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ABSTRACT 
In this paper, we demonstrate advantages and disadvantages of an 
evolutionary multiobjective optimization (EMO) approach in 
comparison with a reference solution-based single-objective 
approach through computational experiments on multiobjective 
0/1 knapsack problems. The main characteristic feature of the 
EMO approach is that no a priori information about the decision 
maker’s preference is assumed. The EMO approach tries to find 
well-distributed trade-off solutions with a wide range of objective 
values as many as possible. A final solution is supposed to be 
chosen from the obtained trade-off solutions by the decision 
maker. On the other hand, the reference solution-based approach 
utilizes the information about the decision maker’s preference in 
the form of a reference solution. We examine whether the EMO 
approach can find good trade-off solutions close to an arbitrarily 
given reference solution. Experimental results show that good 
solutions are not always obtained by the EMO approach. We also 
examine where the reference solution-based approach can find 
many trade-off solutions around the given reference solution. 
Experimental results show that many trade-off solutions can not 
be obtained even when an archive population of non-dominated 
solutions is stored in the reference solution-based approach. 
Based on these observations, we suggest a hybrid approach. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic Methods. 

General Terms 
Algorithms. 

Keywords 
Evolutionary multiobjective optimization (EMO), genetic 
algorithms, decision maker’s preference, reference solutions, 
diversity-preserving strategies, NSGA-II.  

1. INTRODUCTION 
Evolutionary multiobjective optimization (EMO) is a very active 
research area in the field of evolutionary computation. Since 
Schaffer’s pioneering work [10], various EMO algorithms have 
been proposed in the literature (e.g., see [1], [2]). Those EMO 
algorithms are designed to find a large number of well-distributed 
trade-off solutions with a wide range of objective values. Usually 
no a priori information about the decision maker’s preference is 
utilized when EMO algorithms search for trade-off solutions. A 
final solution is supposed to be chosen from the obtained trade-off 
solutions by the decision maker. The EMO approach is called an 
ideal multiobjective optimization procedure in Deb [2]. It is 
implicitly assumed that the choice of a final solution from the 
obtained trade-off solutions is much easier for the decision maker 
than the elicitation of his/her preference in advance. On the other 
hand, multiobjective optimization problems can be handled in the 
framework of single-objective optimization when the information 
about the decision maker’s preference is available in advance. For 
example, when a reference solution is given as an ideal solution in 
the objective space, the distance from the reference solution can 
be used as a single objective function to be minimized (while it 
does not necessarily reflect the decision maker’s preference truly).  

It is essential for the success of the EMO approach to find a large 
number of well-distributed trade-off solutions with a wide range 
of objective values. In this paper, we examine whether EMO 
algorithms can find good trade-off solutions close to an arbitrarily 
given reference solution through computational experiments on a 
multiobjective 0/1 knapsack problem. In each trial of our 
computational experiment, first a reference solution is generated 
in the objective space. Then a single-objective genetic algorithm 
is used to minimize the distance from the reference solution. An 
EMO algorithm is also used to find a large number of well-
distributed trade-off solutions without utilizing the information 
about the reference solution. Finally the obtained solution by the 
single-objective genetic algorithm is compared with the obtained 
trade-off solutions by the EMO algorithm. While we mainly use 
the NSGA-II algorithm [3] as a representative EMO algorithm, we 
also examine the performance of SPEA [11], M-PAES [9], and 
MOGLS [7], [8]. It is visually shown that these state-of-the-art 
EMO and memetic EMO algorithms can not always find good 
trade-off solutions close to an arbitrarily given reference solution. 

It is not always easy (usually very difficult) for the decision maker 
to specify a reference solution in advance. Thus the specified 
reference solution does not always reflect the decision maker’s 
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preference truly in the reference solution-based single-objective 
approach. Moreover the distance from the preference solution 
does not necessarily reflect the decision maker’s preference 
relation, either. The decision maker may want to see multiple 
trade-off solutions around the (tentatively specified) reference 
solution. From this viewpoint, we also examine whether multiple 
trade-off solutions can be obtained by the reference solution-
based single-objective approach. An archive population of non-
dominated solutions is stored separately from the standard main 
population in our single-objective genetic algorithm. A similarity-
based mating scheme of Ishibuchi & Shibata [5], [6] is also 
incorporated in our single-objective genetic algorithm to increase 
the diversity of solutions in the objective space. Experimental 
results show that our single-objective genetic algorithm can not 
find multiple trade-off solutions with a wide range of objective 
values around the reference solution even when the archive 
population and the mating scheme are incorporated. Experimental 
results also show that the obtained trade-off solutions are 
misleading because some of them are not close to the Pareto front. 
In order to find a large number of good trade-off solutions around 
the reference solution, we combine the single-objective fitness 
function defined by the distance from the reference solution with 
the NSGA-II algorithm. More specifically, the single-objective 
fitness function is used to choose parent solutions for 
recombination in our hybrid algorithm while the fitness evaluation 
mechanism in the original NSGA-II algorithm is still used for 
generation update. Experimental results show that a large number 
of good trade-off solutions around the reference solution are 
obtained by our hybrid algorithm. 

