
On the Convergence of an Estimation of Distribution
Algorithm Based on Linkage Discovery and Factorization

Alden H. Wright
Computer Science

University of Montana
Missoula, Montana 59812 USA

alden.wright@umontana.edu

S.V.P.M.Sandeep Pulavarty
Computer Science

University of Montana
Missoula, Montana 59812 USA

sandeep pulavarty@yahoo.com

ABSTRACT
Estimation of distribution algorithms construct an explicit model
of the problem to be solved, and then use this model to guide the
search for good solutions. For an important class of fitness func-
tions, namely those with k-bounded epistasis, it is possible to con-
struct a complete explicit representation of the fitness function by
sampling the fitness function. A very natural model of the problem
to be solved is the Boltzmann distribution of the fitness function,
which is an exponential of the fitness normalized to a probability
distribution. As the exponentiation factor (inverse temperature) of
the Boltzmann distribution is increased, probability is increasingly
concentrated on the set of optimal points. We show that for fitness
functions of k-bounded epistasis that satisfy an additional property
called the running intersection property, an explicit computable ex-
act factorization of the Boltzmann distribution with an arbitrary ex-
ponentiation factor can be constructed. This factorization allows
the Boltzmann distribution to be efficiently sampled, which leads
to an algorithm which finds the optimum with high probability.

Categories and Subject Descriptors
1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
Search

General Terms
Evolutionary Computation, Algorithms

Keywords
genetic algorithms, estimation of distribution algorithms, Boltz-
mann distribution, factorization

1. INTRODUCTION
An additively decomposable fitness function (ADF) over bit

strings is one which can be written as a sum of simpler subfunc-
tions each of which depends only on a small number of bits. The
support set of a subfunction is the set of bits (or bit positions)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

that it depends on. An ADF is called k-epistatic if the maximum
size of the support sets of the subfunctions is k. Heckendorn and
Wright [6, 7] have described a randomized algorithm that can find
the structure of a black box k-epistatic ADF with any given success
probability. In other words, with only the prior knowledge that the
fitness is k-epistatic, the algorithm can determine an ADF decom-
position of the function by sampling the fitness function. This paper
explores one way in which this linkage detection algorithm can be
extended to an estimation of distribution algorithm.

The Boltzmann probability distribution can be described for any
fitness function f(x) [19]:

p(x) =
euf(x)

P

y euf(y)
(1)

We will call the parameter u the exponentiation factor, but tra-
ditionally it has been interpreted as the inverse temperature. As u
tends to infinity, the probability of the set of optimal points goes to
1. Thus, if one could sample from the Boltzmann distribution for
sufficiently large u, one would have a high probability of finding
the optimum point. However, this is not feasible in general because
computing the denominator in (1) would require summing over all
points in the search space.

Mühlenbein, Mahnig, and Rodriguez [19] prove a factorization
theorem that gives a condition (called the running intersection prop-
erty) on the collection of support sets of an additively decompos-
able fitness function that allow the Boltzmann distribution of an
ADF to be factorized. Once the Boltzmann distribution is factor-
ized, it can be efficiently sampled.

Our algorithm consists of three phases. The first phase is to apply
the Linkage Detection Algorithm of Heckendorn and Wright [6, 7]
to determine the ADF structure of the fitness function. The second
phase is to compute an exact (up to roundoff error) factorization of
the Boltzmann distribution of the fitness function. The third phase
is to sample the Boltzmann distribution. If the exponentiation fac-
tor of the Boltzmann distribution is sufficiently high, then there will
be a high probability of finding the optimum on each sample.

We describe our algorithm in more detail. We assume that the
search space is the set of binary strings of length `. If the fitness
function is known to be k-epistatic, then the Linkage Detection al-
gorithm of [7] can be applied. Given a success probability δ < 1, it
will find an ADF structure for the fitness function using O(`2 log `)
(assuming that k and δ are fixed) function evaluations with proba-
bility at least δ. If the ADF structure has the running intersection
property, then the factorization theorem can be applied to produce
a factorization of the Boltzmann distribution. The computation of
the factorization is O(2k`). Then an exponentiation factor must
be chosen. The exponentiation factor necessary to obtain a given

695



probability of the optimum will depend on the fitness separation
between the optimum and the suboptimum. In practice, the expo-
nentiation factor can be increased until a high probability of the
optimum is obtained by sampling. The sampling phase is O(`).

Our algorithm has the advantage that the subfunctions of the
ADF may overlap and may have different scales. Estimation of
distribution algorithms based on sampling a population may have
difficulties with ADF fitness functions where the subfunctions have
varying scales.

Our algorithm naturally finds multiple optima. When the Boltz-
mann distribution is sampled, all optimal points have equal prob-
abilities of being sampled. Further, the number of optima can be
estimated from the probability of any single optimum. Thus, the al-
gorithm may have applications in multiple objective optimization.

We describe an implementation of this algorithm. If the expo-
nentiation factor u in the Boltzmann distribution is large, then there
are potential problems with floating overflow and underflow. Our
implementation deals with these problems and allows the exponen-
tiation factor to be very large. We describe a test problem which is
what we conjecture to be a worst-case for the algorithm. We give
test results on this function and other fitness functions.

