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ABSTRACT
This paper presents a kernel density estimation method by
means of real-coded crossovers. Estimation of density al-
gorithms (EDAs) are evolutionary optimization techniques,
which determine the sampling strategy by means of a para-
metric probabilistic density function estimated from the pop-
ulation. Real-coded Genetic Algorithm (RCGA) does not
explicitly estimate any probabilistic distribution, however,
the probabilistic model of the population is implicitly esti-
mated by crossovers and the sampling strategy is determined
by this implicit probabilistic model. Based on this under-
standing, we propose a novel density estimation algorithm
by using crossovers as nonparametric kernels and apply this
kernel density estimation to the Gaussian Mixture model-
ing. We show that the proposed method is superior in the
robustness of the computation and in the accuracy of the
estimation by the comparison of conventional EM estima-
tion.

Categories and Subject Descriptors
F.2.1 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity numerical algorithms and prob-
lems

General Terms
Algorithms

Keywords
Real-coded GA, crossover, kernel density estimation, Gaus-
sian Mixture Model, Expectation Maximization

1. INTRODUCTION
In applying Genetic Algorithms to function optimization

in the continuous search space, Real-coded Genetic Algo-
rithms (RCGAs) which use the real-number vector repre-
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sentation have been proposed and reported to show better
performance than bit-string GAs[4][10]. In the background
of the development of RCGAs, great efforts have been made
not only in the improvement of the algorithms but also
in the establishment of guidelines for designing real-coded
crossovers.

In [6], a guideline for the design of real-coded crossover,
”Preservation of statistics” has been proposed. This guide-
line means that the distribution of offspring generated by
crossovers should preserve the statistics such as the mean
vector and the covariance matrix of the parental population.
Several real-coded crossovers have been proposed following
this guideline and the validity thereof has been verified[6][5].
This guideline regards that a real-coded crossover is an op-
erator which maps the probability distribution of parents to
that of offspring.

As another evolutionary optimization techniques consider-
ing the probabilistic distribution of population, Estimation
of Distribution Algorithms (EDAs) have also been devel-
oped. In EDAs, the probabilistic distribution is explicitly
estimated by various methods and the sampling strategy is
determined by the distribution. In this paper, we focus on
the fact that the search framework of EDAs are mainly de-
signed by the following two steps, (1) the explicit estimation
of a parametric or semi-parametric probabilistic density dis-
tribution, (2) the sampling from the estimated distribution.
To the contrary, the search algorithm of RCGAs is mainly
designed by the following two steps, (1) the implicit esti-
mation of non-parametric probabilistic density distribution,
(2) the sampling from the estimated distribution.

In comparison of the two evolutionary algorithms, they
are totally designed under a similar principal. Although
great attentions have ever been paid only to the search per-
formance of algorithms in conventional studies, we focus on
the estimation performance of real-coded crossovers in this
paper. Then, we show that real-coded crossovers satisfies
the following facts:

• Real-coded crossovers can be interpreted as a nonpara-
metric kernel density estimator (KDE)

• If a crossover satisfies the preservation of statistics,
the KDE using the crossover corresponds to the ap-
proximation of the maximum likelihood estimation of
Gaussian distribution

Then we show that KDE can be actually designed from
crossover Unimodal Normal Distribution Crossover (UNDX-
m)[6] and Simplex Crossover (SPX) [5].
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In [13], a KDE using Constructive Elliptical Basis Func-
tion (CEBF) have been introduced and an EM algorithm
using CEBF have been proposed. We show that CEBF and
a kernel based on UNDX are geometrically equivalent in
this paper. Then, we propose an EM algorithm using KDE
based on crossovers for the Gaussian Mixture Model (GMM)
by generalizing conventional EM algorithm.

Experiments show that EM estimation using KDE of cros-
sovers is superior in robustness and the estimation accuracy.
Add to this, it performs better than conventional EM in the
sense that the estimation result does not tend to be captured
in local optima. The effectiveness of EM using crossovers is
shown by experiments of artificial data modeling problem
and letter recognition problem.

RCGAs are widely used for large-scale applications and
the performance thereof is superior even in the optimization
of high dimension function. Though RCGAs do not estimate
the density model in the procedure, it is considered that the
performance of implicit density estimation does not degrades
even in high dimensionality.