2. TWO APPROACHES 
2.1 Evolutionary Multiobjective Optimization 
A k-objective maximization problem can be written as follows: 

Maximize ))(...,),(()( 1 xxxf kff=  subject to Xx ∈ ,      (1) 

where f(x) is the k-dimensional objective vector, x is the decision 
vector, and X is the feasible region in the decision space. When 
the following relation holds between two solutions x and y, x is 
said to be dominated by y (i.e., y is better than x): 

i∀ , )()( yx ii ff ≤   and   j∃ , )()( yx jj ff < .       (2) 

When there is no feasible solution in X that dominates x, x is 
referred to as a Pareto-optimal solution. The set of objective 
vectors corresponding to all Pareto-optimal solutions is referred to 
as Pareto front. The task of EMO algorithms is to find a large 
number of well-distributed Pareto-optimal solutions with a wide 
range of objective values over the Pareto front. It is, however, 
unpractical to search for true Pareto-optimal solutions of large-
scale multiobjective combinatorial optimization problems. In this 
case, EMO algorithms search for near Pareto-optimal solutions. A 
set of non-dominated solutions among examined ones during the 
execution of an EMO algorithm is presented to the decision maker. 

In the EMO approach, a single final solution is determined by the 
following two-step procedure, which is referred to as an ideal 
multiobjective optimization procedure in Deb [2]: 

Step 1: Find well-distributed trade-off solutions with a wide range 
of objective values using an EMO algorithm.  

Step 2: Choose one of the obtained trade-off solutions. 

In the second step, the decision maker is supposed to choose one 
of the obtained trade-off solutions based on his/her preference. It 
should be noted that no a priori information about the decision 
maker’s preference is utilized in the first step. 

The success of the EMO approach depends on the quality of the 
obtained trade-off solutions in the first step. Each trade-off 
solution should be close to the Pareto front. Moreover, the trade-
off solutions should have a large diversity. Thus there are two 
sub-goals in the design of EMO algorithms: to improve the 
convergence of solutions to the Pareto front and to increase the 
diversity of solutions. Recently developed EMO algorithms 
usually use Pareto ranking, elitism and diversity-preserving 
mechanisms to improve both the convergence and the diversity.  

2.2 Reference Solution-Based Approach 
When a reference solution x* is available from the decision maker, 
we can formulate the following single-objective minimization 
problem from the k-objective maximization problem in (1): 

Minimize *))(),(( xfxfd  subject to Xx ∈ ,       (3) 

where d( ) measures the distance between the decision vector x 
and the reference solution x* in the objective space. In this paper, 
we use the Euclidean distance: 

22
11 |*)()(||*)()(|*))(),(( xxxxxfxf kk ffffd −+⋅⋅⋅+−= . 

           (4) 
A single final solution of the k-objective optimization problem in 
(1) is obtained by the following procedure, which is referred to as 
a reference solution-based single-objective approach in this paper: 

Step 1: Specify a reference solution x* in the objective space. 
Step 2: Find an optimal or near optimal solution of the single-

objective optimization problem in (3). 

The success of this approach depends on whether the given 
reference solution truly reflects the decision maker’s preference or 
not. It is, however, not always easy (usually very difficult) for the 
decision maker to specify a reference solution for a multiobjective 
optimization problem in advance. 

3. COMPARISON OF TWO APPROACHES 
3.1 Motivations 
The above-mentioned two approaches use different ideas to obtain 
a single final solution. It would be interesting to compare the two 
approaches through computational experiments from the 
viewpoint of the quality of the obtained final solution. In each 
trial of our computational experiment, we assume that a reference 
solution is given. The performance of the EMO approach is 
evaluated by examining whether EMO algorithms can find good 
trade-off solutions close to an arbitrarily given reference solution. 
Of course, no information about the given reference solution is 
utilized when EMO algorithms search for trade-off solutions.  

