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ABSTRACT

A new approach based on Estimation Distribution Algo-
rithms for constrained multiobjective shape optimization is
proposed in this article. Pareto dominance and feasibility
rules are used to handle constraints. The algorithm uses
feasible and infeasible individuals to estimate the probabil-
ity distribution of evolving designs. Additionally, correla-
tion among problem design variables is used to improve ex-
ploration. The design objectives are: minimum weight and
minimum nodal displacement. Also, the resulting structures
must fulfill three design constraints: a) maximum permissi-
ble Von Misses stress, b)connectedness of the structure ele-
ments, and c¢) small holes are not allowed in the structure.
The finite element method is used to evaluate the objective
functions and stress constraint.

Categories and Subject Descriptors

[TRACK: Estimation of Distribution Algorithms|: Area
as CFP: EDA applications (interesting artificial and real-world
problems)Area as CFP: design of hybrid methods by combining
EDAs with other optimization methods

General Terms
Algorithm for Automatized Optimum Design
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1. INTRODUCTION

Several authors have approached shape optimization problems
(2, 4, 3], principally by using genetic algorithms (GA). These
approaches have proved their capacity to find approximate solu-
tions. Two problems have prevented GA’s from complete success:
the lack of a “good” function to model all desirable features of
the design; and poor exploration and premature convergence.

In this work we present a method that improves search space
exploration, therefore reducing premature convergence. Undesir-
able features such as small holes and unconnected elements are
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prevented as well. These features are treated as problem con-
straints, which are handled by Pareto dominance criterion. Infor-
mation from feasible and infeasible individuals is used to estimate
the probability distribution of every representation bit [7, 1, 9, 8].
Regularization is applied to the probability distributions (see [6]),
in order to keep diversity (thus, reducing premature convergence
and poor exploration).

2. PROBLEM DEFINITION

The multiobjective design goal is to find the set of structures
with minimum weight and node displacements, which fulfill three
design constraints: maximum Von Misses stress (standard me-
chanical design criterion, see [5]), small holes, and unconnected
elements in the structure. Every solution is represented by a
binary vector, each element in the binary vector represents one
element, 0 is one element gap and 1 is presented element.

3. OUTLINE OF THE ALGORITHM

The Figure 1 shows the main procedures of the algorithm.
First, we initialize the probability vectors p. Then, every prob-
ability vector p; generates a subset of the population. Finally,
all the non-dominated feasible individuals and some infeasible in-
dividuals are taken to update the probability distributions (the
current Pareto set). When the probability distributions lost
their exploration capacity, a procedure to regularize the probabil-
ity vector must be done, using information about the neighbor-
hood in every element. Then, when the probability regularization
is done, the current Pareto set must be restarted with 0 indi-
viduals. Every generation the known Pareto set is updated to
save the solutions (non-dominated and feasible individuals), ob-
viously,it is updated finding the non-dominated individuals from
the current Pareto set and the known Pareto set in every gen-
eration.

4. RESULTS

In Figure 3(a) is shown the load state of a experiment, some
structures from any run are shown in Figure 3(b). 200 probability
vectors, each one generating 10 individuals were used to find an
average of 1580.83 vectors in the Pareto Set. The displacement
was minimized at the 3 loaded nodes. In average, 3.928 x 10°
function evaluations were computed. (The own weight is not
considered (as a load) in the optimization problem).

5. CONCLUSIONS

A new approach for multiobjective shape optimization was pre-
sented, using Pareto dominance for constraint handling, the al-
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Figure 1: Main loop of algorithm depicting principal
routines
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Figure 2: Load State of an experiment.

gorithm returns a set of solutions which fulfill the service condi-
tions and minimize the structure weight and nodal displacement.
Future work must explore how strong the optimization problem
depends on the mesh, and how to initialize the probability distri-
butions (after re-meshing the search space) in a multigrid strategy
, considering mesh dependency and a search space reduction. The
presented results show a good behavior and optimal solutions de-
spite of the unstructured mesh (generally, other reported results
use structured mesh). Finally, the future work considers the re-
duction of the computational cost by working with a fixed Pareto
set size.
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Figure 3: (a) Pareto front from a typical run, (b)
Some structures on the Pareto front from a typical
run
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