
Bias and Scalability in Evolutionary Development
 Timothy G.W. Gordon and Peter J. Bentley

Department of Computer Science
University College London

Malet Street, London, WCIE 6BT, U.K.
+44(20)76797214

{t.gordon, p.bentley}@cs.ucl.ac.uk

ABSTRACT
The introduction of a genotype-phenotype map modelled on
biological development can potentially improve the scalability of
evolutionary algorithms. Previous work by Gordon and Bentley
demonstrated that such a model can be used to evolve patterns
that map to useful but small phenotypes. This paper uses the same
model to generate much larger patterns covering arrays of up to
64x64 cells. The results show that the model’s performance is
generally comparable to similar development-based systems [12,
14], and with some measures outperforms them. Additionally the
inherent biases of the model are explored, such as the need to use
symmetry-breaking initial conditions which some other models do
not require. This exploration yields a set of guidelines that suggest
what kinds of problem the model is suited to exploring.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming –
program synthesis.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Development, Pattern formation, Scalability

1. INTRODUCTION
It is widely recognized that the inability of evolutionary
algorithms to scale to large and complex problems is a major
impediment to their application in the real world [8, 9, 17].
In the past few years a number of researchers have begun to
explore how modelling the genotype-phenotype map on biological
development might improve scalability [8, 12, 14]. In [6] Gordon
and Bentley introduced such a model and in [5] it was
demonstrated that it could be used to evolve patterns that mapped
to useful phenotypes, in this case circuit designs. However the
patterns and consequently the circuits they mapped to were small.

This paper shows that the same model can be used to evolve high
fitness solutions for much larger pattern generation problems,
which is important for the generation of large phenotypes.
Recently other researchers have presented evolutionary systems
that incorporate various models of development and have applied
them to similar pattern generation problems. This paper compares
Gordon and Bentley’s system with these other systems. The
results show that the model used by Gordon and Bentley provides
comparable performance to the best of these.
Although genotype-phenotype mappings based on development
have the potential to benefit scalability they apply strong biases
that affect the nature of the evolved phenotypes. This paper
presents an analysis of the biases inherent to Gordon and
Bentley’s model and derives a set of guidelines that can be used to
determine what kinds of problem the model is suited to.
The rest of this paper is structured as follows: section 2 presents a
summary of Gordon and Bentley’s developmental model. Section
3 explores the generation of large patterns and derives guidelines
for determining if this model might be suited to a particular
problem. Section 4 presents the evolution of more complex
problems, and compares the performance of Gordon and Bentley’s
model to others found in the literature, and provides possible
explanations for the observed greater performance of the Gordon
and Bentley model. Conclusions are made in Section 5.

2. DEVELOPMENTAL MODEL
The developmental model used here is identical to the final model
presented by Gordon in [5], where full details of the model and
the design decisions that lie behind it can be found. It consists of a
set of rules that describe how development should proceed, and a
two dimensional non-toroidal array of cells that are manipulated
by the rule set. Each cell maintains a chemical environment that
defines the cell’s context. Development occurs over a series of
discrete timesteps. At each timestep the chemical environment of
each cell is updated by testing the set of rules that make up the
chromosome against the current chemical environment in each
cell. For each cell, only the rules that match that cell’s
environment are activated. If the environment differs between
cells, it is possible for different rules to activate in each cell,
which leads to their environments being altered in different ways.
In this way, different chemical environments can be maintained
between cells.

The developmental rule set models the process at the heart of
biological development’s generative ability: DNA transcription.
Transcription regulates the rate of gene expression through the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

83

presence of proteins that either increase (activators) or decrease
(inhibitors) the transcription rate of a particular gene. These
proteins are generated by the expression of other genes. Thus a
dynamic, autocatalytic network of gene products specifies which
genes are expressed. As transcription is so central to biological
development it is modeled by many computational development
systems. Models such as the one presented here are termed
implicit as development’s generative ability including the ability
to create modules and iterative structures emerges from the
interaction of the rules. Examples of such systems are [1, 4, 10,
12, 14] and are unlike explicit systems, which explicitly define the
generative process much like a computer program, thus have the
disadvantage that mechanisms for iteration and modularity must
also be explicitly defined. Examples of explicit systems can be
found in [7] and [11].

2.1 Rule Structure
An example of a developmental rule is shown in Figure 2.1.
Proteins are modelled as binary state variables. The precondition
of each rule specifies which proteins must be present (activators),
and which must be absent (inhibitors) in order for that particular
gene to activate. Each rule consists of a conjunction of conditions
that must be true for the rule to activate. There are two terms in
each rule for each of the four proteins in the model. The first is a
two bit condition that specifies what proteins the cell itself must
generate (11) or not generate (00) for the rule to activate, with the
other two bit combinations representing don’t care terms. The
second term is a five bit condition that defines the context
supplied by the neighbouring cells: the first two bits define either
an equality, inequality or one of two precedence operators, and
the final three bits define the protein concentration that the
operator will act upon. This concentration is measured by
summing the amount of the protein generated by the cell’s four
Von Neumann neighbours. As it is coded by five bits the rule can
specify concentration values between 0 to 7, even though the
maximum concentration that could be detected is 4, when all
neighbouring cells are generating a protein. This allows “don’t
care” terms to be produced using impossible events. The
postcondition of the rule consists of two bits that define which
protein is generated if the rule is activated. This model is closely
related to Wolfram’s outer totalistic cellular automata [15].

