
On the Impact of Objective Function Transformations on
Evolutionary and Black-Box Algorithms

[Extended Abstract]∗

Tobias Storch
Department of Computer Science 2, University of Dortmund, 44221 Dortmund, Germany

tobias.storch@uni-dortmund.de

ABSTRACT
Different fitness functions describe different problems. Hen-
ce, certain fitness transformations can lead to easier prob-
lems although they are still a model of the considered prob-
lem. In this paper, the class of neutral transformations for a
simple rank-based evolutionary algorithm (EA) is described
completely, i.e., the class of functions that transfers easy
problems for this EA in easy ones and difficult problems in
difficult ones. Moreover, the class of neutral transformations
for this population-based EA is equal to the black-box neu-
tral transformations. Hence, it is a proper superset of the
corresponding class for an EA based on fitness-proportional
selection, but it is a proper subset of the class for random
search. Furthermore, the minimal and maximal classes of
neutral transformations are investigated in detail.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Performance, Algorithms

1. INTRODUCTION
Evolutionary algorithms (EAs) belong to the broad class

of general randomized search heuristics. Their area of appli-
cation is as huge as their variety and they have been applied
successfully in numerous situations. EAs are population-
based optimizers. Here, we consider the maximization of
objective (fitness) functions f : S → Z, where S is a discrete
search space. In particular often pseudo-Boolean functions
are investigated, where S = {0, 1}n.

∗For the full paper see: T. Storch. On the impact of objec-
tive function transformations on evolutionary and black-box
algorithms. In Technical Report CI 193/05, University of
Dortmund, 2005.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

Let us survey arbitrary transformations g : Z → Z ap-
plied to an objective function f . If algorithm A optimizes
f efficiently, then A will also be efficient on g ◦ f for some
transformations g. We will specify the definition of efficiency
later. In such a situation, we call g neutral for f with A.
But on the other hand some transformations may turn the
algorithm to inefficiency in maximization. This separation
strongly depends on the specific algorithm and the specific
function. We are interested in transformations g which are
neutral for all functions f with respect to A and we call g
neutral for A, in this situation. This separation depends on
the specific algorithm only. Such a classification can assist
to categorize a problem as being efficiently optimizable more
easily and to generalize obtained results on a specific func-
tion to classes of functions. The last topic leads directly to
considerations concerning robustness aspects of algorithms.
If a function h can be deconstructed into a function f , where
A is efficient on, and a neutral transformation g for A, then
A is also efficient in optimizing h = g◦f . The investigations
of such structural properties lead to a better understanding
of the considered algorithms and its operators.

The probably best-known types of EAs – all incorporat-
ing aspects of natural selection – are genetic algorithms and
evolution strategies. For an overview of common EAs and
operators in EAs see e.g., [1]. At first, we consider a sim-
ple steady-state (µ+1) EArank applying uniform selection
(which is a rank -based selection scheme), standard-bit mu-
tation, and elitism for deletion. We will observe that the
class of neutral transformations Trank for the (µ+1) EArank

consists of all truncated strictly increasing functions. This
even holds for all rank-based algorithms, whose main prop-
erty is that their behavior does not depend on the specific
fitness value. We will give precise definitions later on.

Definition 1. Truncated Strictly Increasing (t.s.i.)
A function g : Z→ Z is called truncated strictly increasing
if there is z(g) ∈ Z∪{−∞,∞} such that g(v) < g(v +1) for
all v < z(g) and g(v) = g(v + 1) for all v ≥ z(g).

A t.s.i. function is strictly increasing up to some value and
then constant – including the strictly increasing and the
constant functions as well. In order to prove rigorously that
the class Trank cannot be extended for the (µ+1) EArank we
will present for each not t.s.i. transformation g a class of
pseudo-Boolean functions F , where the (µ+1) EArank is ef-
ficient on every f ∈ F . But, only on an exponentially small
fraction of g ◦ F := {g ◦ f | f ∈ F} it is not totally ineffi-
cient. Moreover, even every algorithm is inefficient on this
class of functions. We will specify how every algorithm can

