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ABSTRACT 
The introduction of a genotype-phenotype map modelled on 
biological development can potentially improve the scalability of 
evolutionary algorithms. Previous work by Gordon and Bentley 
demonstrated that such a model can be used to evolve patterns 
that map to useful but small phenotypes. This paper uses the same 
model to generate much larger patterns covering arrays of up to 
64x64 cells. The results show that the model’s performance is 
generally comparable to similar development-based systems [12, 
14], and with some measures outperforms them. Additionally the 
inherent biases of the model are explored, such as the need to use 
symmetry-breaking initial conditions which some other models do 
not require. This exploration yields a set of guidelines that suggest 
what kinds of problem the model is suited to exploring.  

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – 
program synthesis. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Development, Pattern formation, Scalability 

1. INTRODUCTION 
It is widely recognized that the inability of evolutionary 
algorithms to scale to large and complex problems is a major 
impediment to their application in the real world [8, 9, 17].  
In the past few years a number of researchers have begun to 
explore how modelling the genotype-phenotype map on biological 
development might improve scalability [8, 12, 14]. In [6] Gordon 
and Bentley introduced such a model and in [5] it was 
demonstrated that it could be used to evolve patterns that mapped 
to useful phenotypes, in this case circuit designs. However the 
patterns and consequently the circuits they mapped to were small. 

This paper shows that the same model can be used to evolve high 
fitness solutions for much larger pattern generation problems, 
which is important for the generation of large phenotypes.  
Recently other researchers have presented evolutionary systems 
that incorporate various models of development and have applied 
them to similar pattern generation problems. This paper compares 
Gordon and Bentley’s system with these other systems. The 
results show that the model used by Gordon and Bentley provides 
comparable performance to the best of these. 
Although genotype-phenotype mappings based on development 
have the potential to benefit scalability they apply strong biases 
that affect the nature of the evolved phenotypes. This paper 
presents an analysis of the biases inherent to Gordon and 
Bentley’s model and derives a set of guidelines that can be used to 
determine what kinds of problem the model is suited to.  
The rest of this paper is structured as follows: section 2 presents a 
summary of Gordon and Bentley’s developmental model. Section 
3 explores the generation of large patterns and derives guidelines 
for determining if this model might be suited to a particular 
problem. Section 4 presents the evolution of more complex 
problems, and compares the performance of Gordon and Bentley’s 
model to others found in the literature, and provides possible 
explanations for the observed greater performance of the Gordon 
and Bentley model. Conclusions are made in Section 5.  

2. DEVELOPMENTAL MODEL 
The developmental model used here is identical to the final model 
presented by Gordon in [5], where full details of the model and 
the design decisions that lie behind it can be found. It consists of a 
set of rules that describe how development should proceed, and a 
two dimensional non-toroidal array of cells that are manipulated 
by the rule set. Each cell maintains a chemical environment that 
defines the cell’s context. Development occurs over a series of 
discrete timesteps. At each timestep the chemical environment of 
each cell is updated by testing the set of rules that make up the 
chromosome against the current chemical environment in each 
cell. For each cell, only the rules that match that cell’s 
environment are activated. If the environment differs between 
cells, it is possible for different rules to activate in each cell, 
which leads to their environments being altered in different ways. 
In this way, different chemical environments can be maintained 
between cells.  

The developmental rule set models the process at the heart of 
biological development’s generative ability: DNA transcription. 
Transcription regulates the rate of gene expression through the 
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presence of proteins that either increase (activators) or decrease 
(inhibitors) the transcription rate of a particular gene. These 
proteins are generated by the expression of other genes. Thus a 
dynamic, autocatalytic network of gene products specifies which 
genes are expressed. As transcription is so central to biological 
development it is modeled by many computational development 
systems. Models such as the one presented here are termed 
implicit as development’s generative ability including the ability 
to create modules and iterative structures emerges from the 
interaction of the rules. Examples of such systems are [1, 4, 10, 
12, 14] and are unlike explicit systems, which explicitly define the 
generative process much like a computer program, thus have the 
disadvantage that mechanisms for iteration and modularity must 
also be explicitly defined. Examples of explicit systems can be 
found in [7] and [11]. 