On the other hand, the success of the reference solution-based 
approach depends on the given reference solution itself. Since it is 
usually very difficult for the decision maker to specify a reference 
solution in advance, we assume that the given reference solution 
does not truly reflect the decision maker’s preference. The actual 
ideal solution for the decision maker may be different from the 
given reference solution. In this situation, it is desirable to present 
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a number of good trade-off solutions around the given reference 
solution to the decision maker. The obtained trade-off solutions 
may give the decision maker some information about the trade-off 
structure in the multiobjective optimization problem, which in 
turn facilitates the specification of another reference solution 
closer to his/her actual ideal solution . Alternatively, the decision 
maker can choose one of the obtained trade-off solutions. The 
chosen solution is not necessarily the best solution in terms of the 
distance from the given reference solution. We evaluate the 
reference solution-based approach by examining whether a 
number of good trade-off solutions with a wide range of objective 
values can be obtained around the given reference solution. 

3.2 Settings of Computational Experiments 
In order to visually demonstrate advantages and disadvantages of 
each approach, we use a two-objective 500-item 0/1 knapsack 
problem of Zitzler & Thiele [11]. We choose this test problem for 
the following reasons: (i) this is a relatively large combinatorial 
optimization problem with the search space size of 2500, and (ii) 
true Pareto-optimal solutions are known for this problem [11]. 

A multiobjective 0/1 knapsack problem with k knapsacks (i.e., k 
objectives and k constraints) and n items in Zitzler & Thiele [11] 
can be written as follows: 

Maximize ))(...,),(),(()( 21 xxxxf kfff= ,        (5) 

subject to ∑
=

≤
n

j
ijij cxw

1
,  ki ...,,2,1= ,       (6) 

where ∑
=

=
n

j
jiji xpf

1
)(x ,  ki ...,,2,1= .       (7) 

In this formulation, x is an n-dimensional binary vector, pij is the 
profit of item j according to knapsack i, wij is the weight of item j 
according to knapsack i, and ci is the capacity of knapsack i. Each 
solution x is handled as a binary string of length n. 

When an EMO algorithm is applied to the multiobjective 0/1 
knapsack problem in (5)-(7), genetic operations often generate 
infeasible solutions that do not satisfy the constraint conditions in 
(6). We use a repair method based on a maximum profit/weight 
ratio as  Zitzler & Thiele [11] in all EMO algorithms in this paper. 
When an infeasible solution is generated, a feasible solution is 
created by removing items (i.e., by changing the corresponding 
values in the binary string x from 1 to 0) in the ascending order of 
the maximum profit/weight ratio defined as follows: 

},...,2,1|max{ kiwpq ijijj == , nj ...,,2,1= .       (8) 

On the other hand, we use the following weighted profit/weight 
ratio in the reference solution-based single-objective approach: 

∑∑
==

=
k

i
ij

k

i
ijij wpaq

11
,  nj ...,,2,1= ,        (9) 

where ai can be viewed as the importance of the i-th objective. 
We will explain the specification of ai later in this paper.  

In our computational experiments, first a single-objective genetic 
algorithm is used for independently optimizing each objective of 
the two-objective 500-item knapsack problem. That is, the single-
objective genetic algorithm is applied to two single-objective 0/1 

knapsack problems, each of which has one of the two objectives 
and the same constraint conditions as the original two-objective 
problem. The weighted profit/weight ratio repair is used in the 
two single-objective 0/1 knapsack problems where the weight 
vector (a1, a2) is specified as (1, 0) and (0, 1), respectively. 