833

be investigated in the following paragraph. Furthermore, for
the (µ+1) EAprop which is similar to the (µ+1) EArank but
comes up with fitness-proportional selection we will prove
that Tprop ⊂ Trank holds, where Tprop is the class of neutral
transformations for the (µ+1) EAprop. This will be shown by
presenting a particular pair of a function and a t.s.i. trans-
formation with the proposed properties. We remark that
the (µ+1) EArank and the (µ+1) EAprop are quite success-
ful on a wide range of problems even with µ = 1 (see e.g.,
[2] or [6]). A canonical extension of the class of rank-based
algorithms are the not fitness-based algorithms, whose main
property is that their behavior does not depend on the fit-
ness value at all. We will make this more precise later, too.
Hence, we will prove that for every not fitness-based algo-
rithm the class of neutral transformations Tnot fitness con-
tains all increasing functions, i.e., Trank ⊂ Tnot fitness. More-
over, for the well-known random search algorithm Arandom

that is not fitness-based we will identify the increasing func-
tions as the only neutral transformations. Furthermore, the
question arises which transformations are neutral for every
algorithm. We will show that this class Tids consists of all
truncated identities.

Definition 2. Truncated Identity (t.i.)
A function g : Z→ Z is called truncated identity if there is
z(g) ∈ Z∪{−∞,∞} such that g(v) = v for all v < z(g) and
z(g) ≤ g(v) = g(v + 1) for all v ≥ z(g).

A t.i. is the identity up to some value and then constant
– including the identity and the constant functions as well.
For a particular algorithm Aids we will prove that the class
of neutral transformations consists of the t.i. only. Further-
more, for an algorithm Aall we will demonstrate the other
extreme. The class of neutral transformations for this algo-
rithm Tall consists of all transformations.

One characteristic of all EAs and even of all general search
heuristics is that they gather information about the problem
instance – the problem itself is known in advance – by query-
ing one search point after the other to a so-called black-box.
At time t the next query xt is determined by a so-called
black-box algorithm with knowledge about the whole his-
tory. The history consists of the pairs of previously queried
elements and their function values (x1, v1), . . . , (xt−1, vt−1).
If all black-box algorithms are investigated, then we obtain
general lower bounds on the complexity of a problem. In
contrast to considerations of a single EA it is not mean-
ingful to investigate the black-box complexity for a single
function f . In such a scenario there exists always an effi-
cient black-box algorithm. It just queries an optimal ele-
ment of f within the first step. Therefore, classes of func-
tions are considered, where the particular function f is ran-
domly chosen from. This theoretical framework was intro-
duced by Droste, Jansen, and Wegener [3]. The evaluation
of the black-box typically requires most resources during an
optimization step. Therefore, we neglect all additional cal-
culations performed by a black-box algorithm or an EA in
particular and identify the number of steps as performance
measure only.

Let us estimate the efficiency of a randomized algorithm
now. Therefore, let TA,fn denote a random variable which
describes the number of function evaluations until the algo-
rithm A first queries an optimal search point of the pseudo-
Boolean function fn : {0, 1}n → Z, n ∈ N. If the expectation
of TA,fn for a sequence of functions f = (f1, . . . , fn, . . .) is

upper bounded by a polynomial in n we call A efficient on
f and highly inefficient if it is at least exponentially lower
bounded. Moreover, we call A totally inefficient on f if the
probability that an optimum has been queried is exponential
small even after an exponential number of steps. In this case,
a polynomially bounded number of (parallel) (independent)
multistarts of A is still totally inefficient.

Whenever we consider transformations g we also have to
distinguish whether the black-box algorithm has access to
g or not. Access means that the algorithm is able to eval-
uate g(v) for all v ∈ Z. Again, we will first identify the
neutral transformations Tblack for all black-box algorithms
with access to the specific transformation. I.e., if for a class
of functions F an efficient black-box algorithm exists, then
there is also an efficient black-box algorithm with access to
g ∈ Tblack for g ◦ F . Surprisingly, it holds Tblack = Trank,
where the (µ+1) EArank cannot access the transformation.
Hence, we remark that even Tblack ⊂ Tnot fitness is no contra-
diction to the observation that the class of objective func-
tions with an efficient black-box algorithm is larger than
the corresponding class for the not fitness-based algorithms.
Finally, we will demonstrate that for black-box algorithms
their access to the transformation can be essential.

Let us summarize. We will especially show the hierarchy:

Tids ⊆ Tprop ⊂ Trank = Tblack ⊂ Tnot fitness ⊂ Tall

The classes Tids and Tall even represent the two extreme
cases of the minimal and maximal class of transformations.
With exception of Tprop the classes of neutral transforma-
tions are specified completely and example algorithms are
presented and analyzed for all investigated classes.