2. BACKGROUND
Genetic algorithms have been found to not be very effective at

solving optimization problems where there is a large amount of
interaction between variables [26].

One approach to solving this problem has been based on ma-
nipulating the representation of solutions in the algorithm to make
the interacting components of partial solutions less likely to be dis-
rupted by recombination operators. For example, various reorder-
ing operators have been tried, but these operators were too slow to
work in a genetic algorithms optimization framework where quick
convergence is expected. There has been considerable work on al-
gorithms that evolve the representation or ordering of a problem.
This work includes the messy GA [3], the gene expression messy
GA [11], and the linkage learning genetic algorithm (LLGA) [4].

This also led to research on methods to detect the nonlinear in-
teractions between variables independent of how this information
would be used. Munetomo and Goldberg [21] pioneered the use
of perturbational methods for this purpose. These methods do per-
turbations of solutions designed to test for a specific interaction
between variables. Munetomo and Goldberg developed perturba-
tional methods for detecting pairwise interactions. Heckendorn and
Wright [7] extended their results to deal with higher order interac-
tions, and extended results of Kargupta [12] to give an algorithm
that discovers the structure of an ADF. They show that this can be
done for a constant success probability and a constant degree of
epistasis using O(`2 log `) function evaluations (assuming k and
the success probability are constant). Streeter [25] showed that if
the ADF subfunctions are non-overlapping, then pairwise interac-
tions can be discovered using O(` log `) function evaluations.

Estimation of distribution algorithms [20] have developed into
another way to deal with interactions between variables. The gen-
eral principle is to use a set of solutions to estimate the fitness dis-
tribution, and then to generate new candidate solutions using this
estimated distribution.

The first estimation of distribution algorithms did not try to es-
timate interactions between variables. Instead, they generated new
solutions by only preserving the proportions of values of variables
in the current solution. These algorithms included PBIL [1], UMDA
[20], and the compact genetic algorithm (cGA) [5]. These algo-
rithms work well on problems without significant interactions be-
tween variables. Some algorithms that were based on pairwise in-

teractions include MIMIC of de Bonet et al [2] and BMDA of Pe-
likan and Mülenbein [24].

However, dealing with only pairwise interactions is insufficient
to solve problems with higher order interactions efficiently.

An important EDA that deals with higher order interactions is the
Bayesian optimization algorithm (BOA) of Pelikan et al [22, 23].
BOA uses Bayesian networks to represent the distribution and uses
the Bayesian Dirichlet metric to measure the quality of solutions.

The factorized distribution algorithm (FDA) [15, 16, 19, 14] is
another EDA that uses approximations of higher-order interactions.
The FDA uses a factorization of the Boltzmann distribution for the
generation of new solutions. The factorization theorem that is used
in this paper is proved in [19]. The FDA requires prior information
about the problem in the form of a problem decomposition (i. e.,
the support sets of an ADF decomposition of the fitness function).

Zhang [27] has developed infinite population models for the
UMDA and the FDA and has shown that there are uniform popu-
lations which are stable fixed points for the UMDA which are not
stable fixed points for the FDA. This suggests that by using higher-
order information about the fitness function, the FDA is better able
to escape being trapped in local optima.

Zhang and Mühlenbein [28] have shown that an infinite popu-
lation model of the FDA with real variables will converge to the
optimum for an additively decomposable fitness function with the
running intersection property.

An algorithm that learns a factorization, the LFDA, is described
but only minimally developed. A hybrid algorithm between the
FDA and the LFDA is applied to graph bipartitioning problems in
[17].

Mühlenbein and Mahnig [18, 17] point out how sampling ac-
cording to the Boltzmann distribution fulfills a conjecture by Hol-
land [8] on a good population-based search algorithm. In the fol-
lowing, P (ξ, t) is the probability of schema ξ at time t.

CONJECTURE 1. Each (schema) ξ represented in the current
population B(t) should increase (or decrease) in a rate propor-
tional to its “observed” “usefulness” µ̂ξ(t)− µ̂(t) (average fitness
of schema ξ minus average fitness of the population)

dP (ξ, t)

dt
= (µ̂ξ(t) − µ̂(t))P (ξ, t) (2)

This is Mühlenbein and Mahnig’s [18] restatement of Holland’s
conjecture ([8], page 88). Mühlenbein and Mahnig point out that
the simple genetic algorithm does not behave according to (2), but
that sampling according to the Boltzmann distribution does satisfy
(2).

3. THE LINKAGE DETECTION FACTOR-
IZATION ALGORITHM

Our Linkage Detection Factorization Algorithm (LDFA) is a com-
bination of the linkage detection algorithm of [7] and an algorithm
based on the factorization theorem. There are three phases:

Linkage Detection Factorization Algorithm:
1 Run the linkage detection algorithm to determine the ADF

structure of the fitness
2 Use the factorization theorem to compute the factorization

of the Boltzmann distribution of the fitness.
3 Sample the Boltzmann distribution r times.