Based on the viewpoint shown above, our motivation in
this paper is to show the applicability of RCGAs not only
to optimization but also to density estimation. The prob-
abilistic density estimation is often needed in the field of
data analytics such as classification algorithms, clustering
techniques and data compression methods.

Another motivation is to show an unified framework for
RCGAs and EDAs based on the understanding that the
probabilistic model estimated by real-coded crossovers is ap-
proximately corresponds to the maximum likelihood estima-
tion of Gaussian model in a nonparametric manner. This
framework contributes to bridge a gap between RCGAs and
EDAs in continuous optimization.

In section 2, we clarify the role of real-coded crossovers by
comparing the difference of the sampling strategy of RCGAs
and EDAs in terms of probabilistic density function. Then,
we show that real-coded crossovers can be interpreted as a
kernel density estimator. In section 3, we explain algorithms
of nonparametric kernels using two real-coded crossovers,
UNDX-m and SPX. Section 4 describes a procedure of EM
algorithm for the Gaussian Mixture Model using KDE of
crossovers. Section 5 is experiments using benchmark prob-
lems and a letter recognition problem. Section 6 concludes
this paper.

2. UNIFIED UNDERSTANDING OF RCGA
AND EDA

2.1 Guidelines for Real-coded Crossovers
In [6], a guideline for designing real-coded crossovers that

offspring generated by crossover operators should preserve
the statistics such as the mean vector and the covariance
matrix of the parental population. This guideline is called
Preservation of statistics. This is because if the offspring
generated by a crossover distribute narrower than the par-
ents, it may let the optimum escape. To the contrary, if the
offspring generated by a crossover distribute wider, it wastes
computation time in searching hopeless region. Hence, sam-
pling new points in the region where the parents reside will
be an appropriate choice. Here, the population of RCGA is
regarded as a probabilistic density function (pdf).

Actually, the population of GA does not always cover

the interesting region, therefore, mutations or exploration-
directed search operators[12] are optionally used in order
to make the performance robustly. [1] has also mentioned
about this point. However, in this paper, we regard real-
coded crossovers as sampling operators that satisfy the preser-
vation of statistics and do not add any extrapolative search
bias to the offspring distribution.

2.2 The Search Framework of EDA
EDA is evolutionary algorithms that generate offspring

randomly following a pdf[7]. Although many variants of
EDAs have been proposed not only for the continuous opti-
mization problem but the combinatorial optimization prob-
lem, we only focus on continuous EDAs in this paper. A
basic framework of continuous EDA for cost minimization
is shown in [9].

Let Pθ(�) be a pdf where the density is uniform in the
region such that f(�) < θ and the density is zero in the
other region. Initial distribution is normally a uniform dis-
tribution over the whole search space. Then, the procedure
of EDA is described as follows:

[EDA]

1. Generate sample set Xθ(0) drawn from the initial distribu-

tion P̂θ(0)(�)

2. Estimate pdf P̂θ(t)(�) from sample set Xθ(t)

3. Generate sample set Zθ(t) drawn from P̂θ(t)(�)

4. Choose new sample set Xθ(t+1)(θ(t+1) < θ(t)) from sample
set Xθ(t) and Zθ(t)

5. t← t + 1 and jump to 2.

Here, P̂θ(t)(�) is an estimation of Pθ(t)(�). When the

estimation of P̂θ(t)(�) is accurate in all steps, then the op-

timum �∗ can be obtained from P̂θ(t)(�). That is, when

� ∼ P̂θ(t) and t → ∞, then � → �∗. Although many vari-
ants of EDAs using different estimation methods of Pθ(t)(�)
and different generation alternation methods of new pop-
ulation Xθ(t+1) have been proposed, BEA(Bayesian Evolu-
tionary Algorithm)[16], BOA(Bayesian Optimization Algo-
rithm) [11] and BGA(Breeder Genetic Algorithm)[9] have
basically close framework.

In the step 2, the probabilistic model P̂θ(t)(�) that de-
cides the sampling strategy of the next generation is esti-
mated from the current population Xθ(t). This means that

P̂θ(t)(�) should be estimated such that Z and X distributes
in the similar region under the assumption that the current
population X distributes in the promising region to search
for optimum. This search strategy of P̂θ(t)(�) is almost the
same as the preservation of statistics shown in previous sec-
tion.