2.1 Rule Structure 
An example of a developmental rule is shown in Figure 2.1. 
Proteins are modelled as binary state variables. The precondition 
of each rule specifies which proteins must be present (activators), 
and which must be absent (inhibitors) in order for that particular 
gene to activate. Each rule consists of a conjunction of conditions 
that must be true for the rule to activate. There are two terms in 
each rule for each of the four proteins in the model. The first is a 
two bit condition that specifies what proteins the cell itself must 
generate (11) or not generate (00) for the rule to activate, with the 
other two bit combinations representing don’t care terms. The 
second term is a five bit condition that defines the context 
supplied by the neighbouring cells: the first two bits define either 
an equality, inequality or one of two precedence operators, and 
the final three bits define the protein concentration that the 
operator will act upon. This concentration is measured by 
summing the amount of the protein generated by the cell’s four 
Von Neumann neighbours. As it is coded by five bits the rule can 
specify concentration values between 0 to 7, even though the 
maximum concentration that could be detected is 4, when all 
neighbouring cells are generating a protein. This allows “don’t 
care” terms to be produced using impossible events. The 
postcondition of the rule consists of two bits that define which 
protein is generated if the rule is activated. This model is closely 
related to Wolfram’s outer totalistic cellular automata [15]. 

00 00 001 11 11 011 01 10 111 10 01 100

Protein A Protein B Protein C Protein D

If A absent and

Neighbours A!=
    1

 and B present and

Neighbours B=
3

 and Neighbours C>=

    7

 and Neighbours D<=

    4

01

then
Generate B

Postcondition

(Don’t Care) (Don’t Care)

 
Figure 2.1. The Outer Totalistic Developmental Rule 

For the model to even begin to generate useful patterns it is 
necessary for rules to activate in some cells and not others. For 
this to happen, it is necessary for some cells to experience 
different contexts than others at the start of development. One way 
this can be achieved is by introducing a set of simple yet 
inhomogeneous starting conditions from which further 
inhomogeneity in contexts can grow. Another way arises from the 
non-toroidal nature of the cellular array. Cells that lie at the edges 
and the corners of the array communicate with fewer neighbours 
than other cells, thus a rule that activates when a protein is 

detected at low concentrations in neighbouring cells  may activate 
in the corner and/or edge cells, but not in the other cells. 

3. EVOLUTION OF LARGE PATTERNS 
In [5] Gordon presented the evolution of various patterns across a 
3x5 array of cells. This section presents similar experiments using 
a 20x20 array of cells in order to demonstrate that the evolution of 
patterns can scale to larger arrays.  

3.1 Initial Considerations 
Before these experiments are presented it is worth considering 
some features of the model that have a profound effect on the 
kinds of patterns that the model can generate. 
 

3.1.1  Information Transmission 
It is now widely accepted that a common strategy used in 
biological development to specify different embryonic regions is 
the generation of some form of positional information which can 
then be interpreted by each cell to determine its fate [16]. In this 
model information transmission occurs explicitly by interactions 
between cells, under the control of evolved rules. As the model of 
development used here only allows nearest-neighbour 
communication (in order to keep computational complexity low) 
information must be transmitted through local interactions with 
neighbours alone. 
This is likely to have important consequences for scalability, for 
the following reason. In the model of development used here, 
positional information must be represented in terms of a protein 
context. The number of unique contexts is limited by the number 
of proteins present in the system. The number of unique contexts 
is also constrained by interactions with neighbouring contexts: if a 
cell is to be labelled with a unique and stable protein context it 
must interact with the contexts of its neighbours in a benign 
manner. Each unique context must be governed by its relationship 
with neighbouring contexts, and defined perhaps by a single rule, 
or at least by part of a rule (or several rules). In turn these 
neighbouring contexts must also be defined by positional 
information that is defined by a similar rule, or set of rules. The 
transmission of positional information over greater distances 
requires a greater number of rules to specify the chain of 
relationships between neighbouring cells, from an initial point of 
inhomogeneity to the point where positional information is 
required. As evolution must discover these chains of rules, it is 
likely that any pattern requiring positional information to be 
transmitted over large distances will be difficult to evolve. 
Although this might at first glance suggest that the generation of 
any large pattern is difficult, this is in fact not the case. In the 
following sections the kinds of patterns that do and do not require 
such long-distance transmission will be discussed. 
 