00 00 001 11 11 011 01 10 111 10 01 100

Protein A Protein B Protein C Protein D

If A absent and

Neighbours A!=
 1

 and B present and

Neighbours B=
3

 and Neighbours C>=

 7

 and Neighbours D<=

 4

01

then
Generate B

Postcondition

(Don’t Care) (Don’t Care)

Figure 2.1. The Outer Totalistic Developmental Rule

For the model to even begin to generate useful patterns it is
necessary for rules to activate in some cells and not others. For
this to happen, it is necessary for some cells to experience
different contexts than others at the start of development. One way
this can be achieved is by introducing a set of simple yet
inhomogeneous starting conditions from which further
inhomogeneity in contexts can grow. Another way arises from the
non-toroidal nature of the cellular array. Cells that lie at the edges
and the corners of the array communicate with fewer neighbours
than other cells, thus a rule that activates when a protein is

detected at low concentrations in neighbouring cells may activate
in the corner and/or edge cells, but not in the other cells.

3. EVOLUTION OF LARGE PATTERNS
In [5] Gordon presented the evolution of various patterns across a
3x5 array of cells. This section presents similar experiments using
a 20x20 array of cells in order to demonstrate that the evolution of
patterns can scale to larger arrays.

3.1 Initial Considerations
Before these experiments are presented it is worth considering
some features of the model that have a profound effect on the
kinds of patterns that the model can generate.

3.1.1 Information Transmission
It is now widely accepted that a common strategy used in
biological development to specify different embryonic regions is
the generation of some form of positional information which can
then be interpreted by each cell to determine its fate [16]. In this
model information transmission occurs explicitly by interactions
between cells, under the control of evolved rules. As the model of
development used here only allows nearest-neighbour
communication (in order to keep computational complexity low)
information must be transmitted through local interactions with
neighbours alone.
This is likely to have important consequences for scalability, for
the following reason. In the model of development used here,
positional information must be represented in terms of a protein
context. The number of unique contexts is limited by the number
of proteins present in the system. The number of unique contexts
is also constrained by interactions with neighbouring contexts: if a
cell is to be labelled with a unique and stable protein context it
must interact with the contexts of its neighbours in a benign
manner. Each unique context must be governed by its relationship
with neighbouring contexts, and defined perhaps by a single rule,
or at least by part of a rule (or several rules). In turn these
neighbouring contexts must also be defined by positional
information that is defined by a similar rule, or set of rules. The
transmission of positional information over greater distances
requires a greater number of rules to specify the chain of
relationships between neighbouring cells, from an initial point of
inhomogeneity to the point where positional information is
required. As evolution must discover these chains of rules, it is
likely that any pattern requiring positional information to be
transmitted over large distances will be difficult to evolve.
Although this might at first glance suggest that the generation of
any large pattern is difficult, this is in fact not the case. In the
following sections the kinds of patterns that do and do not require
such long-distance transmission will be discussed.

3.1.2 Symmetry
Because a cell cannot distinguish between information transmitted
from individual neighbouring cells the patterns generated by the
developmental model are biased towards particular symmetries.
Consider a hypothetical non-bounded array where the initial
conditions are set so that a single cell contains one protein. As the
developmental rules do not distinguish between the four
symmetrically-arranged neighbouring cells, any pattern that
develops from this source cell must exhibit the following

84

symmetry elements that intersect at the source cell: a rotational
four fold point of symmetry and four mutually orthogonal lines of
symmetry, one along the horizontal axis, one along the vertical
axis and two bisecting these axes. An assemblage that exhibits
such symmetry is said to have four-fold dihedral symmetry, or
belong to the D4 point group [2]. Should the problem exhibit D4
symmetry this feature can be of great advantage, as it effectively
reduces the problem to a quarter of its size, with the remaining
three quarters of the solution arising automatically from the nature
of the model. However many problems may require more complex
symmetry. For these problems the symmetry must be broken.
There are two mechanisms by which development can do so. The
first is if development is carried out on a bounded array (as is the
case here). As was stated earlier, in this case the number of
neighbours experienced by each cell is inhomogeneous across the
array. Because of this it is possible to construct rules that behave
differently in these three types of cell, even with identical initial
conditions, thus break the symmetry of the developing pattern. In
this case the patterns that can arise directly from these inherent
inhomegeneities are of course limited to those that form a D4
point at the centre of the array, because each edge and each corner
is identical, and they are arranged with D4 symmetry around the
central point. The second mechanism by which symmetry can be
broken is through interaction with a second pattern that has
developed from another cell (or group of cells) elsewhere in the
array. Of course such a pattern can only arise if an inhomogeneity
is present in the array at the source of this pattern. Again this
could only be brought about by either prudent selection of initial
starting conditions at that point or the development of a pattern
from the inhomogeneity inherent in the edges and corners of a
bounded array. Because of this constraint, with this model of
development the initial conditions for each experiment must be
carefully chosen to ensure that the symmetry can be broken in a
way that patterns with the symmetry of the target pattern can be
generated.
Development enhances scalability by exploiting regularity during
pattern formation. Regular patterns can be placed in one of two
categories: those with translational symmetry, and those without.
A pattern has translational symmetry if its motif can be
consistently translated by some vector without altering the pattern.
Examples of this class of pattern are cheques and stripes. These
patterns represent a fairly trivial level of reuse that could easily be
exploited by a traditional designer. However they provide a
simple means of exploring whether the model of development
used here allows evolution to discover and reuse simple
regularities. Examples of regular patterns with non-translational
symmetry include French and Norwegian flags.
Sections 3.2 and 3.3 explore the development of patterns with
translational symmetry. Section 3.2 focuses on patterns with small
motifs and section 3.3 on larger ones. Section 4 compares the
performance of the model presented here with models used by
other researchers using regular patterns that can be described
using a generative process but have no translational symmetry.