2.3 The Search Strategy of RCGA
In this section, we compare RCGAs and EDAs in terms of

the estimation of the pdf and clarify the role of crossovers.
The procedure of RCGAs is described as follows:

[RCGA]

1. Generate parental population(initial population)X0(t=0)

2. Generate offspring Zt from the parental population Xt(crossover)

3. Choose new population Xt+1 from Xt and Zt(generation
alternation)

4. t← t + 1 and jump to 2.
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Figure 1: Probabilistic density estimation of EDA
and RCGA.

Here, we can see that both RCGAs and EDAs have simi-
lar framework, however, the manner of model estimation is
different.

EDAs use parametric and semi-parametric models as P ,
for example, Gaussian distribution[7] or Latent variable mod-
els[2] and so on.. On the other hand, RCGA does not ex-
plicitly estimate any probabilistic model in the procedure
and the offspring Z is generated directly from X by using
crossovers. However, from the viewpoint of the preservation
of statistics, the sampling strategy of crossovers is deter-
mined considering a pdf. This indicate that algorithm of
crossovers implicitly include the estimation of a pdf. Fig. 1
shows the conceptual difference between RCGAs and EDAs.

2.4 Probabilistic Density Estimation of
Crossover

In this section, the implicit estimation of probabilistic
density functions by crossovers are formulated and we show
that crossovers are interpreted as a kind of nonparametric
kernel density estimation(KDE).

Given a finite number of data points X = {� |� ∈ �d}
drawn from an unknown probabilistic density function P (�),
we consider an estimation problem of an underlying P (�).
Suppose that Xl = {�1, ...,�m} is a set of parents used for a
crossover chosen randomly from X. m is the number of the
parent. We regard the generation of offspring by a crossover
C as sampling from a pdf. Then the crossover is formulated
in the form,

� ∼ C(�; Xl), (1)

where C is a pdf which is characterized by parents Xl and
� is an offspring drawn from C. The set of offspring Z is
generated by the iteration of the sampling from C. When
we assume that Z is drawn from a pdf, the pdf is described
as a mixture model of C as follows:

� ∼
�K

l=1 C(�; Xl)

K
, (2)

where K is the number of the iteration of the crossover C.
When C satisfies the preservation of statistics, the following
equations are valid.

〈�〉 = 〈�〉 (3)

〈(�− 〈�〉)T (�− 〈�〉)〉 = 〈(� − 〈�〉)T (� − 〈�〉)〉 (4)

RHS of (2) can be considered as a kind of kernel density
estimation(KDE). In KDE, the data density is estimated by

overlapping of large number of kernels whose location and
the form is different dependent on the given data point. For
instance, Radial Basis Function (RBF) is defined as a normal
distribution with a fixed variance and its mean vector is set
at the location of each data point in the data set. When we
regard the crossover C as a kind of kernel, the pdf in eq. (2)
can be considered as KDE from data set X. We call the pdf
of crossovers C call crossover kernel.

The estimation accuracy of the KDE is normally mea-
sured by mean squared error (MSE) between the estima-
tion density and the true density. MSE is normally mini-
mized by some iterative procedure. To the contrary, KDE
by crossover kernel preserves the mean vector and the covari-
ance matrix of data set X as shown in eq. 3 and 4 instead of
the minimization of MSE without any iteration procedure.
In this sense, KDE by crossover estimate the underlying dis-
tribution P (�) as an approximation of the maximum like-
lihood estimation of Gaussian distribution. Please notice
that the estimated density can be obtained by the model
but the model parameters, that is, the mean vector and the
covariance matrix, cannot be obtained from the model.

The discussion in this section is mentioned about the op-
timization on continuous domain, however, the same discus-
sion is also applicable to the combinatorial optimization.

3. CROSSOVER AS KERNEL DENSITY
ESTIMATOR

In this section, we show how to design crossover kernels
based on conventional crossovers, UNDX-m and SPX.