3.1.2 Symmetry 
Because a cell cannot distinguish between information transmitted 
from individual neighbouring cells the patterns generated by the 
developmental model are biased towards particular symmetries. 
Consider a hypothetical non-bounded array where the initial 
conditions are set so that a single cell contains one protein. As the 
developmental rules do not distinguish between the four 
symmetrically-arranged neighbouring cells, any pattern that 
develops from this source cell must exhibit the following 
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symmetry elements that intersect at the source cell: a rotational 
four fold point of symmetry and four mutually orthogonal lines of 
symmetry, one along the horizontal axis, one along the vertical 
axis and two bisecting these axes. An assemblage that exhibits 
such symmetry is said to have four-fold dihedral symmetry, or 
belong to the D4 point group [2]. Should the problem exhibit D4 
symmetry this feature can be of great advantage, as it effectively 
reduces the problem to a quarter of its size, with the remaining 
three quarters of the solution arising automatically from the nature 
of the model. However many problems may require more complex 
symmetry. For these problems the symmetry must be broken. 
There are two mechanisms by which development can do so. The 
first is if development is carried out on a bounded array (as is the 
case here). As was stated earlier, in this case the number of 
neighbours experienced by each cell is inhomogeneous across the 
array. Because of this it is possible to construct rules that behave 
differently in these three types of cell, even with identical initial 
conditions, thus break the symmetry of the developing pattern. In 
this case the patterns that can arise directly from these inherent 
inhomegeneities are of course limited to those that form a D4 
point at the centre of the array, because each edge and each corner 
is identical, and they are arranged with D4 symmetry around the 
central point. The second mechanism by which symmetry can be 
broken is through interaction with a second pattern that has 
developed from another cell (or group of cells) elsewhere in the 
array. Of course such a pattern can only arise if an inhomogeneity 
is present in the array at the source of this pattern. Again this 
could only be brought about by either prudent selection of initial 
starting conditions at that point or the development of a pattern 
from the inhomogeneity inherent in the edges and corners of a 
bounded array. Because of this constraint, with this model of 
development the initial conditions for each experiment must be 
carefully chosen to ensure that the symmetry can be broken in a 
way that patterns with the symmetry of the target pattern can be 
generated.  
Development enhances scalability by exploiting regularity during 
pattern formation. Regular patterns can be placed in one of two 
categories: those with translational symmetry, and those without. 
A pattern has translational symmetry if its motif can be 
consistently translated by some vector without altering the pattern. 
Examples of this class of pattern are cheques and stripes. These 
patterns represent a fairly trivial level of reuse that could easily be 
exploited by a traditional designer. However they provide a 
simple means of exploring whether the model of development 
used here allows evolution to discover and reuse simple 
regularities. Examples of regular patterns with non-translational 
symmetry include French and Norwegian flags. 
Sections 3.2 and 3.3 explore the development of patterns with 
translational symmetry. Section 3.2 focuses on patterns with small 
motifs and section 3.3 on larger ones. Section 4 compares the 
performance of the model presented here with models used by 
other researchers using regular patterns that can be described 
using a generative process but have no translational symmetry. 
 

3.2 Translational Patterns with Small Motifs 
The first set of experiments presented here demonstrates the 
evolution of striped and chequed patterns similar to those evolved 
in [5] scaled to a 20x20 array.  For all the following experiments a 
set of 20 rules was evolved using a traditional genetic algorithm. 

The parameters of the algorithm are shown in Table 3.1 Ten runs 
of each experiment were run, each until an optimal solution was 
discovered or for 1000 generations. Fitness for the initial set of 
experiments was again based on the Hamming distance of the 
candidate pattern of proteins from the target pattern of proteins. 
The target pattern for the following set of experiments involved 
only protein A. The longest distance possible between a candidate 
solution and the target pattern was 400, which would result if for 
every of the 20x20 array where protein A was specified as present 
in the target pattern it was absent in the candidate solution, and 
vice versa. Fitness was set as the measured distance between the 
target pattern and the candidate solution for protein A subtracted 
from the longest distance of 400.  
 

Table 3.1. Parameters for the evolutionary experiments 

Operator Type Rate 
Selection 2 Member tournament 80% 
Crossover One-point 100% 
Mutation Point 5 per chrom. 

Other parameters: Generational GA with elitism, 1000 generations, population size 
= 100, random initialisation. 

 

3.2.1 Experiment 1A: A Chequed Pattern 
The target of the first experiment was to evolve a chequed pattern 
of proteins. This is presented in Figure 3.1 as the target pattern for 
experiment 1A. This target pattern is highly symmetrical: an 
infinite array of the pattern would contain a D4 point at every cell. 
Hence the initial conditions were set simply as if a single cell at 
the south west corner had generated protein A at timestep t-1. 
This required that both the map for the self-generated proteins and 
the map for the neighbour-generated proteins were updated, as 
shown in Figure 3.2, where lowercase conditions refer to the 
neighbour-generated protein map and the uppercase condition 
refers to the self-generated map. The results of the experiment are 
shown in Table 3.2. Every run discovered an optimal solution. 
The mean generations to discover an optimal solution was 174.1. 

All the optimal solutions developed the target pattern by 
generating a wavefront of information that moved diagonally 
across the array, one cell at each timestep, from the southwest 
corner where the initial conditions were set to the northeast 
corner, although the details of which proteins were involved in the 
process and how they were used to generate the final pattern 
varied. This is the same strategy that was reported for the 
evolution of similar patterns in [5]. It is clear from the results of 
Experiment 1A that using this model of development, evolution is 
capable of regularly discovering developmental rule sets that can 
generate large arrays of simple chequed patterns from very simple 
starting conditions. 