696



3.1 The linkage detection algorithm
The linkage detection algorithm is a randomized algorithm that

determines a subfunction decomposition of a k-epistatic fitness func-
tion over fixed length binary strings given as a black box. In other
words, the only prior knowledge of the fitness function is that the
maximum degree of interaction between bits is of degree k. Given
a desired probability 0 < δ < 1, the algorithm determines an addi-
tive decomposition for the function with probability at least δ. The
algorithm is based on perturbation: the algorithm does specific per-
turbations of a string to test for interaction between bits. To test for
interaction between two bits, one starts with a background string
c, and then flips each bit individually and both bits together. If the
sum of the effects of flipping each bit individually, is different than
the effect of flipping both bits, then interaction between the two
bits has been discovered. In [6, 7] this kind of a test is called a
probe. A probe of order j tests for interaction among a set of j
bits and requires 2j fitness evaluations. If j < k, multiple probes
(with multiple background strings) must be done to reliably test for
interaction among a given set of j bits.

The linkage detection algorithm not only detects which subsets
of bits interact in the fitness function, it also constructs an ADF
decomposition for the fitness. We give a brief overview of how
this is done. A set of bits is called epistatic if the bits interact
relative to the fitness function. If a set of bits is epistatic and no
superset is epistatic, then the result of any probe on that set of bits
is exactly the Walsh coefficient of the fitness function whose index
is the mask for the set of bits. Once this Walsh coefficient has
been determined, then Walsh coefficients for masks of subsets can
be determined by using probes on these subsets using the same
background string as was used to determine the Walsh coefficient
of the maximal epistatic set. When the Walsh coefficients of an
ADF subfunction have been determined, then the inverse Walsh
transform can be used to obtain the standard basis description of
that subfunction. The result is a complete description of an ADF
decomposition of the fitness function.

One advantage of use of perturbation methods to determine the
structure of the fitness function is that perturbation methods are in-
sensitive to the relative scaling of the ADF subfunctions. Since the
perturbation (or probe) is specifically designed to test for the inter-
action of a set of bits, noise from subfunctions not involved with
those bits is not a problem. A second advantage is that there is a
rigorous complexity analysis of the number of function evaluations
needed [7]. If number of subfunctions grows linearly with the string
length, and if a global success probability to find all subfunctions
is wanted, then the number of function evaluations is O(`2 log `)
where ` is the string length. The number of fitness evaluations
grows exponentially with the degree k of epistasis. The number
of fitness evaluations can be reduced in practice by using a popula-
tion and by caching fitness evaluations, however the correctness of
this technique has not been proved.

If the support sets of the subfunctions of the ADF are nonover-
lapping, then the algorithm of Streeter [25] can find the pairwise
dependencies in O(` log `) time. It is clear that Streeter’s algo-
rithm can be combined with the Linkage Detection Algorithm of
[7] to find the ADF structure of an ADF fitness function whose
subfunctions do not overlap using O(` log `) function evaluations.
We have not implemented this.

The worst case for the linkage detection algorithm is when the
subfunctions are either needle-in-the-haystack functions or are lin-
ear except for one special value. As the subfunctions deviate from
these cases, fewer probes are needed. For example, if the subfunc-
tions were random, then mathematically only one probe would be
needed to test for the interaction of a set of bits. (Roundoff er-

ror problems would mean that a small number of probes should be
used.) Concepts such as deceptiveness are irrelevant. Also, due
to roundoff error, a tolerance must be set in the determination of
whether a probe result is nonzero, and so if the scaling of sub-
functions was too extreme, there could problems due to the finite
precision of floating-point arithmetic.

3.2 Computing the factorization
The factorization part of our algorithm assumes that the ADF

structure of the fitness function is known from the linkage detection
phase of the algorithm. The proof of factorization theorem of [19]
shows how to write the Boltzmann distribution of the fitness as a
product of conditional probabilities and shows how to efficiently
compute the required conditional probability tables.

We first introduce some notation. Let X be the set of bit strings of
length `. We use binary operators ∧ and ⊕ where ∧ denotes bitwise
AND, and ⊕ denotes EXCLUSIVE-OR. Let L = {0, 1, . . . , `−1}
be the set of bit positions. We will often denote a subset s of L by
its mask: the mask is a binary string m such that mi = 1 for i ∈ s
and mi = 0 for i /∈ s. Sometimes we will use the same symbol for
a set and its mask. Let Xm = {x ∈ X : x ∧ m = x}. In other
words Xm is the set of length ` bit strings that may have 1s only in
the positions masked by m.

If s ⊂ L, let πs be the projection mapping that takes a bit string
onto the substring corresponding to the bit positions in s. For ex-
ample, if ` = 5 and s = {1, 3}, πsx = πs(x0x1x2x3x4) = x1x3.
Let xs = x ∧ s (where s is interpreted as a mask). Thus, πsx is
a string of length |s| while xs is a string of length `. Furthermore,
πsx = πsxs.

If f =
Pn

i=1 fi(πsix) is an ADF, let

ei(x) = eufi(πsi
x)

If p(x) is the Boltzmann probability distribution defined by (1),
then

p(x) =

Qn

i=1 ei(x)
P

y

Qn

i=1 ei(y)
(3)

In other words, the Boltzmann distribution of an ADF is multiplica-
tively decomposable.