3.2 Translational Patterns with Small Motifs
The first set of experiments presented here demonstrates the
evolution of striped and chequed patterns similar to those evolved
in [5] scaled to a 20x20 array. For all the following experiments a
set of 20 rules was evolved using a traditional genetic algorithm.

The parameters of the algorithm are shown in Table 3.1 Ten runs
of each experiment were run, each until an optimal solution was
discovered or for 1000 generations. Fitness for the initial set of
experiments was again based on the Hamming distance of the
candidate pattern of proteins from the target pattern of proteins.
The target pattern for the following set of experiments involved
only protein A. The longest distance possible between a candidate
solution and the target pattern was 400, which would result if for
every of the 20x20 array where protein A was specified as present
in the target pattern it was absent in the candidate solution, and
vice versa. Fitness was set as the measured distance between the
target pattern and the candidate solution for protein A subtracted
from the longest distance of 400.

Table 3.1. Parameters for the evolutionary experiments

Operator Type Rate
Selection 2 Member tournament 80%
Crossover One-point 100%
Mutation Point 5 per chrom.

Other parameters: Generational GA with elitism, 1000 generations, population size
= 100, random initialisation.

3.2.1 Experiment 1A: A Chequed Pattern
The target of the first experiment was to evolve a chequed pattern
of proteins. This is presented in Figure 3.1 as the target pattern for
experiment 1A. This target pattern is highly symmetrical: an
infinite array of the pattern would contain a D4 point at every cell.
Hence the initial conditions were set simply as if a single cell at
the south west corner had generated protein A at timestep t-1.
This required that both the map for the self-generated proteins and
the map for the neighbour-generated proteins were updated, as
shown in Figure 3.2, where lowercase conditions refer to the
neighbour-generated protein map and the uppercase condition
refers to the self-generated map. The results of the experiment are
shown in Table 3.2. Every run discovered an optimal solution.
The mean generations to discover an optimal solution was 174.1.

All the optimal solutions developed the target pattern by
generating a wavefront of information that moved diagonally
across the array, one cell at each timestep, from the southwest
corner where the initial conditions were set to the northeast
corner, although the details of which proteins were involved in the
process and how they were used to generate the final pattern
varied. This is the same strategy that was reported for the
evolution of similar patterns in [5]. It is clear from the results of
Experiment 1A that using this model of development, evolution is
capable of regularly discovering developmental rule sets that can
generate large arrays of simple chequed patterns from very simple
starting conditions.

Table 3.2. Results evolving patterns across large arrays.

Expt. Best /
Max.

Fitness

%
Optimal

Runs

Mean (Best
Fitnesses)

Std. Dev.
(Best

Fitnesses)
1A 400/400 100 400.0 0.0
1B 400/400 40 362.5 43.92

85

 Initial Conditions Target Pattern

1A

.
.
.

2
1 a=1
0 A a=1
 0 20 40 ... 360 380 400

19 A A A
18 A A A
17 A A A

.

.

.

2 A A A
1 A A A
0 A A A
 0 20 40 ... 360 380 400

1B

.

.

.
11
10 b=1 b=1 b=1
9 b=1 B,a=1 B,a=1 B,a=1 b=1
8 a=1 A,b=1 A,b=1 A,b=1 a=1
7 a=1 a=1 a=1
.
.
.

… 120 140 160 180 200 ...

.

.

.
B B B B B B B

10 A A A A A A A
9 B B B B B B B
8 A A A A A A A
7 B B B B B B B
.
.
.

A A A A A A A

 ... 120 140 160 180 200 ...