3.1 UNDX Kernel
Firstly, the algorithm of UNDX-m is shown briefly. Let

the parents be Xl = {�1, ...,�m+2}. We call Xl kernel con-
struction set. Let the center of parental vectors �1, ...,�m+1

be �, the difference vector of �i and � be �i = �i−�. Let D
be the length of the component of �m+2. Let �1, ...,�n−m

be an orthogonal bases of the subspace orthogonal to the
subspace spanned by �1, ...,�m. Then, offspring vector �c

is generated as follows:

� = �+
m�

i=1

wi�
i +

n−m�
i=1

viD�
i, (5)

where wi, vi is a random number drawn from a normal
distribution N(0, σ2

ξ), N(0, σ2
η) respectively. Fig. 2 shows

the distribution of offspring generated by UNDX-m. When
m = n, the 3rd term in eq. 5 is zero and rewritten in the
form

� = �+

n�
i=1

wi�
i. (6)

When σξ = α/
√

m, α = 1, it is theoretical proved that the
mean vector and the covariance is preserved[6].

Conversely, we formulate the pdf of UNDX CUNDX . A
basis transform matrix Dl of kernel construction set Xl is
defined as follows:

�
l = (

�1

h|�1|2 , ...,
�d

h|�d|2 ). (7)

Here, h is called a smoothing parameter. Then, the crossover
kernel of UNDX is described as follows:
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Figure 2: The density distribution of crossover
UNDX-m and SPX.

CUNDX(�; Xl) =
1

2πd/2
×

exp{− (�l−1
(�− �))T (�l−1

(�− �))

2
}. (8)

We call eq. (8) UNDX kernel. In data set X, the proba-
bilistic model estimated by UNDX kernel is written in the
form

P̃UNDX(�; X) =

�
l CUNDX(�; Xl)

K
. (9)

When the center is computed as the center of the popu-
lation � =

�
i �

i/N instead of the center of the parents �,
the crossover is written in the form,

� = �+
n�

i=1

wi�
i. (10)

The preservation of the statistics is similarly shown in this
crossover and this probabilistic density function is written
in the form

CCEBF(�; Xl,�) =

1

2πd/2
exp{− (�l−1

(�− �))T (�l−1
(�− �))

2
},(11)

This pdf is proposed as a kernel called Constructive El-
liptical Basis Function (CEBF)[13]. The estimation model
from X by CEBFs is written in the form,

P̃CEBF(�; X) =

�
l CCEBF(�; Xl)

K
. (12)

On CUNDX and CCEBF , the following theorem is valid.

Theorem 1 : Let Xl be a kernel construction set, which
is chosen uniform randomly from X. Let Z be a sample
set generated from P̃ (�), which is estimated by CUNDX or
CCEBF. When h = α/

√
m and α = 1, � ∈ Z holds the

following statistical characters,

〈�〉 = 〈�〉 (13)

〈(�− 〈�〉)(�− 〈�〉)T 〉 = 〈(� − 〈�〉)(� − 〈�〉)T 〉, (14)

The proof is shown in appendix and this is obtained by a
slight modification shown in [6]. By setting at h = α/

√
m, α =

1, X and Z have the same statistics. Please notice that P̃ (�)
is estimated without estimating the mean vector and the co-
variance matrix of X.

Usually, the smoothing parameter h must be estimated by
some iterative procedure in KDE, however, h is automati-
cally obtained in crossover kernel due to the preservation of
statistics.

CUNDX(�; Xl) and CCEBF(�; Xl) are sorts of a normal
distribution kernel. As a normal distribution kernel func-
tion, Radial Basis Function(RBF) is well known, which is
written in the form,

CRBF(�;�i) =
1

2πd/2
× exp{− (�− �i)T (�− �i)

2
}. (15)

Then, estimation by RBFs written in the form

P̃RBF(�;�i) =

�
i CRBF(�;�i)

K
, (16)

where P̃RBF(�; X) preserves the mean vector of X but

does not the covariance matrix. In this sense, CUNDX(�; Xi)

and CCEBF(�; Xi) is interpreted as an extension of RBF
to preserve the covariance matrix. Fig. 3 shows conceptual
illustrations KDE of UNDX kernel, CEBF and RBF.

3.2 SPX Kernel
Next, we design a kernel based on crossover SPX. The

offspring of SPX are drawn from a uniform distribution in
the simplex which is spanned by all �i. Then, SPX kernel
is written in the form,

CSPX(�; X) =

�
1/VS(ε) if x ∈ S ,

0 otherwise,
(17)

where S is the simplex and VS(ε) is the volume of S. See
[5] in detail.