Let p(πsix) denote marginal probability. In other words,

p(πsix) =
X

y∈XL\si

p(xsi ⊕ y) (4)

where xsi ∈ Xsi such that πsix = πsixsi . Under conditions given
below, the Boltzmann distribution p(x) of an ADF can be factor-
ized so that p(x) can be computed efficiently from sub-functions
of the ADF [19]. Given a fitness function f that can be written as
an ADF with sub-functions fi’s whose support masks are si’s, then
we compute new sets di,bi and ci as

di :=

i
[

j=1

sj (5)

bi := si \ di−1 (6)

ci := si ∩ di−1 (7)

We set d0 := ∅. If j < i and ci ⊆ sj , i is called the successor
of sj .

THEOREM 2 (FACTORIZATION THEOREM [19]). Let

f =

n
X

i=1

fi(πsix)

697



be an ADF and p(x) be its Boltzmann distribution. If

bi 6= 0 ∀ i = 1, . . . , n; dn = L (8)

∀ i > 2 ∃j < i such that ci ⊆ sj (9)

Then

p(x) =

n
Y

i=1

p(πbix|πcix) (10)

where p(πbix|πcix) is the probability of πbix given πcix.

Conditions (8) and (9) define the running intersection prop-
erty.

Intuitively, the running intersection property says that the sup-
port sets have a tree-like structure determined by the successor
function.

It follows from [19] that if f can be written as an ADF with
running intersection property and S(i) is the successor set of si,
then for any x ∈ X

p(πbix|πcix) =

ei(xbi ⊕ xci)
Q

j∈S(i)

P

z∈Xbj
ej(z ⊕ xbi)

P

w∈Xbi
ei(w ⊕ xci)

Q

j∈S(i)

P

z∈Xbj
ej(z ⊕ w)

(11)

Example:

Consider a fitness function f which can be written in the form of
an ADF as

f(x0x1x2x3) = f1(x0x1) + f2(x1x2) + f3(x2x3)

xixj f1(x0x1) f2(x1x2) f3(x2x3) euf1 euf2 euf3

00 2.36 0.73 1.49 10.6 2.08 4.44
01 0.69 0.14 0.94 1.99 1.15 1.15
10 0.95 0.27 0.14 2.59 1.31 2.56
11 1.64 0.41 1.08 5.16 1.51 2.94

Table 1: Fitness Values.

Table 1 represents the fitness values of each sub-function fi (given
the values of πsix) and eufi values with u = 1.

For example, the probability of selecting an individual x = 0110
can be computed using equation (3) as

p(0110) =
euf1(01) ∗ euf2(11) ∗ euf3(10)

Fu

=
1.99 ∗ 1.51 ∗ 2.56

347.84
= 0.02 (12)

The probability of an individual can also be computed using the
factorization of the probability. The first step is to construct the
required sets as shown below:

We set d0 = ∅, and the other di’s, bi’s and ci’s are computed
using equations (5), (6) and (7) as

d1 = {0, 1} b1 = {0, 1} c1 = {}
d2 = {0, 1, 2} b2 = {2} c2 = {1}
d3 = {0, 1, 2, 3} b3 = {3} c3 = {2}

As the sets b1, b2 and b3 are not empty and c2 ⊆ s1, c3 ⊆ s2,
running intersection property is not violated. So the factorization

x2 p(x3 = 0|x2) p(x3 = 1|x2)
0 0.79 0.21
1 0.47 0.53

Table 2: Distribution for p(x3|x2).

x1 p(x2 = 0|x1) p(x2 = 1|x1)
0 0.65 0.35
1 0.47 0.53

Table 3: Distribution for p(x2|x1).

theorem holds. It is easy to see that the successor of s1 is 2, and
the successor of s2 is 3, and there are no successors for s3. The
conditional probability tables can be computed using (11).

For example,

p(x3 = 0|x2 = 1)

=
e3(0000 ⊕ 0010)

e3(0000 ⊕ 0010) + e3(0001 ⊕ 0010)
= 0.47

and

p(x2 = 1|x1 = 1)

=
e2(0010 ⊕ 0100) ∗

P

z∈Xb3
e3(z ⊕ 0010)

P

w∈Xb2
e2(w ⊕ 0100) ∗

P

z∈Xb3
e3(z ⊕ w)

= 0.53

The probability distributions p(x3|x2), p(x2|x1) and p(x0x1)
are tabulated in tables 2,3 and 4 respectively.

From equation (10), the probability of selecting an individual
x = x0x1x2x3 is given by

p(x) = p(x0x1)p(x2|x1)p(x3|x2) (13)

For Example,

p(0110)

= p(x0 = 0, x1 = 1)p(x2 = 1|x1 = 1)p(x3 = 0|x2 = 1)

= 0.09 ∗ 0.53 ∗ 0.47 = 0.02

This value matches with the value that is directly computed in
equation (12).

3.3 Choosing the exponentiation factor
The Boltzmann distribution depends on a parameter that we call

the exponentiation factor. This parameter is also called the in-
verse temperature. As the exponentiation factor goes to infinity,
the probability of the set of optimal points goes to 1. Thus, our al-
gorithm consists of setting the exponentiation factor to be suitably
large, and then sampling from the Boltzmann distribution. This
raises two questions: (1) how large does the exponentiation factor
need to be? (2) how does one avoid floating overflow and under-
flow problems in computing with high exponentiation factors?. We
discuss each of these questions.

Our objective in setting the exponentiation factor is to make sure
that the probability of the set of optimal points in the Boltzmann
distribution is at least C times the probability the set of less than
optimal points.