Figure 3.1. Initial protein concentrations and target protein
patterns for chequed and striped patterns on a 20x20 array

3.2.2 Experiment 1B: A Striped Pattern
The target of the second experiment was to evolve a striped
pattern of proteins, which is shown in Figure 3.2 as the target
pattern for experiment 1B. Striped patterns are less symmetrical
than chequed patterns: an infinite array of striped cells does not
exhibit D4 symmetry around every cell. Each cell only contains
two lines of reflection, along the horizontal and vertical axes and
a 2-fold point of rotation, or D2 symmetry. Thus for this pattern to
be attainable by the developmental model, the initial conditions
must break the additional two lines of reflection and reduce the
rotational symmetry from four-fold to two-fold. A set of initial
conditions that achieve this are shown in Figure 3.2, as the
starting conditions for Experiment 1B. These conditions are as if
three horizontally adjacent cells towards the centre of the array
had generated protein A and three cells vertically adjacent to this
stripe of A had generated B at timestep t-1.
This pattern was considered harder for development to create than
that of experiment 1A for the following reason. Without the
introduction of symmetry-breaking starting conditions, the
developmental model used here is constrained to generating
patterns with D4 symmetry. This means that the maximum number
of unique contexts it is possible for a set of rules to differentiate
between is limited to around one eighth of the array, as shown in
Figure 3.2a. The solution space searched by evolution is limited to
patterns constructed from these contexts. Once symmetry is
broken, the number of unique contexts exposed to evolution is
increased (assuming a unique context can be assigned using the
number of rules and proteins present in the system). However
once this is done, evolution must discover rules to manipulate
interactions between cells that was previously achieved as a
consequence of the symmetry. For instance when using starting
conditions that reduce D4 symmetry to D2 symmetry, as in
experiment 1B, and as depicted in Figure 3.2b, evolution must
learn rules to explicitly control both horizontal and vertical
growth, rather than growth in one direction only. (A manually
designed solution for experiment 1B required ten rules compared
with two for experiment 1A.) Not only must evolution now learn
to explicitly control more interactions, it is also possible for the
interactions governing growth in both directions to interact,

leading to an increase in epistasis. Consequently the problem is
likely to be more difficult for evolution to discover solutions.

A

O

J

NMLK

F

IHG

E

C

D

B

A

O

J

NMLK

F

IHG

E

C

D

B

A

O

J

N M L K

F

I H G

E

C

D

B

A

O

J

NMLK

F

IHG

E

C

D

B

A

O

J

N M L K

F

I H G

E

C

D

B

B BD D GG

HH EE

EEH H

I

II

I

NN

N N

MM

MM

LL

L L

K K

σd1 σv σd2

σh AAA

YTOJK

M

NIG

H

G

C

B

A

E

D

B

F K P

QL

R

X

W

V

U

S

σh

σv

AAA

Y T O J K

M

N I G

H

G

C

B

A

E

D

B

FKP

Q L

R

X

W

V

U

S

AAA

Y T O J K

M

N I G

H

G

C

B

A

E

D

B

FKP

Q L

R

X

W

V

U

S

AAA

YTOJK

M

NIG

H

G

C

B

A

E

D

B

F K P

QL

R

X

W

V

U

S

AAA

YTOJK

M

NIG

H

G

C

B

A

E

D

B

F K P

QL

R

X

W

V

U

S

Figure 3.2a. The maximum
number of unique contexts

available with simple starting
conditions arises from its
inherent D4 symmetry.

Figure 3.2b. Introducing
symmetry-breaking starting

conditions increases the
maximum number of contexts.

The results of experiment 1B support this reasoning, with only
40% of the 10 runs discovering an optimal solution. Nevertheless,
evolution still managed to discover solutions across this large
array. Furthermore the most efficient solution discovered used
only four rules, many less than the manually-designed alternative.
All the optimal solutions discovered by evolution alternated
between two striped patterns at each timestep, and on the fiftieth
timestep matched the target pattern. They all used a similar basic
strategy, depicted in Figure 3.3. At the first timestep a ring of
another protein was created around the cells set with protein A as
starting conditions (in the example of Figure 3.3 this is labelled
B), and this was used as a mask to prevent the generation of a
further protein that was otherwise homogenous across the array
(labelled C below). At a further timestep those cells with fewer
than three neighbouring cells generating C were set to A. A
consequence of the geometry of the cells is that cells meeting this
criterion will be present both directly and diagonally above the
current row of A, thus a new, larger row is created both above and
below the original row.

 Step 1 Step 2 Step 3
 C C C C C C C
 C C B B B C C A A A A A
 A A A → C B A A A B C →
 C C B B B C C A A A A A
 C C C C C C C
 Figure 3.3. The growth strategy used by all optimal

solutions to Experiment 1B.

The experimental results suggest that the evolution of patterns
with small regular motifs scales to large arrays reasonably well.
This suggests that evolution is exploiting a strategy that does not
rely on global positional information. In both the experiments
presented here and the experiments of [5], evolution used
wavefronts of activity that move across the cellular array,
generating a stable pattern behind them. Rather than transmitting
unique positional information over large distances, information is
transmitted that defines position relative to a nearby newly-
generated motif. As the motif is small, this requires only a handful
of unique contexts to be defined and a handful of rules to govern
them. Hence it seems reasonable to suggest that using this model
of development, patterns with small motifs are generally scalable

86

to large arrays, assuming that the symmetry requirements for the
formation of the pattern are met by the initial conditions selected.