Let us denote the two solutions as x1 and x2 where xi is the 
obtained solution by maximizing the i-th objective. Using the two 
solutions, we normalize the objective space as follows: 

]2,0[]2,0[)](),([)](),([ 22121121 ×⇒× xxxx ffff .    (10) 

This normalization is illustrated in Figure 1 where the obtained 
two solutions x1 and x2 are denoted by open circles. The locations 
of these solutions in the objective space are transformed by Eq. 
(10) to (2, 0) and (0, 2) in the normalized objective space as 
shown in Figure 1. We use this normalization in order to 
systematically specify reference solutions in the normalized 
objective space. In computational experiments, we examine the 
following five specifications of the reference solution in the 
normalized objective space: (4, 0), (3, 1), (2, 2), (1, 3), (0, 4). 
Each specification of the reference solution in the normalized 
objective space is shown by a closed circle in Figure 1. It should 
be noted that each element of the reference solution in the 
normalized objective space can be viewed as being the relative 
importance of the corresponding objective. Thus we use the 
reference solution as the weight vector (a1, a2) in the weighted 
profit/weight ratio repair of the reference solution-based approach. 
The Euclidean distance from the reference solution is measured in 
the normalized objective space in the reference solution-based 
approach. It should be noted that the specification mechanism of 
the reference solution in the normalized objective space can be 
easily extended to the case of k objectives ( 2>k ) using the 
following conditions:  

}2...,,2,1,0{*)(ˆ kfi ∈x , ki ...,,2,1= ,     (11) 

kfff k 2*)(ˆ*)(ˆ*)(ˆ
21 =+⋅⋅⋅++ xxx ,      (12) 

where x* is the reference solution and *)(ˆ xif  is the normalized 
reference objective value of the i-th objective.  
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Figure 1. Normalization of the objective space and the five 
reference solutions used in our computational experiments. 
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We use the total number of generations as the stopping condition 
in both the EMO and reference solution-based approaches. Let N 
be the total number of generations in the EMO approach. That is, 
an EMO algorithm is terminated after the N-th generation. On the 
other hand, each execution of the single-objective genetic 
algorithm is terminated after the N/3-th generation in the reference 
solution-based approach. This is because the single-objective 
genetic algorithm is invoked three times in a single trial of the 
reference solution-based approach for the two-objective test 
problem (i.e., two times for the individual optimization of each 
objective and once for the distance minimization from the 
reference solution). We use the following genetic operations in 
both the EMO and reference solution-based approaches: 

One point crossover with the probability of 0.8, 
Bit-flip mutation with the probability of 0.002 (i.e., 1/500). 

3.3 Performance of EMO Approach 
We apply the NSGA-II algorithm of Deb et al. [3] to the two-
objective 500-item 0/1 knapsack problem with the following 
parameter specifications: 

Population size: 300, 
Stopping condition: 1200 generations. 

Thus 360,000 solutions are examined during the execution of the 
NSGA-II algorithm. We examine the average performance over 
independent 100 runs. In Figure 2, we show the 50% attainment 
surface [4] over the 100 runs, a typical solution set by a single run, 
and the Pareto front. 

On the other hand, the single-objective genetic algorithm is used 
in the reference solution-based approach with the same population 
size and the stopping condition of 400 generations. As we have 
explained in the previous subsection, the five specifications of the 
reference solution are examined in the reference solution-based 
approach. For each specification, the average result is calculated 
over 100 independent runs in the objective space. In Figure 3, we 
show the average objective vector corresponding to each 
specification of the reference solution. The Pareto front is also 
shown in Figure 3 for comparison. 

From the comparison between Figure 2 and Figure 3, we can see 
that good trade-off solutions for the decision maker were obtained 
by the NSGA-II algorithm only when the reference solution in the 
normalized objective space was (2, 2); see Figure 1. In the other 
four cases, good trade-off solutions for the decision maker were 
not obtained. In these cases, the decision maker has to choose a 
final solution that is not close to the reference solution. This 
means that the EMO approach does not work well in these cases. 

We also examine the use of SPEA [11], M-PAES [9], and 
MOGLS [7], [8] in the EMO approach instead of the NSGA-II 
algorithm. We use the same computation load in each algorithm 
(i.e., examination of 360,000 solutions). Parameter specifications 
in each algorithm are summarized in Table 1. The average 
performance of each algorithm is calculated over 100 independent 
runs. The obtained 50% attainment surface by each algorithm is 
shown in Figure 4. From the comparison between Figure 3 and 
Figure 4, we can see that no algorithms in Figure 4 (and also in 
Figure 2) were comparable to the reference solution-based 
approach in terms of the proximity of obtained trade-off solutions 
to an arbitrarily given reference solution.  
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Figure 2. Experimental results by the NSGA-II algorithm. 
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Figure 3. Experimental results by the reference solution-based 
approach. 

Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k 

2)

Pareto front
SPEA
M-PAES
MOGLS

16000 18000 20000

16000

18000

20000

To
ta

l p
ro

fit
 (k

na
ps

ac
k 

2)
 : 

f 2(
x)

Total profit (knapsack 1) : f1(x)Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k 

2)

Pareto front
SPEA
M-PAES
MOGLS

16000 18000 20000

16000

18000

20000

To
ta

l p
ro

fit
 (k

na
ps

ac
k 

2)
 : 

f 2(
x)

Total profit (knapsack 1) : f1(x)

To
ta

l p
ro

fit
 (k

na
ps

ac
k 

2)
 : 

f 2(
x)

To
ta

l p
ro

fit
 (k

na
ps

ac
k 

2)
 : 

f 2(
x)

Total profit (knapsack 1) : f1(x)Total profit (knapsack 1) : f1(x)
 

Figure 4. Experimental results by other EMO algorithms. 

790



Table 1. Parameter specifications. 
 SPEA M-PAES MOGLS 

Population size 300 60 6000 

Initial population size 300 60 300 

Archive population size 75 Unlimited Unlimited

Local archive population size N.A. 240 N.A. 
 

In Table 2, we compare the average CPU time of each algorithm. 
All algorithms were implemented in C and executed on a PC with 
a Pentium IV 3.2 GHz processor under the same computational 
load in terms of the total number of examined solutions. We can 
see from Table 2 that the reference solution-based approach has 
an advantage over many EMO algorithms in terms of CPU time. 
This is because EMO algorithms in general need more CPU time 
for evaluating each solution than single-objective algorithms. 

 
Table 2. Average CPU time (Seconds). 

EMO Approach Reference 
solution NSGA-II SPEA M-PAES MOGLS 

12.0 35.2 11.1 23.2 26.4 
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Figure 5. Experimental results by the NSGA-II algorithm with 
10 times larger computational load than the other experiments. 

 
 
We further examine the performance of the NSGA-II algorithm 
under much more computational load. More specifically, we 
continue the execution of the NSGA-II algorithm until 12000 
generations (10 times larger computational load than the above-
mentioned computational experiments). The 50% attainment 
surface over 100 independent runs and a typical solution set by a 
single run are shown in Figure 5 together with the Pareto front. 
From the comparison between Figure 3 and Figure 5, we can see 
that the NSGA-II algorithm could not still find good trade-off 
solutions for an arbitrarily given reference solution. 

From Figure 2 and Figure 5, one may think that an additional 
diversity-increasing mechanism seems to be needed in the NSGA-
II algorithm. We incorporate a similarity-based mating scheme of 
Ishibuchi & Shibata [5], [6] into the NSGA-II algorithm. Their 
mating scheme is illustrated in Figure 6. First the standard binary 
tournament scheme is iterated for choosing α candidates for the 
first parent (i.e., Parent A) and β candidates for the second parent 
(i.e., Parent B). Next the average solution of the α candidates is 
calculated in the objective space. Then the most dissimilar 
solution from the average solution is selected as Parent A among 
the α candidates. Finally the most similar solution to Parent A is 
chosen as Parent B from the β candidates. The similarity between 
two solutions is measured by the Euclidean distance in the 
objective space. 

Experimental results with the stopping condition of 1200 
generations are shown in Figure 7 (50% attainment surface over 
100 independent runs and a typical solution set by a single run) 
where two specifications are examined in the mating scheme: 
(α, β) = (5, 5), (10, 10). While the mating scheme increased the 
diversity of solutions in Figure 7 from Figure 2 by the original 
NSGA-II algorithm, the EMO approach still could not find good 
trade-off solutions close to an arbitrarily given reference solution. 
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Figure 6. Similarity-based mating scheme in [5], [6]. 
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Figure 7. Experimental results using the mating scheme. 
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3.4 Performance of Reference Solution-Based 
Approach 

As shown in Figure 3 and Table 2, we can efficiently find a good 
trade-off solution close to an arbitrarily given reference solution 
using the reference solution-based approach. The main difficulty 
in this approach is that the given reference solution does not 
always reflect the decision maker’s preference truly. Thus the 
decision maker may want to see multiple trade-off solutions 
around the reference solution.  

