ranging from 0.05 to 0.95.
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Figure 2: Potential offspring generations by the
means of the built probabilistic model

When a global model with global parameters is used with
PLS, sampling is not biased by the action set at all and the
exploration suffers. When a global model with global pa-
rameters is used with MCMC, too many update iterations
can also be expected to be ineffective because the result-
ing classifier will reflect the global population; on the other
hand, too few updates will result in no exploration at all.
The use of the global model with local probabilities is much
more robust and performs well under all tested settings.

5. EXPERIMENTS
We evaluate XCS performance on the proposed hierarchi-

cal problems to evaluate and compare both offspring gener-
ation methods. XCS with Bayesian networks with decision
graphs of BOA will be denoted by XCS/BOA, whereas XCS
with marginal product models of ECGA will be denoted
by XCS/ECGA. XCS builds a new model structure every
10,000 learning steps (θbs = 10, 000). The model is built
from the filtered population as explained above. If the fil-
tered population is empty, no model is learned. As long as
no model is learned, XCS applies uniform crossover instead
of the model-based crossover. Mutation is applied to the
offspring classifiers generated by the model.

Figure 3 shows XCS/ECGA performance in the hierar-
chical 3-parity, 6-multiplexer problem. Model 50 or 10
specifies whether the number of classifiers used to set the
model parameters to the current action set is 50 or 10.
XCS/ECGA performs slightly worse than XCS with BB-
wise uniform crossover, because XCS/ECGA is not given in-
formation about the overall problem structure and must dis-
cover this structure automatically. However, the difference
between the performance of XCS/ECGA and XCS with BB-
wise crossover is small. Furthermore, XCS/ECGA clearly
outperforms XCS with no crossover or uniform crossover.
Due to potential slight specialization effects when optimiz-
ing model structure, XCS/ECGA becomes more mutation
rate independent.

XCS/BOA yields similarly successful solutions to the 3-
parity, 6-multiplexer problem (Figure 4). The two numbers
in the BOA settings indicate the offspring generation type:
The first number refers to the number of selected classi-
fiers used to set the probabilities to the local distribution
(0 denotes the case with probabilities computed from the
global population). The second number denotes the num-
ber of updates applied to a selected parental classifier using
MCMC sampling (0 stands for sampling directly from the
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model using PLS). BOA actually slightly outperforms BB-
wise uniform crossover when optimizing the offspring with
the global probabilities (0/18). As predicted, too many op-
timization steps with the global model probabilities are dis-
ruptive (0/90) because the offspring is too similar to the
global population. This problem does not occur when using
local probabilities independently of the sampling method
used. All settings exhibit similar performance, which is
nearly as good as that with BB-wise uniform crossover.

The results confirm that XCS can be successfully com-
bined with advanced recombination operators capable of
identifying, propagating, and combining important BBs.
The implemented XCS/ECGA and XCS/BOA combinations
showed to be able to achieve performance similar to the per-
formance with BB-wise uniform crossover, which relies on
explicit problem knowledge. XCS/ECGA and XCS/BOA
do not require any prior problem knowledge and thus allow
XCS to flexibly adjust its recombination operators to the
particular problem at hand.

6. SUMMARY AND CONCLUSIONS
In this paper we showed that also in LCSs, and the XCS

classifier system in particular, effective building block (BB)
processing can be necessary for an efficient and reliable evo-
lution of a complete problem solution. We showed that,
as in GAs, if there are strong dependencies between differ-
ent attributes, it is necessary to identify and exploit these
dependencies to enable more effective exploration. Muta-
tion alone is strongly handicapped taking a very long time
to find the optimal problem solution. Uninformed, simple
crossover operators are prone to disrupt the evolutionary
search. If XCS uses recombination operators based on prob-
abilistic modeling adopted from ECGA and BOA, it be-
comes capable of identifying and processing important BBs.
Further confirmatory results in various other binary classi-
fication problems can be found elsewhere [4]. These results
also show that the final solution is of a generality equal to
the one achieved with informed crossover.

Additionally, we highlighted the difference between LCSs
and GAs in that the model in LCSs must be biased to the
current action set, which is usually rather small. To alleviate
this problem, a combination of model learning mechanisms is
used where the dependency model is learned from the global
population in order to ensure a sufficiently large sample for
learning dependencies, but the parameters of this model are
set to the local distribution in the current action set.

In their current form, the proposed LCSs are restricted to
the binary realm. However, similarly as in GAs [3, 20, 1,
31], real-valued extensions of XCS/ECGA and XCS/BOA
for the real-valued XCSR system [39] are imaginable.

In conclusion, XCS/ECGA and XCS/BOA may be termed
competent LCSs, that is, LCSs that are able to solve bound-
edly difficult problems—those with a bounded BB size—
efficiently. The competent XCS is ready to be applied to
other problem scenarios and environments. It is expected
to work particularly well in problems in which predictions
differ in different problem subspaces but the structural prop-
erties of the subspaces are related over the whole problem
space. Future research needs to confirm these conjectures in
binary, real-valued, as well as real-world problem domains.
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