3.3 Translational Patterns with Large Motifs
Real-world design problems are likely to be composed of larger,
more complex structures than those explored above, with
regularity evident on a greater scale. If evolution is to exploit such
regularity it is important for the developmental model to be able
to generate regular patterns with larger motifs.
Evolution used relative positional information to generate the
patterns above, thereby avoiding the difficulty associated with
transmitting information large distances to unique sites using a
nearest-neighbour model. This suggests that the generation of
patterns based on larger motifs is likely to be more difficult, as
relative positional information must be transmitted larger
distances, hence more unique contexts that interact benignly with
their neighbours must be defined by the rules.

3.3.1 Experiment 2A: Evolving Larger Chequed
Patterns
A series of experiments were carried out to test whether
evolution’s performance did decrease as the distance positional
information was transmitted over increased. The pattern used in
Experiment 2A was the chequed pattern of Experiment 1A, but
with the motif scaled to increasingly greater sizes, equally in both
dimensions from a 1x1 motif to a 7x7 motif. The initial conditions
were also changed. For experiments with each size of motif the
initial conditions were set so that the array contained a single copy
of that motif in the southwest corner. Figure 3.4 shows a plot of
the mean of the best fitnesses for 20 runs of each motif.

200

250

300

350

400

450

1 2 3 4 5 6 7

Width of Motif

Fi
tn

es
s

Figure 3.4. Plot of mean fitness against motif width for 20 runs
of the evolution of a pattern with a chequed motif. Error bars

represent one standard deviation.

Inspection of Figure 3.4 suggests that there is initially a trend
towards poorer fitness for larger motif size, but for the larger 6x6
and 7x7 cheques, fitness appears to improve. Additionally the 4x4
cheque has fitness similar to and perhaps greater than the 3x3 and
2x2 cheques (although there is some possibility that these features
are due to noise). Although this might at first seem surprising, it is
easily explained. It was discussed earlier that the corner cells can
be used to generate inhomogeneity, but any pattern generated
purely from these points will exhibit D4 symmetry around the

centre of the array. The target pattern for the 4x4 cheque exhibits
such symmetry, and the target patterns for the 6x6 and 7x7 cheque
are close to, but not quite symmetric about this point. However
they are close enough that many patterns that are symmetric about
the centre of the array produce a high fitness score for these
problems in particular, when using a 20x20 array. Examination of
the evolved solutions for these problems revealed that evolution
almost always made use of at least some information derived from
the corner cells, although in many cases the pattern was perturbed
by additional pattern formation around the motif provided as an
initial condition. When development of this solution was rerun
with the corner motif that was provided as an initial condition
removed, the pattern formed was extremely similar to that formed
when the initial conditions provided during evolution were
present, and the solution only dropped in fitness from 368 to 362.
This suggests that the majority of the information used by
evolution to generate the pattern originated at the corner cells.
Patterns generated in this way can be considered as forming a
single 10x10 motif that stretches from a corner to the centre of the
array, which is replicated by the inherent symmetry of the
developmental model. No transmission of relative positional
information to allow the formation of multiple motifs is necessary.
Instead evolution needs only to learn to generate a single motif.
The results suggest that evolution finds this alternative strategy,
and indeed strategies combining the use of both corner
inhomogeneity and explicitly provided initial conditions provide
easier routes to moderately fit solutions than using the initial
conditions alone. However these strategies would not generate
high fitness solutions for this problem on larger arrays as the
symmetry of the target pattern with respect to the array edges
would change. Similar strategies are also unlikely to be as
successful on larger array for other problems that happen to
exhibit D4 symmetry around the centre of the array, as the
complexity of the “motif” occupying a quarter of the array would
increase with the grid size. This would likely require an increase
in the number of rules needed to specify the pattern correctly.
However setting aside non-general strategies that result from
unusual matches between the symmetry of the target pattern and
the symmetry of the particular array used, the general trend
appears to be again towards lower performance as motif size is
scaled.

3.3.2 Experiment 2B: Evolving Larger Striped
Patterns
Experiment 2B repeated Experiment 2A, but this time using the
striped pattern of experiment 1B as the target. A plot of the mean
of the best fitnesses of each run is shown in figure 3.5. These
reveal a similar initial trend to experiment 2A, with fitness
dropping as motif size scales. However for the largest motifs,
there is again an increase in performance. Solutions involving
transmission of information from the corner cells are not viable
for this pattern, as it exhibits D2 rather than D4 symmetry, and
examination of the solutions confirmed this, showing that
evolution never used this strategy in the best solutions found.
However solutions for the large motifs again used non-general
solutions that relied on the distance between the outer stripes and
the array edge.
The development of the smaller problems, where more general
strategies are often evolved that transmit relative positional
information across a wavefront of activity do again appear to be

87

harder to discover as motif size scales, lending further support to
the conclusion that in general, evolution finds patterns with larger
motif sizes more difficult to discover.

200

250

300

350

400

450

1 2 3 4 5

Width of Motif

Fi
tn

es
s

Figure 3.5. Plot of mean fitness against motif width for 20 runs

of the evolution of a pattern with a striped motif. Error bars
represent one standard deviation.

