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ABSTRACT
We use a parallel multi-objective genetic algorithm to drive
a search and reconstruction spectroscopic analysis of plasma
gradients in inertial confinement fusion (ICF) implosion cores.
In previous work, we had shown that our serial multi-objective
Genetic Algorithm was a good method to solve two-criteria
X-ray spectroscopy diagnostics problems. However, this se-
rial version was slow and we therefore could not incorporate
better physics and more criteria to solve larger problems
and handle larger data sets. In this paper, we develop and
use a parallel multi-objective genetic algorithm based on a
master-slave model to solve three criteria spectroscopic anal-
ysis problems. The algorithm works well in reconciling ex-
perimental observations with theoretical physics model pa-
rameters. In addition, theoretical analysis and experimental
results on the parallelized version show good scalability with
up to 150 processors. This reduces the time for running the
GA from 9.6 hours to 5.9 minutes.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization; I.6.8 [Types
of Simulation]: Parallel; J.2 [Physical Sciences and En-
gineering]: Physics

General Terms
Algorithms, Design, Performance

Keywords
Parallel Genetic Algorithms, Speedup, X-ray Spectroscopy

1. INTRODUCTION
X-ray spectroscopic analysis has proved to be a useful

technique to determine temperature and density of astro-
physical as well as laboratory plasmas [9]. Analysis based
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on a uniform-model approximation yields conditions in the
plasma source which can be interpreted as space averages.
From a computational point of view these cases represent
optimization problems which can be efficiently handled by
a single objective genetic algorithm [7]. However, spectro-
scopic analysis of the spatial structure of plasma sources
requires self-consistent and simultaneous consideration of
several pieces of data. Then, the problem becomes a typi-
cal multiple objective optimization problem, which can be
solved by a multi-objective genetic algorithm [8][6]. In ear-
lier work, Louis [7] used such a multi-objective genetic algo-
rithm to attack the problem of finding temperature and den-
sity gradients of ICF implosion cores through multi-objective
optimization of an error function that minimizes the error
between observed values and the values produced by our
computational model of the X-ray line emission from the
tracer argon gas in the core. In this paper, we use an im-
proved Master-Slave parallel Multi-Objective Genetic Algo-
rithm (MOGA) which allows us to handle more complex
physics in our model, more criteria, and still runs in a rea-
sonable amount of time on problem sizes of interest. Results
indicate that the algorithm works well and both theoretical
analysis and experimental data show that our parallelized
multi-criteria genetic algorithm has a good scalability with
increasing numbers of nodes. The organization of this pa-
per is as follows. First, we introduce the physics problem
being attacked, and then provide a summary of common
approaches to parallelizing genetic algorithms. Section 2
presents our implementation of parallel multi-criteria ge-
netic algorithm. Subsequently we develop a new framework
that models our parallel genetic algorithms speedup behav-
ior. Finally, the last two sections give experimental results
and discuss future work.

1.1 X-ray Spectroscopic Analysis
X-ray spectroscopic analysis of ICF implosion cores uses

x-ray line emission from a tracer gas added to the deuterium-
filled spherical target to diagnose plasma conditions achieved
in the implosion core [9]. Given the experimental data and
our physics model of the X-ray line emission in the plasma
the goal is to find temperature and density gradients that
simultaneously yield good fits to 1) time-resolved spatially
integrated X-ray line spectra and 2) X-ray monochromatic
emissivity profiles for He-β and Ly-β line transition. Spatial
emissivity profiles can be extracted from Abel inversion of
X-ray monochromatic images provided that the plasma is
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Figure 1: Fitting Plasma Temperature and Density
Gradients

optically thin and spherically symmetric [6]. Figure 1 shows
the role of the genetic algorithm in fitting theoretical model
parameters to experimentally obtained data.