Suppose that the fitness of an optimal point is 1 + ε times the
fitness of the next best point and suppose that there are K times
as many suboptimum points as optimum points. If we want the

698



x0x1 p(x0x1)

00 0.55

01 0.09

10 0.13

11 0.23

Table 4: Probability Distribution p(x0x1) for set 1.

probability of the set of optimum points to be at least C times the
probability of the set of less than optimal points, then we want to
choose the exponentiation factor to satisfy the following inequality:

eu(1+ε) ≥ CKeu

⇐⇒ euε ≥ CK

⇐⇒ u ≥
ln C + ln K

ε

Clearly, K is bounded above by 2` − 1. To summarize:

LEMMA 3. If the fitness of the optimum is 1+ε times the fitness
of the suboptimum, and if the power-of-two exponentiation factor
u is chosen so that

u ≥
ln C + ` ln 2

ε

then the probability of the set of optimum points in (1) will be at
least C times the probability of the set of suboptimum points.

The only way to have K = 2` − 1 is to have a “needle-in-the-
haystack” fitness landscape which is not an ADF with k < `. We
conjecture that K is bounded above by 2k`. Under this conjecture,
it is sufficient to choose u so that

u ≥
ln C + k ln 2 + ln `

ε
(14)

In section 5, we give an example of a fitness function that comes
close to achieving this conjectured upper bound.

In practice, there might be some a priori knowledge of ε. For ex-
ample, if fitness was constrained to be an integer, and it was known
that the maximum fitness was at most 100, then one could choose
ε = 1/100. Or there may be an ε so that any point whose fitness
is within a factor of 1 − ε of the optimum is equivalent to being
optimal from the point of view of the user.

A moderate value of C, say 2, can be used. Then repeated sam-
pling from the Boltzmann distribution can be used to increase the
probability of finding the optimum.

Clearly, the use of (14) may lead to exponentiation factors which
would lead to overflow or underflow if equations (10) and (11) were
to be implemented with standard floating point arithmetic. Thus,
we store these quantities in logarithmic form.

In the computation of equation (11), the quantities ei(xsi) =

eufi(πsi
x) are stored in logarithmic form as ufi(πsix). The com-

putation of equation (11) involves both product and summation of
these quantities. To compute a product, we add the stored values.
To compute a summation, we must convert the stored values to
exponential form, perform the addition and then convert the final
result to logarithmic form.

In the computation of a summation, additional precautions are
taken to avoid overflows. For example, to compute

X

j∈S(i)

e
ufj(πsj

x)

the stored value could be computed as

log
X

j∈S(i)

e
ufj(πsj

x)

However, this computation might overflow. So we make the follow-
ing modifications. Define F such that eF is the maximum repre-
sentable floating point number in the language to be implemented.
Let M = maxj∈S(i) ufj(πsj x), E = F − 20 and we rescale all
the stored values to be added in such a way that the maximum value
will be E. The computation of the stored value for the summation
is done by

D + log

0

@

X

j∈S(i)

e
ufj(πsj

x)−D

1

A

where D = M − E. In other words, first D is subtracted from
each value to be added. The summation is then computed for the
exponential of these values, which will not lead to an overflow as
addition of quantities ≤ eE doesn’t exceed eF in general. We then
take the logarithm of this result. The value D that we subtracted
earlier has be added to this value in order not to change the final
result of addition.

3.4 Sampling the Boltzmann distribution
The final phase of our algorithm is to sample the Boltzmann dis-

tribution using the factorization computed and stored as described
above. The sampling applies formula (10) sequentially from i = 1
to i = n. Since c1 = ∅, the first step is to choose πb1x according
to the probability distribution p(πb1x). Note that πb1x is required
to determine πc2x, so the next step is to choose πb2x according
to the probability distribution p(πb2x|πc2x). At step i, πcix has
already been determined, and so πbix can be chosen according to
the probability distribution p(πbix|πcix). As x is chosen, we can
compute p(x) by accumulating the factors of the product of (10).

Clearly, the time necessary to compute one sample is Θ(`).
Since it is the exact Boltzmann distribution algorithm that is be-

ing sampled, the probability of sampling any optimal point is ex-
actly the same as the probability of sampling any other optimal
point. Thus, if α is the probability of the optimal set of points in
the Boltzmann distribution, and if x is any optimal point, then the
number of optimal points is α/p(x). If the exponentiation factor
is sufficiently large that α is close to 1, then 1/p(x) is a good ap-
proximation for the number of optimal points. This is illustrated in
section 5.

4. WHAT IF THE RUNNING INTERSEC-
TION PROPERTY DOES NOT HOLD?

The running intersection property is a strong condition on the
support sets of the subfunctions of the ADF decomposition of the
fitness function.

There are two basic approaches if an ordering of the support sets
with the running intersection property cannot be found. The first
method expands the support sets or until the running intersection
property is satisfied. The second method ignores some of the de-
pendencies in the ADF.