When the center is computed as the center of the popula-
tion � =

�
i xi/N instead of the center of the parents �, this

kernel also preserves the statistics of X. In this paper, we
call this kernel Constructive Simplex Basis Function(CSBF).

On data set X, the probabilistic model is similarly esti-
mated as well as eq. (9) and (12). By setting smoothing
parameter of SPX at ε =

√
d + 2 in CSPX and CCSBF, it

is also proven that X and Z have approximately the same
statistics by using the same technique shown in the theorem
1 and [5].

CSPX(�; Xi) and CCSBF(�; Xi) is sorts of a uniform
kernel based on data points. As a kernel based on uniform
distribution, uniform kernel is written in the form,

CUni(�;�i) =

�
1/hd if � ∈ [xi − h/2, xi + h/2]d

0 otherwise.
(18)

Nonparametric model of X estimated by uniform kernel
is represented in the form

P̃Uni(�; X) =

�
i CUni(�;�i)

K
, (19)

where P̃Uni(�; X) preserves the mean vector of X but

does not the covariance matrix. In this sense, CSPX(�; Xi)

and CCSBF(�; Xi) is interpreted as an extension of the uni-
form kernel to preserve covariance matrices.

In this paper, we call crossovers whose basis vectors are
computed as the difference vectors between the parent and
the center of the parent parent centric crossovers. To the
Contrary, crossovers whose basis vectors are computed as
the difference vectors between the parent and the center of
the population population centric crossovers.
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 UNDX kernel
(parent centric)

         CBEF
(population centric)

RBF

 SPX kernel
(parent centric)

         CSEF
(population centric)

Uniform Kernel

Figure 3: Density estimation by crossover kernels
and conventional kernels.

The nonparametric estimation of P (�) by a kernel C(�; Xi),
is not a Gaussian distribution but has the same statistics as
P (�). Strictly speaking, this fact does not necessarily means

that P̃ (�) is an approximation of P (�), however, P̃ (�) well
preserves the statistical character of P (�). Therefore, it is

expected that P̃ (�) is an approximation of P (�) as Gaus-
sian.

4. MIXTURE MODELING USING
CROSSOVER KERNELS

4.1 Our Viewpoint
In previous section, we explain that the design of crossover

kernels and clarify that the nonparametric KDE using cross-
over kernels is a kind of an approximation of Gaussian dis-
tribution while the model parameters does not have to be
computed explicitly. The benefit to use crossover kernels
for the estimation of Gaussian model is not large because
maximum likelihood estimator of the mean vector and the
covariance matrix is easily obtained even in high dimension.

On the other hand, in the estimation of Gaussian Mixture
Model (GMM), crossover kernels contribute to the robust
estimation. GMM is a probabilistic model that consists of
a linear combination of Gaussian distributions.

Expectation Maximization (EM) algorithm is often uti-
lized for the estimation of GMMs[3]. EM algorithms es-
timate the probabilistic model from incomplete data set,
which includes unobservable variables. EM estimation in
high dimensional GMM suffers from the instability of the
computation. In addition, though EM algorithm theoreti-
cally assures the local convergence property, the landscape
of the likelihood has many local optima and the estimation
result is likely to be captured in one of them[14]. EM esti-
mation based on crossover kernels is expected to be stable
in computation and to be able to escape from local optima
even in high dimensionality because the explicit parameter
estimation is not required.

In this section, we show that the procedure of an EM
algorithm using crossover kernels.

4.2 The Gaussian Mixture Model and the EM
algorithm

We consider a problem of modeling a probabilistic den-
sity function, P (�) from X again. Gaussian Mixture Model
(GMM) is described in the form,

P (�; Θ) =
k�

i=1

αini(�;�i,Σi), (20)

where ni is a multivariate Gaussian distribution with mean
vector �i and covariance matrix Σi, k denotes the number
of mixed component, αi denotes a weight parameter of each
components and Θ = (αi,�i,Σi)k

i=1 denotes the model pa-
rameter.