Table 3.2. Results evolving patterns across large arrays. 

Expt. Best / 
Max. 

Fitness 

% 
Optimal 

Runs 

Mean (Best 
Fitnesses) 

Std. Dev. 
(Best 

Fitnesses) 
1A 400/400 100 400.0 0.0 
1B 400/400 40 362.5 43.92 
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2        
1 a=1       
0 A a=1      
 0 20 40 ... 360 380 400  

19  A   A  A 
18 A  A   A  
17  A   A  A 

. 

. 

. 
       

2 A  A   A  
1  A   A  A 
0 A  A   A  
 0 20 40 ... 360 380 400 

 

 

1B 

. 

. 

.        
11        
10   b=1 b=1 b=1   
9  b=1 B,a=1 B,a=1 B,a=1 b=1  
8  a=1 A,b=1 A,b=1 A,b=1 a=1  
7   a=1 a=1 a=1   
. 
. 
. 

       
… 120 140 160 180 200 ...  

. 

. 

. 
B B B B B B B 

10 A A A A A A A 
9 B B B B B B B 
8 A A A A A A A 
7 B B B B B B B 
. 
. 
. 

A A A A A A A 

 ... 120 140 160 180 200 ...  

Figure 3.1. Initial protein concentrations and target protein 
patterns for chequed and striped patterns on a 20x20 array 

 

3.2.2 Experiment 1B: A Striped Pattern 
The target of the second experiment was to evolve a striped 
pattern of proteins, which is shown in Figure 3.2 as the target 
pattern for experiment 1B. Striped patterns are less symmetrical 
than chequed patterns: an infinite array of striped cells does not 
exhibit D4 symmetry around every cell. Each cell only contains 
two lines of reflection, along the horizontal and vertical axes and 
a 2-fold point of rotation, or D2 symmetry. Thus for this pattern to 
be attainable by the developmental model, the initial conditions 
must break the additional two lines of reflection and reduce the 
rotational symmetry from four-fold to two-fold. A set of initial 
conditions that achieve this are shown in Figure 3.2, as the 
starting conditions for Experiment 1B. These conditions are as if 
three horizontally adjacent cells towards the centre of the array 
had generated protein A and three cells vertically adjacent to this 
stripe of A had generated B at timestep t-1. 
This pattern was considered harder for development to create than 
that of experiment 1A for the following reason. Without the 
introduction of symmetry-breaking starting conditions, the 
developmental model used here is constrained to generating 
patterns with D4 symmetry. This means that the maximum number 
of unique contexts it is possible for a set of rules to differentiate 
between is limited to around one eighth of the array, as shown in 
Figure 3.2a. The solution space searched by evolution is limited to 
patterns constructed from these contexts. Once symmetry is 
broken, the number of unique contexts exposed to evolution is 
increased (assuming a unique context can be assigned using the 
number of rules and proteins present in the system). However 
once this is done, evolution must discover rules to manipulate 
interactions between cells that was previously achieved as a 
consequence of the symmetry. For instance when using starting 
conditions that reduce D4 symmetry to D2 symmetry, as in 
experiment 1B, and as depicted in Figure 3.2b, evolution must 
learn rules to explicitly control both horizontal and vertical 
growth, rather than growth in one direction only. (A manually 
designed solution for experiment 1B required ten rules compared 
with two for experiment 1A.) Not only must evolution now learn 
to explicitly control more interactions, it is also possible for the 
interactions governing growth in both directions to interact, 

leading to an increase in epistasis. Consequently the problem is 
likely to be more difficult for evolution to discover solutions.  
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Figure 3.2a. The maximum 
number of unique contexts 

available with simple starting 
conditions arises from its 
inherent D4 symmetry. 

Figure 3.2b. Introducing 
symmetry-breaking starting 

conditions increases the 
maximum number of contexts. 

 
The results of experiment 1B support this reasoning, with only 
40% of the 10 runs discovering an optimal solution. Nevertheless, 
evolution still managed to discover solutions across this large 
array. Furthermore the most efficient solution discovered used 
only four rules, many less than the manually-designed alternative. 
All the optimal solutions discovered by evolution alternated 
between two striped patterns at each timestep, and on the fiftieth 
timestep matched the target pattern. They all used a similar basic 
strategy, depicted in Figure 3.3. At the first timestep a ring of 
another protein was created around the cells set with protein A as 
starting conditions (in the example of Figure 3.3 this is labelled 
B), and this was used as a mask to prevent the generation of a 
further protein that was otherwise homogenous across the array 
(labelled C below).  At a further timestep those cells with fewer 
than three neighbouring cells generating C were set to A. A 
consequence of the geometry of the cells is that cells meeting this 
criterion will be present both directly and diagonally above the 
current row of A, thus a new, larger row is created both above and 
below the original row. 