One example of the first approach is the junction tree method
which we briefly overview. The graph GADF of an ADF is de-
fined as follows: The vertices are the variables of the ADF. Two
vertices are connected by an arc if the corresponding variables are
contained in a common subfunction. In other words, two variables
are connected by an arc if there is epistatic interaction between the
variables. (This assumes that the ADF cannot be simplified.) An al-
gorithm for constructing a junction tree is briefly described in [14],

699



and is more completely described in [13, 9, 10]. The vertices of the
junction tree are clusters of vertices of GADF . The junction tree
satisfies the junction property which is equivalent to the running
intersection property. The difficulty is that the vertices of the junc-
tion tree may correspond to large subsets of variables which leads
to sizes of conditional probability tables whose size is exponential
in the string length.

Another example of the first approach is the subfunction merger
heuristic algorithm given in [14]. This has the same limitation of
possibly producing exponential size conditional probability tables.

In the second approach, either some points are dropped from the
support sets of the ADF, or some subfunctions are dropped from the
ADF, in order to achieve the running intersection property. This has
the effect of ignoring some of the variable dependencies in the fit-
ness function. We do not explore this approach in depth, but we
point our that the Linkage Detection Algorithm used in this paper
gives a lot of information which can be used to choose dependen-
cies to ignore. For example, if we want to know the strength of
interaction between two variables, we can first look at the Walsh
coefficient of the fitness whose index is the mask of the set con-
sisting of the two variables. For example, if we want to know the
magnitude of the direct interaction between x1 and x5 with ` = 5,
we would look at the Walsh coefficient whose index is the binary
string 01001 (where bit positions are labeled starting at 0 from the
left). We can also find information about higher order interactions
involving these two variables by looking at the magnitudes of the
Walsh coefficients whose indices are masks of sets containing the
two variables.

Since the Linkage Detection Algorithm gives complete informa-
tion about the fitness function, it is possible to try multiple ap-
proaches of the type described above without doing any more func-
tion evaluations. If the approach is to ignore interactions, then the
cost of computing alternative approximate factorizations is much
less than the cost of running the Linkage Detection Algorithm, so
it would be possible to try many alternate ways of ignoring interac-
tions.

5. NUMERICAL RESULTS
The purpose of this section is both to validate the theory and to

demonstrate that our algorithm can solve difficult problems.

5.1 An overlapping random needle function
The first test function is an ADF where the subfunctions are

needle-in-the-haystack functions with a randomly placed needle.
In other words, the value of the subfunction is 1 for all strings
except one randomly chosen string. Recall that this is the most
difficult kind of subfunction for the Linkage Detection Algorithm.
For this string, the value is randomly chosen to be either 1 + ε
(positive needle) or 1 − ε (negative needle) where ε = 0.1 for
our experiments. The degree of epistasis is k = 4, and there are
` − k + 1 subfunctions. The support set of the ith function fi is
{i − 1, i, . . . , i + k − 2}, so there is an overlap of k − 1 = 3 bits
between fi and fi+1. It turns out that this test function can have
many optima. In general, not all of the positive needle subfunctions
can simultaneously have the needle set. Thus, the optimal value is
somewhere between `−k+1 and (`−k+1)(1+ε), and it is almost
always the case that the suboptimum is ε less than the optimum.

It is interesting to note that if the exponentiation factor is set to
be sufficiently large (say by inequality (14) for a reasonably large
value of C), then the approximate number of optimal points can be
determined from the probability of any optimal point. The proba-
bility of all optimal points are the same, and when the factorization
is sampled, it is easy to accumulate the probability of the point that

results from the sample. As a typical example, on one run with ` =
20 and exponentiation factor 100 there were 1424 optimal points
(as determined by enumerating all points in the search space), and
the probability of an optimum as determined by factorization was
7.01528 × 10−4. Note that 1/1424 = 7.02247191011 × 10−4.
With exponentiation factor 1000, the probability of an optimum
was 7.02247191009 × 10−4.

Figure 1 shows the number of function evaluations used in run-
ning this test function for various string lengths. The number N of
order-j probes used was determined by the formula formula given
in [7]:

N ≥

(

ln(1−δ1/J )

ln(1−2j−k)
if j < k

1 if j = k
(15)

Here J is the number of order-j epistatic sets which is bounded
by `

`

k

j

´

. The success probability δ was chosen to be 0.9999. For
example, if ` = 64, k = 4, and j = 2, then N = 52.7.

Also plotted is a constant times `2 log `, the function evaluation
complexity as predicted in [7]. The graph empirically verifies that
the function-evaluation complexity of the linkage detection phase
of the algorithm is O(`2 log `).

5.2 A function with many suboptimal
The second test function is a function that comes close to real-

izing our conjectured upper bound on the ratio of the number of
suboptimal points to the number of optimal points. It is as difficult
a test function as we know for our algorithm. We assume that ` is a
multiple of k. The support sets for this function are the same as for
the previous function. This function has ` − k + 1 subfunctions of
two types.

fi(x) =

8

<

:

1 + ε if bc(x) = k
0 if bc(x) = 0
1 otherwise

9

=

;

for (i − 1) mod k = 0

fi(x) =



0 if bc(x) = 0
1 otherwise

ff

for (i − 1) mod k 6= 0

Here, bc(x) is the “bit count” of x, i. e. the number of 1s in x. It is
not hard to see that the unique optimum is the all-ones string with
fitness ` − k + 1 + kε. A suboptimum point can be obtained by
setting the bits of one of support sets si with (i−1) mod k = 0 to
be any string except the all-ones string or the all-zeros string. For
each such i, there are 2k − 2 such points, and there are `/k such i.
Thus, there are (2k − 2)`/k suboptimal points.