Temperature and density spatial gradients as well as other
properties of plasmas can be computed using hydrodynamic
modeling. Hydro simulations are model calculations that
include hydrodynamics, thermal transport, atomic, radia-
tion physics, etc. The models are very complex and it is
important to be able to compare simulation results with in-
dependent information obtained from the analysis of exper-
imental data. Our work is, to a large degree, independent of
hydrodynamic simulations and hence can provide the data
for these comparisons. Estimating plasma temperature and
density gradients based on the analysis of experimental data
is a complex inverse problem. This work builds upon our
earlier work on this problem and extends our methodology
to handle larger, more complex problems where the physics
spectral model computed to evaluate the fitness function of
the genetic algorithm becomes more computationally inten-
sive. The results of the analysis of experimental data can be
used to improve characterization of core plasma dynamics
and to provide new data for detailed benchmarks of hydro-
dynamic codes.

1.2 Multi-objective Genetic algorithm
Genetic Algorithms (GAs) are search and optimization al-

gorithms based on the mechanics of natural selection. They
are capable of finding solutions in poorly understood search
spaces while exploring only a small fraction of the space, and
can robustly deal with complex non-linear problems. In this
paper, our problem has a large, multi-dimensional search
space. Thus, an efficient and robust algorithm is required
to effectively implement the spectroscopic analysis.

One approach to solving this problem is to combine the
multiple (in our case, three) criteria into a single scalar fit-
ness function. Unfortunately, this simple method did not
work well on our problem. Instead we turned to multi-
objective optimization and used a multi-objective genetic
algorithm [4]. Our strategy is to use the principle of pareto
optimality in designing a multi-objective genetic algorithm.
At each generation, there is a set of non-dominated solutions

in fitness space that form a surface known as the pareto opti-
mal front (or the Pareto front). The goal of a multi-objective
genetic algorithm is to find and maintain a representative
sampling of the solutions on the pareto front. If the crite-
ria are not self-contradictory, then there should be a point
on the final convex front that satisfies all criteria well. We
used the Elitist Non-Dominated Sorting Genetic Algorithm
(NSGA-II) from Deb’s book as our implementation of the
pareto GA [4]. For each generation, we expand the current
population size from n to λ*n, where λ is an expansion pa-
rameter. Then, after evaluation, we use the non-dominated
sort algorithm to sort the new candidate population and cut
the population size back to n by retaining only the first n
individuals in the sorted population. The detail of this al-
gorithm can be found in [4]. This paper develops a parallel
version of NSGA-II for X-ray spectroscopic analysis.

1.3 Parallel Genetic Algorithms
There are three basic types of parallel Genetic algorithms:

1) Master-slave: Here, a single processor performs the ge-
netic operations and uses other processors only for evalua-
tion of individuals. This model is useful when dealing with
a small number of processors or when dealing with com-
putationally intensive evaluations 2) Island model: In this
model, every processor runs an independent Evolutionary
Algorithm (EA), using a separate sub-population. The pro-
cessors cooperate by regularly exchanging migrants (good
individuals). The island model is particularly suitable for
computer clusters, as communication is limited. 3) Diffu-
sion model: Here, the individuals are spatially arranged, and
mate with other individuals from the local neighborhood.
When parallelized, there is a lot of inter-processor commu-
nication (as every individual has to communicate with its
neighbors in every iteration), but the communication is only
local. Thus this paradigm is particularly suitable for mas-
sively parallel computers with a fast local intercommunica-
tion network. For more detail about parallel genetic algo-
rithms, please refer to [1]. In this paper, we use the Master-
Slave model, since evaluations take quite long compared to
communication time. The advantages of this model are ease
of implementation and the property of producing the same
result as the corresponding serial genetic algorithm.

1.4 Parallelization method
Each evaluation requires execution of the spectral model,

which is somewhat expensive in time. In order to reduce
computing time we parallelized our pareto GA using a Master-
Slave model so that evaluation is done in parallel (Figure 2).
In this implementation the behavior of the algorithm is the
same as that of the sequential GA. It is possible to paral-
lelize the other genetic operators as well, but it may not nec-
essarily lead to any significant improvement. Crossover and
mutation operators are very simple and any performance
gain due to their parallelization will be diminished by com-
munication costs. In any case, the master-slave kind of par-
allelization is quite straightforward and relatively easy to
implement and should result in significant speed-up as long
as the cost to evaluate an individual dominates communica-
tion cost [2].

