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ABSTRACT
This poster presents an evolution strategy for single- and
multi-objective optimization. The model uses the predator-
prey approach from ecology to scale between both cases.
Furthermore the main issue of adaptation working for single-
and multi-objective problem-instances equally is discussed.
Particular, the well proved self-adaptation mechanism for
the mutation strengths in the single-objective case is adopted
for the multi-objective one. This self-adaptation process is
supported by a new strategy of competition between preda-
tors and preys. Six test functions are used to demonstrate
the practicability of the model.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Development

General Terms
Algorithms
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1. INTRODUCTION
In modern synthesis of evolutionary theory their is a broad

agree upon the hypothesis that species evolve by increasing
their adaptation to the environment where they live. Theses
adaptation process takes place by variation at the genotype
level and by developing new strategies of competition with
other species. While the particular attention is payed on
the genotype level in single objective optimization as well
as in the multi-objective case, research focusing on the level
of species interaction remained rare. These studies have
show that a predator-prey model is effective in the field of
multi-objective optimization problems (MOP). Their crucial
advantages can be summarized into two main arguments:
(1) Scalability between single-objective and multi-objective
optimization, and (2) the consequential conduction of the
inherent parallel alignment of each population based ap-
proach. Scalability between single-objective optimization
and multi-objective optimization is achieved by adding fur-
ther predator species into the selection process only. No
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further modifications are necessary. The hope and the aim
of these approaches is the design of a heuristic for single-
and multi-objective problems at last. In the second, Lau-
manns et al. has designed his model in an asynchronous and
parallel manner. Most models from ecology show that indi-
viduals interact in time and space within their own specie as
well as with other species. Laumanns was the first, who has
mimicked successfully both decisive factors from ecology in
order to preserve diversity in the current population.

This poster takes up the inspiration of the predator-prey
models. Starting from the idea of using an evolution strategy
(ES) as the basic underlying search heuristic the question
that has to be answered is: ”How an ES has to be modified
or parameterized to solve MOP, too”.

2. THE PREDATOR-PREY MODEL
In the following a predator-prey model for multi-objective

optimization is presented. Based on the underlying search
heuristic – an evolution strategy (ES) – the necessary mod-
ifications to solve MOP are sketched.

2.1 Choice of Population Structure
In literature it has been shown that the use of spatial pop-

ulation structures is favorable to achieve a diverse set of non-
dominated solutions. In general the exchange from panmic-
tic operating variation and selection operators through local
ones are the main feature of the spatial structures. This will
be modeled in this approach by dividing of the global popu-
lation into subpopulations (demes). The number of demes is
a new exogenous parameter (Ndeme). Starting from a global
definition of a (50 +, 500)-ES the 50 parent individuals are
divided into Ndeme uniform demes, which have constant size
during the evolutionary run.

Recombination: Recombination takes place within these
demes only. No migration between demes is allowed.
The number of offsprings is defined in the same manner
as the number of parents. For example, in the case of
Ndeme = 2 the global population is divided into two
uniform demes. Within each deme a (25 +, 250)-ES is
performed.

Selection: The number of predators, which are used in the
evolution is defined by a maximum number of preda-
tors per objective (Npred1, and Npred2, . . . ). Selec-
tion is performed by an uniformly distributed selection
from the amount of predators. That defines how many
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predators perform in the specific deme the selection.
In this way for every deme the composition of the pack
of predators for the actual deme is defined anew. As
long as the number of individuals in the specific deme
is greater than the predefined number of parents, se-
lection take place.

Mutation and Step Size Control: The self-adaptive mu-
tation mechanism from ES is used. The only change is
concerned to lower bounds of the mutation strength.

The lower bound of the mutation strength is defined
for each individual by the formula:

εrelative = (bestPrey1 + bestPrey2)/2, (1)

where bestPrey1 denotes to the mutation strength of
the current best prey for objective 1 and bestPrey2 de-
notes to the mutation strength of the current best prey
for objective 2. In this way the controlling mechanism
for the mutation strength is no longer restricted by an
arbitrary fix lower bound, but on a bound, which value
is defined by the controlling mechanism themselves.