From this viewpoint, we examine whether the reference solution-
based approach can find multiple trade-off solutions around the 
reference solution. We combine an archive population with the 
single-objective genetic algorithm that minimizes the distance 
from the reference solution. Non-dominated solutions among the 
examined ones are stored in the archive population with no size 
limitation during the execution of the single-objective genetic 
algorithm. The role of the archive population is just to store non-
dominated solutions. We calculate the 50% attainment surface 
over 100 independent runs for each specification of the reference 
solution. Experimental results are shown in Figure 8 together with 
a typical solution set by a single run for each specification of the 
reference solution. From this figure, we can see that the obtained 
trade-off solutions did not have a large diversity. 
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Figure 8. Experimental results by the reference solution-based 
approach with the archive population. 

 
We also incorporate the above-mentioned similarity-based mating 
scheme into the single-objective genetic algorithm with the 
archive population. Experimental results are shown in Figure 9 
where the two parameters in the mating scheme are specified as 
(α, β) = (10, 10). From the comparison between Figure 8 and 
Figure 9, we can see that the diversity of the obtained trade-off 
solutions was increased by the mating scheme. Experimental 
results in Figure 9, however, may give incorrect information about 
the trade-off structure to the decision maker. This is because some 
of the obtained trade-off solutions are far from the Pareto front. It 
should be noted in Figure 9 (and Figure 8) that the reference 
solution-based approach presents a single solution set to the 
decision maker corresponding to the given reference solution 

while we simultaneously show five solution sets corresponding to 
the five specifications of the reference solution in Figure 9. 
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Figure 9. Experimental results by the reference solution-based 
approach with the archive population and the mating scheme. 

4. HYBRID APPROACH 
Before suggesting a hybrid version of the EMO and reference 
solution-based approach, we illustrate each approach again using 
the two-objective 500-item 0/1 knapsack problem. For illustration 
purpose, let us assume that the reference solution is incorrectly 
given as (16000, 21000) in the objective space by the decision 
maker while his/her true ideal solution is (17000, 21000). These 
two solutions are shown in Figure 10 as G and T, respectively. 
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Figure 10. The given reference solution G, the true ideal 
solution T, the final solution A by the EMO approach, and the 

final solution B by the reference solution-based approach. 

 
First we apply the original NSGA-II algorithm to the two-
objective knapsack problem without using the information about 
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the given reference solution G. The NSGA-II algorithm is 
executed for 1200 generations in the same manner as the above-
mentioned computational experiments. Obtained trade-off 
solutions are shown in Figure 10 by open circles together with the 
given reference solution G and the true ideal solution T. In this 
case, the decision maker may choose the solution A in Figure 10. 
We can see that the finally obtained solution A by the EMO 
approach is not close to the true ideal solution T or the given 
reference solution G. This is because the NSGA-II algorithm 
could not find a variety of trade-off solutions with a wide range of 
objective values over the entire Pareto front in Figure 10. That is, 
the obtained trade-off solutions by the NSGA-II algorithm in 
Figure 10 do not approximate the entire Pareto front. 

Next we apply the reference solution-based approach to the two-
objective knapsack problem using the information about the given 
reference solution G (16000, 21000) in the same manner as the 
previous computational experiments in Subsection 3.4. That is, 
first each objective is independently optimized by a single-
objective genetic algorithm with the stopping condition of 400 
generations. Then the objective space and the given reference 
solution is normalized using the optimal solution with respect to 
each objective. The normalized reference solution is used in a 
single-objective genetic algorithm where the distance from the 
normalized reference solution is minimized. The normalized 
reference solution is also used as the weight vector in the repair 
procedure in the same manner as the previous computational 
experiments in Subsection 3.4. The obtained solution is shown in 
Figure 10 by the closed circle B. While the obtained solution B is 
close to the given reference solution G, it is not close to the true 
ideal solution T.  

The illustrative computational experiments in Figure 10 clearly 
demonstrate the disadvantage of each approach. The EMO 
approach could not efficiently find a variety of good trade-off 
solutions that approximate the entire Pareto front of a large-scale 
multiobjective combinatorial optimization problem. On the other 
hand, the reference solution-based approach could not work well 
in the case where the given reference solution does not correctly 
reflect the decision maker’s true preference. One research 
direction to resolve this situation is the improvement of the search 
ability of EMO algorithms used in the EMO approach. There exist 
a large number of studies along this research direction in the 
literature (e.g., see [1], [2]). The similarity-based mating scheme 
is an example of such studies. 