The EM algorithm is generally used to determine the
model parameters Θ from X. Let w(i|�j)(i = 1, ..., k, j =
1, ..., N) be class conditional probabilities with which the j-
th data xj is generated from the i-th component , ni(�j ;�

i,Σi).
Estimation of the mixing parameter αi, the mean vector

�i and the covariance matrix Σi is carried out through it-
erations of sequential parameter updating by the following
equations for each component i. Through these operations,
the log likelihood of the model

�N
j=1 log P (X|Θ) converges

to the local maximum[15].

w(i|�j) =
α̂ini(�j |�̂i, Σ̂

i
)�k

l=1 α̂lnl(�i|�̂l, Σ̂l)
(21)

α̂i =
1

N

N�
j=1

w(i|�j) (22)

�̂i =

�N
j=1 w(i|�j)�j�N

j=1 w(i|�j)
(23)

Σ̂i =

�N
j=1 w(i|�j)(�j − �i)T (�j − �i)�N

j=1 w(i|�j)
. (24)

EM estimation in high dimensional GMM suffers from the
instability of the computation mainly because of the compu-
tation of the inverse of ill-conditioned weighted covariance
and the divergence of the likelihood.

4.3 EM Based on Crossover Kernels
By using crossover kernels instead of maximum likelihood

estimation shown in eq. (23) and (24), the parameters �̂i, Σ̂i

do not have to be estimated explicitly and the density of the
Gaussian is computed directly. However, please notice that
the mean vector and the covariance matrix estimated here is
weighted estimator. Unfortunately, parent centric crossovers
cannot be used for the estimation of weighted mean vector
and the covariance matrix, however, following theorem is
valid for population centric crossovers.

Theorem 2 : Let wj(j = 1, ..., N) be a weight param-
eter which is assigned to each data �j(j = 1, ..., N). Let
Xl

w(i = 1, ..., s) be a kernel construction set, which is cho-
sen randomly from X with the probability proportional to
wj . Let Z be a sample set generated from P̃ (�), which is
estimated by population centric crossover kernels, CEBF or
CSBF constructed from Xl

w. When smoothing parameter is
set to satisfy the preservation of statistics, � ∈ Z holds fol-
lowing statistical characters,
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Figure 4: Top: the shape of CEBFs, bottom: the contour of the estimated density function (d = 2, k = 3, from
left to right t = 1, 5, 10, 25).

〈�〉w = 〈�〉 (25)

〈(�− 〈�〉w)(�− 〈�〉w)T 〉w = 〈(� − 〈�〉)(� − 〈�〉)T 〉, (26)

where 〈·〉w stands for weighted expectation operation of

w, that is, 〈�〉w =
�N

j=1 wj�
j/
�N

j=1 wj . The proof of this
theorem is shown in appendix.

Now, we can compute the density ni(�|�̂i, Σ̂
i
) with a

weighted mean vector and a weighted covariance by crossover
kernels without computing the weighted covariance. By
choosing kernel construction sets Xl randomly from X with
the probability proportional to wj , the weighted density es-
timation is performed by crossover kernels as follows:

P̃ (�) =

�
l C(�|Xl

w ,�)

K
. (27)

Then, the update equations of EM algorithm using crossover
kernels can be modified as follows:

ñi(�j) =

�s
l=1 C(�|Xl,�i)

s
, (28)

w(i|�j) =
α̂iñi(�j)�k
l=1 α̂lñl(�j)

, (29)

α̂i =
1

N

N�
j=1

w(i|�j), (30)

�̂i =

�N
j=1 w(i|�j)�j�N

j=1 w(i|�j)
. (31)

From these equations, EM algorithm using crossover ker-
nels is designed as follows:

[EM based on KDE]

1. Initialize w(0)(i|�j) randomly (t = 0).

2. Estimate α̂l by Eq. 30.

3. Estimate � =
�

i w(i|�j)�j/N by Eq. 31..

4. Choose Xi
w randomly with the probability proportional to

w(t)(i|�j).

5. Construct crossover kernel Ci(�|�, Xi
w) and obtain density

ñi(�j) by Eq. 28.

6. Estimate w(t)(i|�j) by Eq. 29.

7. If terminate conditions are satisfied, then terminate. Else
t = t + 1 and jump to step 2.

Although the local optimal convergence is assured theo-
retically in EM, escaping from local maxima is impossible
since the update is carried out in a deterministic manner.
Conversely, in EM using crossover kernels, it is possible to
escape from local maxima taking account of the perturba-
tion of ñi(�j) because of the randomness in selecting kernel
construction set.