For our application our results actually show better speedup
with respect to Cantú-Paz’s theoretical model of parallel GA
performance [3]. Cantú-Paz developed a master-slave par-
allel genetic algorithm model where speedup was shown to
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Figure 2: A Schematic View of a Master-Slave Par-
allel Genetic Algorithm

first rise and then fall as we increased the number of nodes
in the cluster. To better fit experimental results, this pa-
per develops a new theoretical model for parallel GAs. It
is interesting that if we try to send multiple individuals in
a single communications event (as in the Cantú-Paz model)
we can have a decrease in performance with an increase in
number of nodes thus giving an upper limit on the num-
ber of nodes or population size in evaluating the utility of
a parallel GA. Our model does not ever lead to a decrease
in performance with an increase in the number of nodes.
We also consider other factors like potential variance in in-
dividual evaluation times caused by evaluation parameters
and shared system scheduling. Thus, in our shared cluster,
because other jobs may be running, we cannot assume that
all our nodes take equal time in evaluating and communi-
cating the fitness of an individual chromosome. In terms of
implementation, we address this issue by using a producer-
consumer strategy in chromosome distribution. Each slave
node only gets one individual to evaluate; when done evalu-
ating, the node returns the fitness to the master node, which
will then assign it a new individual to be evaluated. Depend-
ing on the relationship between population size and number
of nodes, this scheme may increase or decrease communi-
cation time. But overall, the communication time will not
change significantly compared to the long evaluation time
on each node. The next two subsections describe our imple-
mentation and develop a theoretical model of our parallel
scheme.

1.5 Algorithm
We provide the pseudo-code for our parallel multi-criteria

genetic algorithm below:

Slave Algorithm (Evaluation Node)

Initialize()

While (true)

Receive instruction I from master node

If (I is EVALUATION COMMAND)

do evalutation and return the fitness

else if ( I is FINISH COMMAND)

process exit

end while

Master Algorithm

Randomlyinitialize the population

Evaluate the whole population

While (not meet stop criteria)

Pareto Selection()

Crossover And Mutation()

Evaluate Population()

End while

Evaluate Population:

While (not all individuals evaluated)

Wait (blocking) until a slave node Ni is available

Send next individual to Ni

wait (non-blocking) for the fitness return.

End while

1.6 Parallelization Analysis
Assume that n is the given population size and P , the

number of processors. In every generation, all the slave
nodes perform fitness evaluation with average time T E and
the average communication time between two nodes is T C .
Thus communication in each generation takes time (n−1)∗
T C . Genetic algorithm processing (selection, mutation, and
crossover) time can be described by TB(n), which in our im-
plementation is only related to population size, not P . So
given P processors, the total time in one generation has the
following form:

Tp = TB + TC + TE

= TB(n) + (n − 1) ∗ T C + n
p
TE

(1)

The speed-up for k processors can be calculated by:

Speedupk = T1
Tk

=
TB(n)+(n−1)∗T C+ n

1
∗TE

TB(n)+(n−1)∗T C+ n
k
∗TE

= T (n)+nT E

T (n)+ n
k

T E

=
1+

nTE
T(n)

1+
nTE

kT (n)

(2)

As is show in the derivation, we combined the first two terms
TB(n) + (n − 1) ∗ TC into one function of n, T(n), and the
expected speedup can be known if we know what T (n) looks
like. More specifically, the actual speedup is determined by

the ratio T E

T (n)
, the ratio of evaluation time to all other oper-

ations T(n) (communication and GA processing on master

node). In the ideal case, TE

T (n)
>> k/n, and the speedup

will be almost linear (thick line in Figure 3); but in more
realistic cases, speedup will not be a linear function. The
equation simplifies when T(n) is linear, i.e., T(n) = C*n, or
n /T(n) = s, where s is a constant value. In this case, the
speedup becomes:

Speedupk = T1
Tk

=
1+

T E
T(n)

1+
n∗TE

k∗T (n)

=
TB(n)+(n−1)∗T C+ n

1
∗TE

TB(n)+(n−1)∗T C+ n
k
∗TE

= 1+s
1+ s

k

(3)