It is, however, very difficult for EMO algorithms to find a variety 
of good trade-off solutions with a wide range of objective values 
that approximate the entire Pareto front in the case of large-scale 
multiobjective combinatorial optimization problems. In this case, 
it may be required to efficiently utilize the information about the 
decision maker’s preference in EMO algorithms. Here we suggest 
a hybrid version of the EMO and reference solution-based 
approaches. The EMO algorithm in our hybrid approach is the 
same as the NSGA-II algorithm except for its parent selection 
mechanism. We use the distance from the reference solution as the 
fitness function in the selection phase of parent solutions together 
with the similarity-based mating scheme. That is, candidate 
solutions in the similarity-based mating scheme are chosen by 
iterating the binary tournament selection scheme where the 
distance from the reference solution is used to evaluate each 
solution. The fitness evaluation mechanism of the original NSGA-

II algorithm is still used in the generation update phase. This 
means that the next population is constructed from the current 
population and the offspring population using Parent ranking and 
a crowding measure exactly in the same manner as the NSGA-II 
algorithm.  

We apply the hybrid approach to the knapsack problem in the 
same manner as the reference solution-based approach in Figure 
10. That is, the modified NSGA-II algorithm is executed for 400 
generations using the normalized reference solution. The two 
parameters in the similarity-based mating scheme are specified as 
(α, β) = (10, 10). An obtained solution set by a single run is 
shown in Figure 11. We can see from Figure 11 that a large 
number of good trade-off solutions (i.e., trade-off solutions close 
to the Pareto front) were obtained around the given reference 
solution G. It should be noted that some of them are close to the 
true ideal solution T. When the obtained trade-off solutions in 
Figure 11 are presented to the decision maker, he/she may realize 
that the given reference solution does not correctly reflect his/her 
true preference. In this case, some solution (e.g., Solution C) close 
to the true ideal solution T may be chosen from the obtained 
trade-off solutions by the decision maker. Solution C in Figure 11 
is much closer to the true ideal solution T than Solution A by the 
EMO approach and Solution B by the reference solution-based 
approach in Figure 10. As shown in Figure 11, the decision maker 
can choose a final solution from the obtained trade-off solutions 
according to his/her preference. Moreover the obtained trade-off 
solution set gives the decision maker some information about the 
trade-off structure around the given reference solution G. Such 
information may help the decision maker to correctly understand 
the multiobjective optimization problem at hand. 
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Figure 11. Experimental results by the hybrid approach. 

 
The performance of the hybrid approach is also examined in the 
same manner as the reference solution-based approach in 
Subsection 3.4. That is, the modified NSGA-II algorithm in the 
hybrid approach is executed for each of the five specifications of 
the reference solution. The 50% attainment surface over 100 
independent runs and a typical solution set by a single run are 
shown in Figure 12 for each specification of the reference solution 
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together with the Pareto front. From Figure 12, we can see that a 
lager number of good trade-off solutions were obtained by the 
hybrid approach. From the comparison between Figure 2 by the 
original NSGA-II algorithm with 1200 generations in the EMO 
approach and Figure 12 by the modified NSGA-II algorithm with 
400 generations in the hybrid approach, we can see that the hybrid 
approach can efficiently utilize the information from the decision 
maker about the reference solution.  
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Figure 12. Experimental results by the hybrid approach for 
each of the five specifications of the reference solution. 

 

5. CONCLUDING REMARKS 
In this paper, first we compared the evolutionary multiobjective 
optimization (EMO) approach with the reference solution-based 
approach to multiobjective optimization problems. Through 
computational experiments, we visually demonstrated advantages 
and disadvantages of each approach. One difficulty in the EMO 
approach was that a variety of non-dominated solutions with a 
wide range of objective values over the entire Pareto front were 
not always found for large-scale multiobjective combinatorial 
optimization problems. That is, obtained non-dominated solutions 
did not always approximate the entire Pareto front well. As a 
result, good trade-off solutions for the decision maker were not 
always found. This difficulty was demonstrated through 
computational experiments where five specifications of the 
reference solution were examined. Experimental results showed 
that the EMO approach could not always find good trade-off 
solutions close to an arbitrarily given reference solution. On the 
other hand, multiple trade-off solutions were not found around the 
given reference solution by the reference solution-based approach. 
Thus this approach did not work well when the given reference 
solution did not appropriately reflect the decision maker’s 
preference. Based on these observations, we suggested a hybrid 
version of the two approaches. It was demonstrated that a large 
number of good trade-off solutions were obtained around the 
given reference solution by the hybrid approach. 
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