3. PARAMETER SETTING AND
EXPERIMENTAL DESIGN

The problem of choosing optimal or nearly optimal pa-
rameter settings for a given heuristic-problem combination
is essential for the success of a search process. Practitioners
often use so-called standard parameters. Experiences from
the last four decades show, that each heuristic-problem com-
bination requires a specific parameterization. For this, sta-
tistical methods like Design of Experiments (DOE) as well
as tree based methods (classification and regression trees
(CART)) are used to set up computer experiments in an
efficient manner.

We demonstrate our technique on six test functions – the
Kursawe, Quagliarella, ZDT−1, Schaffer, Multi-Sphere and
the single objective Sphere model.

4. EVALUATION
The applicability of the predator-prey model is demon-

strated in this section. In Section 1 one of the main ad-
vantages of predator-prey models is named by ”scalability”.
This advantage has to be shown in an experimental manner
at first. The Sphere model is chosen for this task. Next
the model is applied to the convex test functions. Two im-
portant questions are analyzed: the impact of the number
of demes used in the model and the influence of a variable
number of predators per objective. The results of the model
for the concave test functions finalize this section.

4.1 Scalability
The experiments in this section were set up in order to

solve the single-objective function Sphere model. There-
fore the number of predators are set to Npred1 = 1 and
Npred2 = 0, respectively. The panmictic population, which
is traditionally used in the evolution strategy is configured
by Ndeme = 1. No further modifications are necessary.
The variation of three exogenous parameters will change the
heuristic from multi-objective to single-objective optimiza-
tion. Results show that there is no significant difference
between both heuristics. In particular, the predator-prey
approach outperforms the ES in small dimensions (N =

{6, 10, 20}). It can be conjectured that the modification of
the controlling mechanism for the mutation strengths is also
able to work in single objective cases.

4.2 Varying the number of demes
Here it can be seen that the number of demes has a signif-

icant impact on the number of different solutions in the re-
sulting population. Starting from a panmictic (Ndeme = 1)
model only few solutions covering a very small region of the
Pareto-front are obtained. Already the use of two separated
demes allows to cover the whole region but with poor diver-
sity. If the number of demes increased the final population
gets more and more diverse. Similar results can be observed
from all other test functions. In general, one can state that
in this model, as well as in the models with a spatial popu-
lation structure, the exchange from a panmictic population
structure with panmictic variation and selection operators
to local ones is favorable for a better diversity of the result-
ing population.

Next the number of predators per objective is analyzed.
As a surprising result the number of predators for each ob-
jective seems to have no significant impact for the distri-
bution of the population. It could be conjectured that the
decision if a deme is encountered by only one or both types
of predators is sufficient to get a well distributed Pareto-
front. Summarizing one can state that the model is able to
solve multi-objective optimization problems, which have in
general convex Pareto-fronts.

4.3 Non-Convex Pareto-Fronts
In a last step more complex functions (Kursawe, Quaglia-

rella) are analyzed. While the results of the Kursawe func-
tion are encouraging, here, the control mechanism of the
mutation strength leads to a well approximated Pareto-set
with a relative small number of dominated solutions. The
same controlling mechanism works even well on the con-
cave function. A limitation occurs at the borders of the
Pareto-front. Here, further reasons for this behavior must
be detected, especially in the field of finding the optimal
parameterization for this heuristic-problem combination.

5. SUMMARY
In this study the problem of adapting an evolution strat-

egy into the field of multi-objective optimization is treated.
The modified ES adapted ideas of predator-prey models
from ecology. In particular, this predator-prey approach en-
ables the practitioner to change between single-objective op-
timization and multi-objective optimization in an easy man-
ner. Questions about an appropriate controlling mechanism
for the mutation strength in the case of multi-objective opti-
mization are answered via a simple but efficient modification
of the hitherto fix lower bound for the mutation strength.
Experiments carried out with five test functions have shown
that the predator-prey model is able to produce a good set
of diverse solutions along the Pareto-front for convex as well
as for non-convex test functions. Even in the case of single-
objective optimization, the modified controlling mechanism
still allows self-adaptation with equal and sometimes bet-
ter rates of convergence. The hypothesis that structured
populations preserve diversity in the set of non-dominated
solutions can be confirmed. It might be speculated that an
approximately optimal specification of the lower bound of
the mutations strengths still remains to be done.
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