If update in Eq. 29 is carried out on every iteration, the es-
timation results vibrates because the kernel construction set
is chosen randomly from the data set. Therefore, by bound-
ing the difference of w(t)(i|�j), the fluctuation of w(t)(i|�j)
is decreased and the estimation converges stably.

Fig. 4 show the shapes of CEBFs and the contours of the
estimated density function in the estimation of EM using
CEBF. As the iteration number grows, the region CEBFs
cover separates to each Gaussian data cluster. The number
of kernel used in this experiment is 90 and the iterations are
terminated at t = 30.

5. EXPERIMENTS
In this section, we compare the estimation results of con-

ventional EM and EM using crossover kernels for Gaussian
Mixtures. Experiment 1 is the estimation of Gaussian mix-
ture from artificially generated data sets, where the estima-
tion accuracy and the computation time are compared. Ex-
periment 2 is a letter recognition problem. EM algorithms
estimate the classification model as Gaussian mixtures and
the training error and the test error are compared. In both
experiments, CEBF is used as a crossover kernel.

5.1 Experiment 1 : Artificial Dataset
The data set is generated as follows. The mean vector �i

and the covariance matrix Σi of each component is chosen
randomly satisfying the following inequality
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|�i − �
j | < c

√
n max{

�
traceΣi,

�
traceΣj}, (32)

for all i, j(i �= j). Parameter c determines the degree of
overlapping of each components. 10d data points per one
component were generated. For instance, 10-dimension 3-
component problem holds 300 data points. The number of
components k is given in advance for all algorithms. In EM
using crossover kernel, K, the number of overlapped kernels,
is set at 30k by preliminary experiments.

We compare conventional EM and EM using crossover
kernel (we call this crossover kernel EM) in terms of the es-
timation accuracy and the time to convergence. Here, the
estimation accuracy is the difference between the log like-
lihood of the true model and the estimated model. Since
the probabilistic model obtained by crossover kernel EM
is a nonparametric one, we convert the model to a Gaus-
sian mixture model by computing the weighted mean vec-
tors and weighted covariance matrices from ŵ(i|�j) of the
last iteration. Then we compare the log likelihood. Please
notice that crossover kernel EM does not require the con-
struction of the GMM and computation of the likelihood
on every update. On each trial, the Gaussian mixture sat-
isfying Eq.32(c = 3.0) is newly generated randomly. Both
algorithms are implemented by GNU-C++ and the experi-
ments are carried out on Pentium3-1Ghz.

In this experiment, the number of component is k = 2, 4
and the dimension is d = 10, 20, 30, 40. Figure 5 left and
right show the estimation accuracy and the computation
time, respectively.
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Figure 5: Left: The difference between the log
likelihood of the true model and the estimation
model, right: CPU time till convergence. The
data is the average over 20 iterations and the error
bars show the standard deviation/3. d=10,20,30,40,
k=2(top),4(bottom).

Method training err. test err.
Crossover Kernel EM(k = 3) 0.035 0.059
Crossover Kernel EM(k = 4) 0.024 0.051
Crossover Kernel EM(k = 5) 0.016 0.042

EM(k = 3) 0.033 0.059
EM(k = 4) 0.023 0.053
EM(k = 5) 0.015 0.046
ALLOC80 0.065 0.064

k-nearest neighbor 0.000 0.068
Kohonen Net 0.057 0.079

Quadratic Discriminant 0.101 0.113
CN2 0.021 0.115
C4.5 0.042 0.132

Neural Net 0.323 0.327

Table 1: Training error and test error of each learn-
ing method in letter-recognition problem. The bold
letter is the best three learning method.

On both cases(k = 2, 4), the estimation accuracy by cros-
sover kernel EM is almost zero in high dimensionality. On
the other hand, it degrades as the dimensionality increases in
EM. This is because many local optima arise in high dimen-
sionality and EM tends to be captured in them. Crossover
kernel EM can escape from the local maxima utilizing the
randomness of the selection of the kernel construction set.

The computation complexity is O(Nd3) in EM and O(KNd3)
in crossover kernel EM per iteration. In k = 2, since crossover
kernel EM converges in small number of iteration, the com-
putation time is eventually almost the same. In k = 4, EM
converges much faster than crossover kernel EM though the
estimation results are not good.