4. NON-UNIFORM PATTERNS
The repeating patterns discussed above can all be formed by
translating a motif uniformly across the array by some vector.
However there are many other patterns that exhibit regularity, but
not uniformly across the entire array. This section first discusses
which types of non-uniform pattern can be exploited by
development, and then demonstrates the evolution of non-
uniform, yet scalable patterns on the 20x20 array. The patterns
that have been used in this section have also been evolved by
other researchers interested in scalability, allowing a performance
comparison between the model of development used here and that
used by other researchers.
Regular non-uniform patterns can be separated into two classes.
The first are patterns that possess point symmetry elements and
also exhibit translational symmetry within the primitive
asymmetric area of the pattern. For patterns of this class every
motif in the primitive area can be mapped onto another using a
simple translational operation, and the point symmetry of the
pattern can then be used to reproduce the pattern in its entirety.
Examples in this class are bow-tie shaped patterns and crosses.
Just as was discussed in the section above, development could
provide a scalable solution to problems of this class by learning a
set of rules that transmit information through the translation
vector and another set that generate a new motif. The examples
given above exhibit symmetry around a centre point hence present
opportunity for evolution to take advantage of the inherent
symmetry in the developmental process. Less symmetrical
structures of this class exist, for example triangles, which could be
generated through symmetry-breaking starting conditions.
The second class of patterns are those that do not exhibit strict
translational symmetry, but can be decomposed into elements that
do. Examples of such patterns are the simplified Norwegian and
French flags shown in Figure 4.1. One way development could
solve the problem would be to learn a set of rules for each element
of the pattern, with each set encoding both the translation vector
and a motif-generating process for that particular element. For
instance the Norwegian flag pattern in Figure 4.1a can be
decomposed into the two intersecting blue crosses with

surrounding white crosses, and all other cells red, each of which
could be generated with a separate set of rules.

C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
B B B B A A A B B B B B B B
A A A A A A A A A A A A A A
A A A A A A A A A A A A A A
A A A A A A A A A A A A A A
B B B B A A A B B B B B B B
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C

A A A C C C B B B
A A A C C C B B B
A A A C C C B B B
A A A C C C B B B
A A A C C C B B B
A A A C C C B B B
A A A C C C B B B

Figure 4.1(a) and (b). Patterns based on the
Norwegian and French flags

4.1.1 Guidelines for Suitable Problems
From the analysis of the experiments above a number of
guidelines can be summarized that suggest what kinds of
problems this model of development is suited to:

• Positional information can only be transmitted successful over
short distances, thus problems where solutions are likely to be
large and highly irregular are unsuitable for this model.

• If a large problem is to be tackled successfully it must exhibit
regularity that allows relative positional information to be
transmitted rather than absolute.

• The system is likely to perform best when its inherent bias
towards symmetrical patterns can be taken advantage of, and
starting conditions should be chosen to promote this. If good
solutions to a problem are likely to be of lower symmetry, the
inherent symmetry can be broken by prudent selection of
starting conditions.

• Care should be taken to avoid problems where many solutions
are symmetrical around the starting conditions and non-
optimal yet fit: such solutions are likely to be deceptive.

4.2 Comparison with Roggen and Federici’s
Developmental Systems
In [14] Roggen and Federici evolved solutions to the Norwegian
flag problem. They compared two developmental systems, one
that models diffusion but does not model any interaction between
the proteins that diffuse across the array (called the Morphological
model), and the other based on Miller’s Cartesian Genetic
Programming model [13] that models both diffusion and protein
interaction (called the Embryogenic model). The major difference
between Miller’s and Roggen and Federici’s implementation was
that Miller’s logical mapping between cell inputs and outputs was
replaced with ANNs. Roggen and Federici carried out their
comparison across a range of array sizes. An experiment was
conducted to compare the performance of the system presented
here with those used by Roggen and Federici for array sizes of
16x16, 32x32 and 64x64. The 16x16 pattern is shown in Figure
4.1a. The 32x32 pattern centres the cross on the 15x18th cell with
the blue stripes 5 cells wide, the white stripes 2 cells wide and a
surrounding border 1 cell wide. The 64x64 pattern is centred on
the 29x35th cell with the blue stripes 11 cells wide, the white
stripes 5 cells wide and a surrounding border two cells wide. All

88

evolutionary and developmental parameters were as described for
the experiments 2A and 2B, except the fitness measure, the
starting conditions and the number of developmental timesteps.
The starting conditions for each pattern size were set as if the cell
at the centre of the cross had generated protein A at timestep t-1.
Four proteins were required to form the pattern the hence the
fitness of each candidate solution ranged from a maximum of 4 x
n to 0, where n is the total number of cells in the array. Ten runs
of each pattern size were conducted, and the results are shown in
Table 4.2, along with Roggen and Federici’s results for
comparison. (Note that the values tabulated for Roggen and
Federici’s results are approximate, as they were obtained visually
from the plot presented in [14]. The patterns of proteins A and C
for the best solution evolved are shown in Figure 4.3.
The results in Table 4.2 suggest that the system presented here
outperforms both the other systems across all three array sizes.
Furthermore this was achieved in half the number of generations
used by Roggen and Federici (1000 rather than 2000).