Figure 3 plots speedup versus number of processors for the
linear case. The dashed line corresponds to nT E/T (n) = 1,
thin line to 5, the intermediate line to 50, and the thick line
to 500. The dotted line is the ideal (linear) speedup.
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Figure 3: Model-predicted theoretical speedups

Figure 4: Encoding of Temperature and Density

2. ENCODING
The X-ray spectra are fully determined by the spatial dis-

tribution of plasma, electron number density and tempera-
ture. Both density and temperature should be smooth func-
tions of position and all values must fall within a certain
range in order to be physically meaningful. Moreover, the
functions must be symmetric with respect to the center of
the plasma and the first derivative of temperature should
be equal to zero at the center. There are several plausible
encoding choices for gradients that satisfy these properties.
A parabolic function (f(x) = ax2 + b) is the simplest choice,
requires only two parameters to be fully defined, and can
accurately describe many possible gradients. Figure 4 illus-
trates our encoding of a parabolic gradient. It is important
to employ a flexible and robust encoding algorithm for char-
acterizing the temperature and density gradient functions.
Otherwise, the search and optimization might just fail be-
cause of the lack of ability of the gradient encoding algorithm
to produce good approximations to the solution to the prob-
lem. We use six spatial zones; each one of them represents a
small region of the plasma 10 microns in size; this choice is
motivated by the spatial resolution of the X-ray imager in-
struments. Within each spatial zone, temperature and den-
sity can take any of 32 uniformly spaced values spread over
a relevant range of values. This represents a 5 bit encoding
case where the 32 integers from 0 to 31 are mapped into 32
uniformly spaced real numbers in a given range. To avoid
sudden changes between adjacent zones, a bound is placed
on the maximum relative change. The total number of pos-
sible pairs of temperature and density gradient functions
that can be generated with this algorithm is 1.2∗1018 . This

is the size of the parameter space. This large size renders
an exhaustive search in parameter space impractical since
the evaluation of the spectral physics model is computation-
ally intensive. The idea behind evaluating an individual is
to minimize the 2 difference between the experimental and
synthetic data. Therefore we measure the fitness or perfor-
mance of each candidate as 1/2 (the higher the performance,
the better the fit). Equation 1 defines a standard method of
measuring the difference between the data and the fits for
both emissivities and spectra:

χ2 =
X

i∈exp

ωi(I
exp
i − Itheor

i )2 (4)

where Iexp and Itheor are intensities (emissivities) of exper-
imental and theoretical data respectively and i is a weight
factor. A particular choice of the weight factor may have
an impact on the performance of the algorithm, it also may
be important for estimation of uncertainty intervals (Cold-
well, 1991). Since our primary goal was to study the per-
formance of the GA, we have chosen ωi = 1 for the spectra
and ωi = ( 1

Iexp )2 for the emissivities. This is done to com-
pensate for possible substantial changes in the emissivity
profile. The objectives are to find the best possible fits to
spectra and emissivities simultaneously. Also, we normal-
ize the objective function for each generation so that the
objective function for each criterion ranges from 0 to 1.

3. RESULTS
The parallel algorithm was implemented in C++ with the

MPICH library [5][10]. We used a cluster with 128 dual
processor nodes connected by a myrinet switch.. Each node
consisted of dual P4 Xeon 2.4GHz processors with 512K
cache, and 1.5GB of RAM. Since our cluster was a shared
cluster, other programs may have been running during our
experimental runs. Each set of experimental data, i.e. X-
ray line spectrum and spatial distribution of emissivities ob-
tained via Abel inversion of He-β and Ly-β monochromatic
images, was run at least ten times. As for genetic algo-
rithm parameters, we set the mutation rate to 0.1 and used
a simple two point crossover with probability of 0.95. The
population size was 300, run for 450 generations. In each of
these runs, the genetic algorithm driven analysis code was
initialized with a different initial random seed; the other in-
put parameters are the same. This is done in another effort
to address the uniqueness of the solution issue for this data
analysis problem.