 Step 1 Step 2 Step 3 
        C C C C C C C         
        C C B B B C C   A A A A A  
  A A A   → C B A A A B C →        
        C C B B B C C   A A A A A  
        C C C C C C C         
 Figure 3.3. The growth strategy used by all optimal 

solutions to Experiment 1B. 
 
The experimental results suggest that the evolution of patterns 
with small regular motifs scales to large arrays reasonably well. 
This suggests that evolution is exploiting a strategy that does not 
rely on global positional information. In both the experiments 
presented here and the experiments of [5], evolution used 
wavefronts of activity that move across the cellular array, 
generating a stable pattern behind them. Rather than transmitting 
unique positional information over large distances, information is 
transmitted that defines position relative to a nearby newly-
generated motif. As the motif is small, this requires only a handful 
of unique contexts to be defined and a handful of rules to govern 
them. Hence it seems reasonable to suggest that using this model 
of development, patterns with small motifs are generally scalable 
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to large arrays, assuming that the symmetry requirements for the 
formation of the pattern are met by the initial conditions selected. 
 

3.3 Translational Patterns with Large Motifs 
Real-world design problems are likely to be composed of larger, 
more complex structures than those explored above, with 
regularity evident on a greater scale. If evolution is to exploit such 
regularity it is important for the developmental model to be able 
to generate regular patterns with larger motifs. 
Evolution used relative positional information to generate the 
patterns above, thereby avoiding the difficulty associated with 
transmitting information large distances to unique sites using a 
nearest-neighbour model. This suggests that the generation of 
patterns based on larger motifs is likely to be more difficult, as 
relative positional information must be transmitted larger 
distances, hence more unique contexts that interact benignly with 
their neighbours must be defined by the rules. 
 

3.3.1 Experiment 2A: Evolving Larger Chequed 
Patterns 
A series of experiments were carried out to test whether 
evolution’s performance did decrease as the distance positional 
information was transmitted over increased. The pattern used in 
Experiment 2A was the chequed pattern of Experiment 1A, but 
with the motif scaled to increasingly greater sizes, equally in both 
dimensions from a 1x1 motif to a 7x7 motif. The initial conditions 
were also changed. For experiments with each size of motif the 
initial conditions were set so that the array contained a single copy 
of that motif in the southwest corner. Figure 3.4 shows a plot of 
the mean of the best fitnesses for 20 runs of each motif. 
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Figure 3.4. Plot of mean fitness against motif width for 20 runs 
of the evolution of a pattern with a chequed motif. Error bars 

represent one standard deviation. 
 

Inspection of Figure 3.4 suggests that there is initially a trend 
towards poorer fitness for larger motif size, but for the larger 6x6 
and 7x7 cheques, fitness appears to improve. Additionally the 4x4 
cheque has fitness similar to and perhaps greater than the 3x3 and 
2x2 cheques (although there is some possibility that these features 
are due to noise). Although this might at first seem surprising, it is 
easily explained. It was discussed earlier that the corner cells can 
be used to generate inhomogeneity, but any pattern generated 
purely from these points will exhibit D4 symmetry around the 

centre of the array. The target pattern for the 4x4 cheque exhibits 
such symmetry, and the target patterns for the 6x6 and 7x7 cheque 
are close to, but not quite symmetric about this point. However 
they are close enough that many patterns that are symmetric about 
the centre of the array produce a high fitness score for these 
problems in particular, when using a 20x20 array. Examination of 
the evolved solutions for these problems revealed that evolution 
almost always made use of at least some information derived from 
the corner cells, although in many cases the pattern was perturbed 
by additional pattern formation around the motif provided as an 
initial condition. When development of this solution was rerun 
with the corner motif that was provided as an initial condition 
removed, the pattern formed was extremely similar to that formed 
when the initial conditions provided during evolution were 
present, and the solution only dropped in fitness from 368 to 362. 
This suggests that the majority of the information used by 
evolution to generate the pattern originated at the corner cells.  
Patterns generated in this way can be considered as forming a 
single 10x10 motif that stretches from a corner to the centre of the 
array, which is replicated by the inherent symmetry of the 
developmental model. No transmission of relative positional 
information to allow the formation of multiple motifs is necessary. 
Instead evolution needs only to learn to generate a single motif. 
The results suggest that evolution finds this alternative strategy, 
and indeed strategies combining the use of both corner 
inhomogeneity and explicitly provided initial conditions provide 
easier routes to moderately fit solutions than using the initial 
conditions alone. However these strategies would not generate 
high fitness solutions for this problem on larger arrays as the 
symmetry of the target pattern with respect to the array edges 
would change. Similar strategies are also unlikely to be as 
successful on larger array for other problems that happen to 
exhibit D4 symmetry around the centre of the array, as the 
complexity of the “motif” occupying a quarter of the array would 
increase with the grid size. This would likely require an increase 
in the number of rules needed to specify the pattern correctly.  
However setting aside non-general strategies that result from 
unusual matches between the symmetry of the target pattern and 
the symmetry of the particular array used, the general trend 
appears to be again towards lower performance as motif size is 
scaled. 