Protein A Protein C

Figure 4.3 Best evolved 64x64 Norwegian flag. In this solution
proteins B and D were not present at the end of development.

It is worth considering what features of Gordon and Bentley’s
model may be leading to the improvement in performance. The
first point to note is that the Morphological model does not model
any interaction between the proteins: protein generation is fixed at
the start of development. This seems to constrain the patterns that
can be generated to patterns with little fine detail: the patterns
tend to consist of large areas where cells assume the same identity
and boundaries between the two areas. It is perhaps unsurprising
that this model generates relatively simple patterns as the protein
interaction of the other systems can be thought of as an additional
layer of computation available to evolution.
The second point is that both models used by Roggen and
Federici differ from Gordon and Bentley’s model in that each cell
can only assume a single protein state. Gordon and Bentley’s
model allows each cell to generate any combination of proteins.
Cells in Gordon and Bentley‘s model that contain the target
protein along with other proteins contribute towards fitness even
though the state of the cell is not perfect. This may provide a
smoother fitness landscape for this kind of problem.
A final point is that unlike the other two models, the cell state of
the Embryological model used by Roggen and Federici is
calculated by evolving a function that accepts inputs from
neighbouring cells independently. Gordon and Bentley‘s model
takes a totalistic approach, summing the states of neighbouring
cells. This results in a strong bias towards generating symmetrical
patterns (such as the solution to the Norwegian flag problem
shown in Figure 4.3) which the Embryological model does not
have. As stated earlier this can be of great benefit as it effectively

reduces the problem size, and can be likened to processes in
biological development which take advantage of the physics and
chemistry inherent in the environment. In fact it was noted by
Dawkins [3] that many biological organisms are highly
symmetrical and that such symmetries are likely to arise as a
natural consequence of their development and aid evolvability.

Table 4.2. Comparison between the current system and
approximate results for both the Morphogenetic and

Embryonic systems presented in [14]
 Best Mean
Problem
Size

GB RF
Morph

RF
Emb.

GB GB
St. D.

RF
Morph

RF
Emb.

16x16 91.41 ~76 ~67 88.45 3.93 ~70 ~58
32x32 90.04 ~73 ~70 88.81 3.41 ~70 ~58
64x64 81.64 ~72 ~80 74.45 3.84 ~68 ~68

4.3 Comparison with Miller’s System
Miller has also explored the generation of flag patterns including
the French flag pattern shown in Figure 4.1b using his Cartesian
Genetic Programming-based developmental system [12]. In this
study Miller was not interested only in scalability but pattern
maintenance and regeneration. Hence the problem he tackled was
not purely to generate the pattern at the final developmental
timestep but to maintain it for a number of timesteps. This
experiment was repeated using Gordon and Bentley’s system. The
problem requires that a 9x7 French flag pattern be developed and
maintained on a 16x16 array over 10 developmental timesteps.
Fitness was measured by summing the distance between the target
and developed patterns as before, but the fitness is summed over
the final four developmental timesteps, to produce a bias towards
pattern maintenance. The developmental and genetic parameters
for this experiment were identical to the previous experiments,
except the number of developmental timesteps was reduced to 10
in line with Miller’s experiment, fitness was calculated across all
four proteins again in line with Miller, and the starting conditions
were set to allow the D4 symmetry of the system to be broken
down to D2 symmetry. This was achieved by setting a small stripe
of 3 cells at the centre of what should develop into the flag pattern
to proteins A, B and C. The results of the experiment are shown in
Table 4.3. Results from [12] are provided for experiments
conducted using 0 and 2 proteins, representing the worst and best
results achieved respectively.
The best performance for this problem was found by Miller’s 2
protein CGP system. However the mean of the best fitnesses
achieved with Gordon and Bentley’s system is greater than
Miller’s CGP system, and the best solution found by Gordon and
Bentley’s system had greater fitness than Miller’s 0 protein
system, and was close to Miller’s 2 protein system. It should be
noted that Miller’s results were obtained using 150,000
evaluations rather than 100,000 used here, suggesting that
additional computational power is needed to achieve good results
using Miller’s system. The worst solutions found by Miller’s
systems had significantly lower fitness than Gordon and Bentley’s
worst result, and a higher standard deviation. This suggests that
the fitness landscapes generated by Miller’s systems more
deceptive or present more local optima than the landscapes of
Gordon and Bentley’s system, at least for this problem.

89

Table 4.3. Comparison between the developmental system
presented here and results for Miller’s CGP system used in

[12] with 0 and 2 proteins.
System Best as %

Max bestf as

% Max

Worst
as %
Max

Normalised
Std. Dev.