3.1 Fitting the physics model
The pareto genetic algorithm successfully finds the tem-

perature and density gradient functions that yield good qual-
ity fits to the three objectives using a population size of
300 for 450 generations. Hence, the total number of spec-
tral physics model evaluations is 135,000. This represents a
small fraction of the 1.2∗1018 possible evaluations associated
with an exhaustive search of parameter space. This clearly
shows that the Pareto genetic algorithm plays a critical role
in making this spectroscopic analysis method practical. We
show results from one of three experiments with laboratory
plasmas. The GA finds parameters for the physics model to
fit the three observed profiles that form our criteria. These
are the Ly-β emissivity, He-β emissivity, and spectral inten-
sity. Figure 5 shows that the genetic algorithm is able to find
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Figure 5: Observed vs. MOGA-fitted Emissivity

Figure 6: Observed vs. MOGA-fitted spectrum

temperature and density gradients that do a good job in fit-
ting the Ly-β and He-β emissivity profiles. Figure 6 shows
that the third criteria, spectral intensity, is simultaneously
well fitted.

These results indicate that viability of multi-criteria tech-
niques for our problem and show that the pareto genetic
algorithm performs well. Figure 7 shows the fit obtained by
a different physics model called the Ly-β/He-β emissivity
ratio technique; clearly the pareto genetic algorithm does
significantly better in fitting observed experimental data.

By parallelizing the algorithm, we were able to go from
about nine hours to under nine minutes for the time taken
to fit our physics model to observed data, that makes evolu-
tionary multi-objective optimization techniques a viable ap-
proach to attacking X-ray spectroscopic analysis problems.
The next subsection addresses our parallel implementation
of this pareto GA.

3.2 Speedup
We ran our algorithm implementation on a cluster using

up to 150 processors with the same population size of 300
for 450 generations. Figure 8 shows the actual speedup in

Figure 7: Observed vs. MOGA-fitted temperature
and density

Figure 8: Theoretical vs. actual speedup

our experiment, the x-axis plots the number of nodes, while
the y-axis plots the speedup value. As we expected, the
speedup does not increase linearly and based on our pre-
diction model, we will get different speedup with different
value of the ratio nTE/T (n). Using a ratio of nT E/T (n) of
around 300:1, our theoretical model of the parallel pareto
GA fits the experimental speedup data quite well. Within
the range of nodes tested, the model is very accurate, and
we can predict that the speedup will increase if we can add
more processors but the rate of increase will slow and finally
stop.

We also computed the nT E/T (n) ratio from data gathered
during runs of our parallel pareto GA. It is not easy to find
the ratio directly in our theoretical model, but if we convert
the experimentally obtained speedup data into average load
L on each processor and each evaluation, we will get a linear
relation between L and P as shown in Figure 9. Then we
can do a model fit using the method of least squares.
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Figure 9: Averaged computation time per evalua-
tion

Figure 10: Observed vs. predicted speedup

Tk = T (n) + n
k
TE

⇒
Tk

N/k
= kT (n)

N
+ n

N
TE

⇒

(

n
N

T E = 0.25615
T (n)

N
= 8.97436E−4

⇒
nT E

T (n)
= 0.25615

8.97436E−4 = 285.97

(5)

Now, we can fit the experimental data with the above ra-
tio of 285.97. Figure 10 shows the resulting speedup curve
along with the actual speedup obtained; our parallel speedup
model fits the experimental speedup data well.

4. CONCLUSIONS AND FUTURE WORK
This paper presented a new parallelizing multi-objective

genetic algorithm for application in X-ray spectroscopic anal-
ysis. We used a producer-consumer method in distributing

chromosomes within the cluster. This led to a simplified the-
oretical analysis of performance speedup. Experimental re-
sults showed that the new parallel algorithm is useful in solv-
ing time-consuming X-ray spectroscopic analysis problems
for physicists. In addition, our theoretical speedup frame-
work accurately predicts observed speedup and is a useful
tool in analyzing parallel implementations. We are now in-
vestigating system scalability and system performance with
increasingly complex physics.
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[2] E. Cantú-Paz. Designing efficient master-slave parallel
genetic algorithms. Technical Report IlliGAL 97004,
Illinois Genetic Algorithms Laboratory, University of
Illinois at Urbana-Champaign, 1997.
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