5.2 Experiment 2: Letter Recognition
Letter-recognition benchmark problem (letter) in UCI Ma-

chine Learning Repository is applied to the proposal method.
The data vectors are 16 numerical attributes which is scaled
and discretised into [0, 15]. The detail can be seen in [8].
The objective is to predict the alphabet (26 capital letters)
from the data vector. The classifier is learned using 15000
labeled data out of 20000. The training error is measured
using the 15000 data and the test error is measured using
the rest 5000 data without label.

Data models are estimated as Gaussian mixture from data
having the same label, that is, 26 models are trained from
”A ” to ”Z”. For instance, let a data model of ”A” be
P (”A”|�). The label which gives the maximum density in
P (”A”|�), ..., P (”Z”|�) is the output of the classifier.

For comparison, the training and test error of k-nearest
neighbor, quadratic discriminant, Kohonen networks and
learning vector quantizers, CN2, ALLOC80, C4.5, neural
networks learning with back propagation(NN) is also shown
in the same experimental conditions[8]. Results show that
the both EM and crossover kernel EM show better classifi-
cation accuracy than traditional classifier and the test error
of crossover kernel EM is slightly better than EM.

6. CONCLUSION
We propose a kernel function CEBF that approximate

Gaussian distribution in a nonparametric manner and con-
struct crossover kernel EM that estimate the Gaussian Mix-
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ture. The appealing point of our proposal is that (1) the
estimation results can escape form the local optima using
the randomness in the selection of kernel construction set,
(2) the procedure does not include the unstable computation
and it gives a robust estimation result even in high dimen-
sion. In density modeling using the EM, the dimensionality
is at most 10 in tradition. However, the dimensionality of
the real world problem often reaches more than hundreds.
Applying the proposal method to real-world application is
also our future work.

The disadvantage of our algorithm is that the convergence
property to the local optimum is not assured theoretically.
Though we use a stopping condition heuristically, the time
to convergence is highly dependent on the parameter, there-
fore, the improvement of the algorithm that theoretically
assures local optimal convergence is our future work.

Our method can be applied to the optimization using the
same framework of EDA in a straightforward manner. In the
optimization of the multiple-peak function, the population
forms several clusters and our method is expected to be the
efficient sampler on these kinds of problem.
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Appendix : Proof of Theorem 1 and 2
We show the proof of theorem 1 of CEBF. Proof of CSBF is
omitted here. When a sample z ∈ Z is generated from CEBF, z
can be expressed as follows:

�l ∼ �+
d�

i=1

1

h
ξ�l,i, (33)

where ξ stands for the univariate normal distribution whose mean
parameter is zero and variance parameter is 1. Here, the data
included in each kernel construction set Xl is chosen randomly
from X, so we can consider the expectation according to Xl as
the expectation according to X. As for the mean vector of �, we
obtain

〈�l〉Xl = 〈�〉

= �+ 〈
d�

i=1

1

h
ξ�i〉

= �+ 〈
d�

i=1

1

h
ξ(�i − �)〉 = � = 〈�〉. (34)

As for covariance matrix Σ of � , we obtain

Σ = 〈(�l − �)(�l − �)T 〉Xl

= 〈(� − �)(� − �)T 〉
= 〈��T 〉 − ��T

=
1

h2

n�

k=1

〈ξ2(�k − �)(�k − �)T 〉

= n
1

h2
〈ξ2�k(�k)T 〉 − 2n

1

h2
〈ξ2��k〉+ n

1

h2
〈ξ2��T 〉

= n
1

h2
〈 ��T 〉 − n

1

h2
��T

= n
1

h2
〈(�− �)(�− �)T 〉 (35)

Therefore, when h =
√

n,

〈(� − �)(� − �)T 〉 = 〈(� − 〈�〉)(� − 〈�〉)T 〉
= 〈(�− �)(�− �)T 〉
= 〈(�− 〈�〉)(�− 〈�〉)T 〉. Q.E.D.

In UNDX kernel, because the parents are chosen independently,
the expectation of the parent center is the expectation of the
population. Therefore, the preservation of the mean vector is
proved similarly. About the covariance, the proof is the same
in CEBF. By extending the expectation operation 〈·〉 to 〈·〉w,
theorem 2 is easily proved. Please notice that this is not valid for
parent centric crossovers in theorem 2.
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