3.3.2 Experiment 2B: Evolving Larger Striped 
Patterns 
Experiment 2B repeated Experiment 2A, but this time using the 
striped pattern of experiment 1B as the target. A plot of the mean 
of the best fitnesses of each run is shown in figure 3.5. These 
reveal a similar initial trend to experiment 2A, with fitness 
dropping as motif size scales. However for the largest motifs, 
there is again an increase in performance. Solutions involving 
transmission of information from the corner cells are not viable 
for this pattern, as it exhibits D2 rather than D4 symmetry, and 
examination of the solutions confirmed this, showing that 
evolution never used this strategy in the best solutions found. 
However solutions for the large motifs again used non-general 
solutions that relied on the distance between the outer stripes and 
the array edge.  
The development of the smaller problems, where more general 
strategies are often evolved that transmit relative positional 
information across a wavefront of activity do again appear to be 
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harder to discover as motif size scales, lending further support to 
the conclusion that in general, evolution finds patterns with larger 
motif sizes more difficult to discover. 
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Figure 3.5. Plot of mean fitness against motif width for 20 runs 

of the evolution of a pattern with a striped motif. Error bars 
represent one standard deviation. 

 

4. NON-UNIFORM PATTERNS 
The repeating patterns discussed above can all be formed by 
translating a motif uniformly across the array by some vector. 
However there are many other patterns that exhibit regularity, but 
not uniformly across the entire array. This section first discusses 
which types of non-uniform pattern can be exploited by 
development, and then demonstrates the evolution of non-
uniform, yet scalable patterns on the 20x20 array. The patterns 
that have been used in this section have also been evolved by 
other researchers interested in scalability, allowing a performance 
comparison between the model of development used here and that 
used by other researchers.  
Regular non-uniform patterns can be separated into two classes. 
The first are patterns that possess point symmetry elements and 
also exhibit translational symmetry within the primitive 
asymmetric area of the pattern. For patterns of this class every 
motif in the primitive area can be mapped onto another using a 
simple translational operation, and the point symmetry of the 
pattern can then be used to reproduce the pattern in its entirety. 
Examples in this class are bow-tie shaped patterns and crosses. 
Just as was discussed in the section above, development could 
provide a scalable solution to problems of this class by learning a 
set of rules that transmit information through the translation 
vector and another set that generate a new motif. The examples 
given above exhibit symmetry around a centre point hence present 
opportunity for evolution to take advantage of the inherent 
symmetry in the developmental process. Less symmetrical 
structures of this class exist, for example triangles, which could be 
generated through symmetry-breaking starting conditions. 
The second class of patterns are those that do not exhibit strict 
translational symmetry, but can be decomposed into elements that 
do. Examples of such patterns are the simplified Norwegian and 
French flags shown in Figure 4.1. One way development could 
solve the problem would be to learn a set of rules for each element 
of the pattern, with each set encoding both the translation vector 
and a motif-generating process for that particular element. For 
instance the Norwegian flag pattern in Figure 4.1a can be 
decomposed into the two intersecting blue crosses with 

surrounding white crosses, and all other cells red, each of which 
could be generated with a separate set of rules. 
 

C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
B B B B A A A B B B B B B B
A A A A A A A A A A A A A A
A A A A A A A A A A A A A A
A A A A A A A A A A A A A A
B B B B A A A B B B B B B B
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C
C C C B A A A B C C C C C C

 

A A A C C C B B B
A A A C C C B B B
A A A C C C B B B
A A A C C C B B B
A A A C C C B B B
A A A C C C B B B
A A A C C C B B B

 

Figure 4.1(a) and (b). Patterns based on the 
Norwegian and French flags 

 

4.1.1 Guidelines for Suitable Problems 
From the analysis of the experiments above a number of 
guidelines can be summarized that suggest what kinds of 
problems this model of development is suited to: 

• Positional information can only be transmitted successful over 
short distances, thus problems where solutions are likely to be 
large and highly irregular are unsuitable for this model. 

• If a large problem is to be tackled successfully it must exhibit 
regularity that allows relative positional information to be 
transmitted rather than absolute. 