GB 97.22 96.13 95.31 0.52
Miller , 0 Prots 88.77 85.53 83.50 1.60
Miller , 2 Prots 98.83 91.67 87.30 3.03

Again possible explanations as to why Miller’s system requires
more evaluations to achieve comparable results are bias towards
symmetry and fitness calculation. Like Roggen and Federici’s
Embryological model, Miller’s system is not biased towards
symmetrical patterns, and so is likely to spend more time
searching non-fruitful areas of solution space. And again like
Roggen and Federici’s systems, the cells of Miller’s system can
only assume a single distinct cell type, and so the fitness
landscape is somewhat different to that searched by Gordon and
Bentley’s model. Finally the model used by Gordon and Bentley
requires the use of symmetry breaking starting conditions, where
as Miller’s (and indeed Roggen and Federici’s embryological
model) does not. The starting conditions used in these
experiments have been chosen carefully and provide useful
knowledge to development, which is not provided to the other
systems. Comparisons using various starting conditions will be
explored in future work.

5. CONCLUSIONS
The problem of scalability is one of great importance if
evolutionary techniques are to be routinely applied to large real-
world problems, such as digital circuit design. One possible
solution is to use a developmental genotype-phenotype mapping.
However research into such systems is at an early stage: they are
poorly understood and scalability has not been widely
demonstrated through experiment. This paper has shown through
a number of experiments that the developmental model used in [5]
is capable of generating large phenotypes. In future work it is
intended to apply the model to the evolution of large digital
circuits. Through these experiments a number of rules have been
derived that suggest what kinds of problem are more suited to
such an approach. The developmental model used in this paper
has also been compared to similar models in the literature.
Although it provides more domain knowledge than some of these
other models, it appears to provide at least comparable, and in
many cases better performance for the problems presented here
while using fewer evaluations.

6. ACKNOWLEDGEMENTS
The authors would like to thank Daniel Roggen for supplying the
Norwegian flag problem target patterns.

7. REFERENCES

[1] Bongard, J.C. Evolving Modular Genetic Regulatory

Networks. 2002 Congress on Evolutionary Computation.
2002. Honolulu, HI, U.S.A.: IEEE Press. pp. 1872-1877.

[2] Cotton, F.A., Chemical Applications of Group Theory. 2nd
ed. 1990, New York: John Wiley & Sons Inc. 478.

[3] Dawkins, R. The evolution of evolvability. Proc. of Artificial
Life. 1989. Santa Fe, U.S.A.: Addison-Wesley. pp. 201-220.

[4] Eggenberger, P. Creation of Neural Networks Based on
Developmental and Evolutionary Principles. 7th Int.Conf. on
ANNs. 1997. Lausanne, Switzerland: Springer. pp. 337-342.

[5] Gordon, T.G.W. Exploring Models of Development for
Evolutionary Circuit Design. Congress on Evolutionary
Computation. 2003. Canberra, Australia: IEEE Press,
Piscataway, NJ, USA. pp. 2050-2057.

[6] Gordon, T.G.W. and P.J. Bentley. Towards Development in
Evolvable Hardware. 2002 NASA/DoD Conf. on Evolvable
Hardware. 2002. Washington DC, USA pp. 241-250.

[7] Gruau, F., Cellular Encoding of Genetic Neural Network.
1992, Laboratoire de lInformatique pour le Parallelisme,
Ecole Normale Superieure de Lyon: Lyon.

[8] Haddow, P.C., G. Tufte, and P. van Remortel. Shrinking the
Genotype: L-systems for EHW? 4th Int. Conf. on Evolvable
Systems. 2001. Tokyo, Japan. pp. 128-129.

[9] Hornby, G.S. and J.B. Pollack. The advantages of generative
grammatical encodings for physical design. Proc. Congress
on Evolutionary Computation. 2001. Seoul, South Korea.

[10] Jakobi, N., Harnessing Morphogenesis, in On Growth, Form
and Computers, S. Kumar and P.J. Bentley, Editors. 2003,
Elsevier: London.

[11] Koza, J.R., M.A. Keane, and M.J. Streeter. The importance
of reuse and development in evolvable hardware. 2003
NASA/DoD Conf. on Evolvable Hardware. 2003. Chicago,
IL, USA: IEEE Comput. Soc, Los Alamitos, CA. pp. 33-42.

[12] Miller, J.F. Evolving a self-repairing, self-regulating, French
flag organism. Genetic and Evolutionary Computation Conf..
2004. Seattle, Washington, USA.

[13] Miller, J.F. and P. Thomson. Cartesian Genetic
Programming. Proc. of EuroGP'2000. 2000. Edinburgh,
U.K.: Springer Verlag. pp. 121-132.

[14] Roggen, D. and D. Federici. Multi-cellular Development: Is
There Scalability and Robustness to Gain? 8th Int. Conf. on
Parallel Problem Solving in Nature. 2004. Birmingham,
U.K. pp. 391-400.

[15] Wolfram, S., A New Kind of Science. 2002, Champaign, IL,
U.S.A.: Wolfram Media.

[16] Wolpert, L., et al., Principles of Development. 2nd Edition
ed. 2002, Oxford, U.K.: Oxford University Press.

[17] Yao, X. and T. Higuchi, Promises and challenges of
evolvable hardware. IEEE Transactions on Systems, Man
and Cybernetics, Part C Applications and Reviews, 1999.
29(1): pp. 87-97.

90