Figure 2 verifies the formula

u ≥
ln C + k ln 2 + ln ` − ln k

ε

which is analogous to formula (14) for this case. The string length
used was 128, k = 4, and the number of samples of the Boltzmann
distribution was 1000. The values of ε were chosen as shown in the
graph. Then trial and error was used to determine the exponenti-
ation factor that would give the probability of an optimal point as
0.99 accurate to 0.001.

We also did a number of runs of this test function with string
length 256 and verified that it consistently found the optimum with
high probability.

700



0 64 128 192 256 320 384 448
0

1

2

3

4

5

6

7
x 10

6

String Length

F
un

ct
io

n 
E

va
l

Experiment

Theory : l 2 Log(l )

Figure 1: Number of function evals for overlapping random
needle

−2 −1.5 −1 −0.5 0
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

Log (Epsilon)

co
ns

ta
nt

 −
 L

og
 (

E
xp

on
en

tia
tio

n 
F

ac
to

r) Experiment

Theory

Figure 2: Exponentiation factor as a function of epsilon for a
function with many suboptimal points

5.3 A scaled concatenation of trap functions
The third function is a concatenated scaled trap function (with

non-overlapping subfunctions). The string length was 128 and k
was 4, so there were 32 subfunctions.

To define the subfunction before scaling, we start with a counting-
ones function. Then the fitness of the all-zeros string was made 1
larger than the fitness of the all-ones string. A scaling factor of
0.7498(i−1) was applied to subfunction fi, and the order of the fi

was randomized. This scaling factor means that the subfunction
with the smallest scaling has a scale of 10−4 times the subfunction
with the largest scaling.

The optimum could be found with high reliability. For example,
for an exponentiation factor of 20000, the algorithm gave a proba-
bility of 0.877 for the optimum.

6. CONCLUSION
The Boltzmann distribution of fitness function is the function

exponentiated and then normalized into a probability distribution.
The parameter of the Boltzmann distribution is the exponentiation
factor or inverse temperature. As the exponentiation factor goes
to infinity, the probability becomes increasing concentrated around
the optimal points. It has been argued [18, 14] that sampling from
the Boltzmann distribution would be the ideal genetic algorithm.
(See the end of section 2.) Diversity is automatic since the Boltz-
mann distribution is over the entire search space. However, in gen-
eral, sampling from the Boltzmann distribution is not feasible.

This paper shows that sampling from the exact Boltzmann dis-
tribution is possible for a large class of fitness functions over fixed
length binary strings. To be in the class, a fitness function has to
satisfy 2 properties. First, it must be k-epistatic. This means that
interaction between variables (or bits) must be limited to at most
k variables. Fitness functions that satisfy this condition include
MAX k-SAT, NK-landscapes, and order-k concatenated trap and
deceptive functions. A k-epistatic fitness function is additively de-
composable into subfunctions each of which depends on at most
k bits. Second, the support sets of the subfunctions of the additive
decomposition must satisfy a technical condition called the running
intersection property. The running intersection property requires
that these support sets have a tree-like intersection property.

If the fitness function is k-epistatic, then the first phase of our
algorithm (which is taken from [6, 7]) determines the k-epistatic
structure by sampling the fitness function (which is assumed to
be given as a black box). This randomized algorithm succeeds
with any predefined success probability. Additionally, the algo-
rithm computes an additive decomposition of the fitness. If this
additive decomposition satisfies the running intersection property,
then next phase of our algorithm computes an exact factorization
of the Boltzmann distribution of the fitness function for any given
exponentiation factor. The final phase of our algorithm uses this
factorization to sample from the exact Boltzmann distribution. If
the exponentiation factor is chosen to be sufficiently large, the al-
gorithm will find optimum points with high probability. Further-
more, it will provide an accurate estimate of the number of optimal
points, and all optimal points are equally likely to be sampled.

Our algorithm has a rigorous complexity analysis if k is consid-
ered to be constant. (The algorithm is exponential in k.) The first
phase, the Linkage Detection Phase, requires O(`2 log `) function
evaluations. (If the subfunctions of the ADF decomposition of the
fitness are non-overlapping, this can be reduced to O(` log `) by
using the result of [25].) The construction of the factorization can
be done in O(`) time. Each sampling of the Boltzmann distribution
requires O(`) time.

Our implementation overcomes potential floating overflow prob-
lems with large exponentiation factors. We give formulas to guide
the choice of the exponentiation factor as a function of the fitness
separation between the optimum and suboptimum points and the
ratio of the number of optimum and suboptimum points. We give
numerical examples which demonstrate that the algorithm works in
practice.

Unlike almost all other algorithms developed in an evolutionary
computation framework, we have given conditions under which the
algorithm is guaranteed to find the optimum with any predefined
success probability in time which is polynomial in the string length.

701



7. REFERENCES
[1] S. Baluja and R. Caruana. Removing the genetics from the

standard genetic algorithm. In A. Prieditis and S. Russel,
editors, The Int. Conf. on Machine Learning 1995, pages
38–46, San Mateo, CA, 1995. Morgan Kaufmann Publishers.