• The system is likely to perform best when its inherent bias 
towards symmetrical patterns can be taken advantage of, and 
starting conditions should be chosen to promote this. If good 
solutions to a problem are likely to be of lower symmetry, the 
inherent symmetry can be broken by prudent selection of 
starting conditions. 

• Care should be taken to avoid problems where many solutions 
are symmetrical around the starting conditions and non-
optimal yet fit: such solutions are likely to be deceptive. 

 

4.2 Comparison with Roggen and Federici’s 
Developmental Systems 
In [14] Roggen and Federici evolved solutions to the Norwegian 
flag problem. They compared two developmental systems, one 
that models diffusion but does not model any interaction between 
the proteins that diffuse across the array (called the Morphological 
model), and the other based on Miller’s Cartesian Genetic 
Programming model [13] that models both diffusion and protein 
interaction (called the Embryogenic model). The major difference 
between Miller’s and Roggen and Federici’s implementation was 
that Miller’s logical mapping between cell inputs and outputs was 
replaced with ANNs. Roggen and Federici carried out their 
comparison across a range of array sizes. An experiment was 
conducted to compare the performance of the system presented 
here with those used by Roggen and Federici for array sizes of 
16x16, 32x32 and 64x64. The 16x16 pattern is shown in Figure 
4.1a. The 32x32 pattern centres the cross on the 15x18th cell with 
the blue stripes 5 cells wide, the white stripes 2 cells wide and a 
surrounding border 1 cell wide. The 64x64 pattern is centred on 
the 29x35th cell with the blue stripes 11 cells wide, the white 
stripes 5 cells wide and a surrounding border two cells wide. All 
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evolutionary and developmental parameters were as described for 
the experiments 2A and 2B, except the fitness measure, the 
starting conditions and the number of developmental timesteps. 
The starting conditions for each pattern size were set as if the cell 
at the centre of the cross had generated protein A at timestep t-1. 
Four proteins were required to form the pattern the hence the 
fitness of each candidate solution ranged from a maximum of 4 x 
n to 0, where n is the total number of cells in the array. Ten runs 
of each pattern size were conducted, and the results are shown in 
Table 4.2, along with Roggen and Federici’s results for 
comparison. (Note that the values tabulated for Roggen and 
Federici’s results are approximate, as they were obtained visually 
from the plot presented in [14]. The patterns of proteins A and C 
for the best solution evolved are shown in Figure 4.3.  
The results in Table 4.2 suggest that the system presented here 
outperforms both the other systems across all three array sizes. 
Furthermore this was achieved in half the number of generations 
used by Roggen and Federici (1000 rather than 2000). 

 
Protein A Protein C 

Figure 4.3 Best evolved 64x64 Norwegian flag.  In this solution 
proteins B and D were not present at the end of development. 

 

It is worth considering what features of Gordon and Bentley’s 
model may be leading to the improvement in performance. The 
first point to note is that the Morphological model does not model 
any interaction between the proteins: protein generation is fixed at 
the start of development. This seems to constrain the patterns that 
can be generated to patterns with little fine detail: the patterns 
tend to consist of large areas where cells assume the same identity 
and boundaries between the two areas. It is perhaps unsurprising 
that this model generates relatively simple patterns as the protein 
interaction of the other systems can be thought of as an additional 
layer of computation available to evolution.  
The second point is that both models used by Roggen and 
Federici differ from Gordon and Bentley’s model in that each cell 
can only assume a single protein state. Gordon and Bentley’s 
model allows each cell to generate any combination of proteins. 
Cells in Gordon and Bentley‘s model that contain the target 
protein along with other proteins contribute towards fitness even 
though the state of the cell is not perfect. This may provide a 
smoother fitness landscape for this kind of problem. 
A final point is that unlike the other two models, the cell state of 
the Embryological model used by Roggen and Federici is 
calculated by evolving a function that accepts inputs from 
neighbouring cells independently. Gordon and Bentley‘s model 
takes a totalistic approach, summing the states of neighbouring 
cells. This results in a strong bias towards generating symmetrical 
patterns (such as the solution to the Norwegian flag problem 
shown in Figure 4.3) which the Embryological model does not 
have. As stated earlier this can be of great benefit as it effectively 

reduces the problem size, and can be likened to processes in 
biological development which take advantage of the physics and 
chemistry inherent in the environment. In fact it was noted by 
Dawkins [3] that many biological organisms are highly 
symmetrical and that such symmetries are likely to arise as a 
natural consequence of their development and aid evolvability. 

 

Table 4.2. Comparison between the current system and 
approximate results for both the Morphogenetic and 

Embryonic systems presented in [14] 
 Best Mean 
Problem 
Size 

GB RF 
Morph

RF 
Emb. 