[2] J. S. de Bonet, C. L. Isbell, Jr., and P. Viola. MIMIC: Finding
optima by estimating probability densities. In M. C. M. et.
al., editor, Advances in Neural Information Processing
Systems, volume 9, page 424. MIT Press, 1997.

[3] D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid,
accurate optimization of difficult optimization problems
using fast messy genetic algorithms. In S. Forrest, editor,
Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 56–64, San Mateo, California, 1993.
Morgan Kaufman.

[4] G. R. Harik and D. E. Goldberg. Learning linkage. In R. K.
Belew and M. D. Vose, editors, Foundations of Genetic
Algorithms 4, pages 247–262. Morgan Kaufmann, San
Francisco, CA, 1997.

[5] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact
genetic algorithm. IEEE-EC, 3(4):287, November 1999.

[6] R. E. Heckendorn and A. H. Wright. Efficient linkage
discovery by limited probing. In Erick Cantú Paz et al.,
editor, Genetic and Evolutionary Computation – GECCO
2003, Lecture Notes in Computer Science LNCS 2724,
pages 1003–10014. Springer Verlag, 2003.

[7] R. E. Heckendorn and A. H. Wright. Efficient linkage
discovery by limited probing. Evolutionary Computation,
12(4):517–545, 2004.

[8] J. Holland. Adapdation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, Michigan, 1975.

[9] C. Huang and A. Darwiche. Inference in belief networks: A
procedural guide. International Journal of Approximate
Reasoning, 15(3):225–263, 1996.

[10] F. V. Jensen and F. Jensen. Optimal junction trees. In
Proceedings of the 10th conference on uncertainty in
artificial intelligence, pages 360–366, Seattle, 1994.

[11] H. Kargupta. The gene expression messy genetic algorithm.
In International Conference on Evolutionary Computation,
pages 814–819, 1996.

[12] H. Kargupta and B. Park. Gene expression and fast
construction of distributed evolutionary representation.
Evolutionary Computation, 9(1):43–69, 2001.

[13] S. L. Lauritzen. Graphical Models. Clarendon Press, Oxford,
1996.

[14] H. Mühlenbein and R. Höns. The estimation of distributions
and the maximum relative entropy principle. Evolutionary
Computation, 13(1):1–28, 2005.

[15] H. Mühlenbein and T. Mahnig. Convergence theory and
application of the factorized distribution algorithm. Journal
of Computing and Information Technology, 7(1):19–32,
1999.

[16] H. Mühlenbein and T. Mahnig. FDA – a scalable
evolutionary algorithm for the optimization of additively
decomposed functions. Evolutionary Computation,
7(4):353–376, 1999.

[17] H. Mühlenbein and T. Mahnig. Evolutionary optimization
and the estimation of search distributions with applications
to graph bipartitioning. International Journal of Approximate
Reasoning, 31:157–192, 2002.

[18] H. Mühlenbein and T. Mahnig. Evolutionary algorithms and
the Boltzmann distribution. In Foundations of genetic
algorithms (FOGA-7), pages 133–150, San Mateo, 2003.
Morgan Kaufmann.

[19] H. Mühlenbein, T. Mahnig, and A. O. Rodriguez. Schemata,
distributions and graphical models in evolutionary
optimization. Journal of Heuristics, 5:215–247, 1999.

[20] H. Mühlenbein and G. Paaß. From recombination of genes to
the estimation of distributions I, binary parameters. In
Lecture Notes in Computer Science 1411: Parallel Problem
Solving from Nature PPSN IV, 1996, pages 178–187.
Springer Verlag, 1996.

[21] M. Munetomo and D. E. Goldberg. Linkage identification by
non-monotonicity detection for overla pping functions.
Evolutionary Computation, 7(4):377–398, 1999.

[22] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The
Bayesian optimization algorithm. In W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, editors, Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-99, volume I, pages
525–532, Orlando, FL, 13-17 1999. Morgan Kaufmann
Publishers, San Fransisco, CA.

[23] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. Linkage
problem, distribution estimation, and bayesian networks.
Evolutionary Computation, 8(3):311–340, 2000.

[24] M. Pelikan and H. Mühlenbein. The bivariate marginal
distribution algorithm. In R. Roy, T. Furuhashi, and P. K.
Chawdhry, editors, Advances in Soft Computing -
Engineering Design and Manufacturing, pages 521–535,
London, 1999. Springer-Verlag.

[25] M. J. Streeter. Upper bounds on the time and space
complexity of optimizing additively separable functions. In
Kalyanmoy Deb et al., editor, Genetic and Evolutionary
Computation – GECCO 2003, procedings part II, Lecture
Notes in Computer Science LNCS 3103, pages 186–197.
Springer Verlag, 2004.

[26] D. Thierens. Analysis and design of genetic algorithms. PhD
thesis, Katholieke Universiteit Leuven, Leuven, Belgium,
1995.

[27] Q. Zhang. On stability of fixed points of limit models of
univariate marginal distribution algorithm and factorized
distribution algorithm. IEEE Transations on Evolutionary
Computation, 8(1):80–93, 2004.

[28] Q. Zhang and H. Mühlenbein. On the convergence of a class
of estimation of distribution algoirthms. IEEE Transations
on Evolutionary Computation, 8(2):127–136, 2004.

702