GB GB 
St. D.

RF 
Morph

RF 
Emb.

16x16 91.41 ~76 ~67 88.45 3.93 ~70 ~58 
32x32 90.04 ~73 ~70 88.81 3.41 ~70 ~58 
64x64 81.64 ~72 ~80 74.45 3.84 ~68 ~68 
 

4.3 Comparison with Miller’s System 
Miller has also explored the generation of flag patterns including 
the French flag pattern shown in Figure 4.1b using his Cartesian 
Genetic Programming-based developmental system [12]. In this 
study Miller was not interested only in scalability but pattern 
maintenance and regeneration. Hence the problem he tackled was 
not purely to generate the pattern at the final developmental 
timestep but to maintain it for a number of timesteps. This 
experiment was repeated using Gordon and Bentley’s system. The 
problem requires that a 9x7 French flag pattern be developed and 
maintained on a 16x16 array over 10 developmental timesteps. 
Fitness was measured by summing the distance between the target 
and developed patterns as before, but the fitness is summed over 
the final four developmental timesteps, to produce a bias towards 
pattern maintenance. The developmental and genetic parameters 
for this experiment were identical to the previous experiments, 
except the number of developmental timesteps was reduced to 10 
in line with Miller’s experiment, fitness was calculated across all 
four proteins again in line with Miller, and the starting conditions 
were set to allow the D4 symmetry of the system to be broken 
down to D2 symmetry. This was achieved by setting a small stripe 
of 3 cells at the centre of what should develop into the flag pattern 
to proteins A, B and C. The results of the experiment are shown in 
Table 4.3. Results from [12] are provided for experiments 
conducted using 0 and 2 proteins, representing the worst and best 
results achieved respectively. 
The best performance for this problem was found by Miller’s 2 
protein CGP system. However the mean of the best fitnesses 
achieved with Gordon and Bentley’s system is greater than 
Miller’s CGP system, and the best solution found by Gordon and 
Bentley’s system had greater fitness than Miller’s 0 protein 
system, and was close to Miller’s 2 protein system.  It should be 
noted that Miller’s results were obtained using 150,000 
evaluations rather than 100,000 used here, suggesting that 
additional computational power is needed to achieve good results 
using Miller’s system. The worst solutions found by Miller’s 
systems had significantly lower fitness than Gordon and Bentley’s 
worst result, and a higher standard deviation. This suggests that 
the fitness landscapes generated by Miller’s systems more 
deceptive or present more local optima than the landscapes of 
Gordon and Bentley’s system, at least for this problem. 
 

89



Table 4.3. Comparison between the developmental system 
presented here and results for Miller’s CGP system used in 

[12] with 0 and 2 proteins. 
System Best as % 

Max bestf as 

% Max 

Worst 
as % 
Max 

Normalised 
Std. Dev. 

GB 97.22 96.13 95.31 0.52 
Miller , 0 Prots 88.77 85.53 83.50 1.60 
Miller , 2 Prots 98.83 91.67 87.30 3.03 
 
Again possible explanations as to why Miller’s system requires 
more evaluations to achieve comparable results are bias towards 
symmetry and fitness calculation. Like Roggen and Federici’s 
Embryological model, Miller’s system is not biased towards 
symmetrical patterns, and so is likely to spend more time 
searching non-fruitful areas of solution space. And again like 
Roggen and Federici’s systems, the cells of Miller’s system can 
only assume a single distinct cell type, and so the fitness 
landscape is somewhat different to that searched by Gordon and 
Bentley’s model. Finally the model used by Gordon and Bentley 
requires the use of symmetry breaking starting conditions, where 
as Miller’s (and indeed Roggen and Federici’s embryological 
model) does not. The starting conditions used in these 
experiments have been chosen carefully and provide useful 
knowledge to development, which is not provided to the other 
systems. Comparisons using various starting conditions will be 
explored in future work. 

5. CONCLUSIONS 
The problem of scalability is one of great importance if 
evolutionary techniques are to be routinely applied to large real-
world problems, such as digital circuit design. One possible 
solution is to use a developmental genotype-phenotype mapping. 
However research into such systems is at an early stage: they are 
poorly understood and scalability has not been widely 
demonstrated through experiment. This paper has shown through 
a number of experiments that the developmental model used in [5] 
is capable of generating large phenotypes. In future work it is 
intended to apply the model to the evolution of large digital 
circuits. Through these experiments a number of rules have been 
derived that suggest what kinds of problem are more suited to 
such an approach. The developmental model used in this paper 
has also been compared to similar models in the literature. 
Although it provides more domain knowledge than some of these 
other models, it appears to provide at least comparable, and in 
many cases better performance for the problems presented here 
while using fewer evaluations. 
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