The investigations concerning black-box algorithms help
us to define rank-based and not fitness-based algorithms
now. For a history (x1, v1), . . . , (xt−1, vt−1) let rankt(vi) :=
|{vj | vj ≤ vi, 1 ≤ j ≤ t − 1}| denote the rank of vi at step

t. Let p
(0)
t (x) (and p

(1)
t (x)) denote the probability that the

considered algorithm creates the element x in step t with

the history (x1, v
(0)
1), . . . , (xt−1, v

(0)
t−1) (and the not necessar-

ily equal history (x1, v
(1)
1), . . . , (xt−1, v

(1)
t−1) respectively).

Definition 3. Rank-Based and Not Fitness-Based
If p

(0)
t (x) = p

(1)
t (x) holds for all t ≥ 1 and for all x, where

for all 1 ≤ i ≤ t− 1 it is rankt(v
(0)
i) = rankt(v

(1)
i), then the

algorithm is called rank-based.

If p
(0)
t (x) = p

(1)
t (x) holds for all t ≥ 1 and for all x, then the

algorithm is called not fitness-based.

E.g., the (µ+1) EArank is a rank-based algorithm and fitness-
based, while the (µ+1) EAprop is fitness-based only.

We remark that the investigations made here are similar
for other discrete search spaces, for minimization, and for
objective functions with decision space R.

Throughout the paper let 0i and 1i, i ≥ 0, denote the bit-
strings which consist of i zeros and ones respectively. More-
over, let |x| denote the L1-norm of x = x1 · · ·xn ∈ {0, 1}n,
i.e., |x| :=Pn

i=1 xi, and let num(x) :=
Pn

i=1 xi2
i−1.

The paper is structured as follows. We begin with the pro-
posed results for rank-based EAs including not fitness-based
EAs and the (µ+1) EArank in particular in Section 2. The
results concerning the (µ+1) EAprop are considered in Sec-
tion 3. Afterwards, we investigate the Aids and the Aall in
Section 4. We continue with the considerations of black-box
algorithms in Section 5 before we finish with some conclu-
sions in Section 6.

834

2. RANK-BASED EAS
Beside uniform selection also linear-ranking, tournament

selection, and truncation selection are well-known rank-bas-
ed selection schemes. In Section 2.1 we will discuss the re-
sults concerning t.s.i. transformations on rank-based EAs in
general and in Section 2.2 we will define the (µ+1) EArank

in detail and we will present the results concerning not t.s.i.
transformations and the (µ+1) EArank. Moreover, in Sec-
tion 2.3 the not fitness-based algorithms including Arandom

are investigated in detail. The extensions concerning the
black-box algorithms will be proven in Section 5.

2.1 T.S.I. Transformations
Let us first investigate objective functions f : S → Z,

where S is a discrete search space. In the following let the
Arank be an arbitrary rank-based algorithm operating on S.

Theorem 4. Let pt,f be the probability that the Arank

needs more than t ≥ 1 steps to optimize f : S → Z. If
g : Z→ Z is t.s.i., then the Arank needs with a probability of
pt,g◦f ≤ pt,f more than t steps to optimize g ◦ f .

Proof. Let Sf ⊂ S and Sg◦f ⊂ S contain all non-optimal
elements of S with respect to f and g ◦ f respectively. Since
each optimal element of f is also one of g ◦ f for sure
it holds Sf ⊇ Sg◦f . At step t ≥ 1 the Arank on f has
queried the sequence (st) of search points x1, . . . , xt with
probability p(st),f . Hence, pt,f is the sum of the p(st),f

for all sequences (st) of length t which do not contain an
optimal element, i.e., xi ∈ Sf for all 1 ≤ i ≤ t. Each
such sequence (st) is either optimal for the Arank on g ◦ f ,
i.e., g ◦ f(xi) ∈ S \ Sg◦f ⊇ S \ Sf for some 1 ≤ i ≤ t,
or the Arank on g ◦ f queries (st) with probability p(st),f ,

too. The last argument holds since the Arank is rank-based
and therefore, in this situation and by definition, the al-
gorithm has generated with equal probabilities the search
point xj on the histories (x1, f(x1)), . . . , (xj−1, f(xj−1)) and
(x1, g ◦ f(x1)), . . . , (xj−1, g ◦ f(xj−1)). This holds for every
1 ≤ j ≤ t. We remember that for xi ∈ Sg◦f , 1 ≤ i ≤ j − 1,
it holds rankj(f(xi)) = rankj(g ◦ f(xi)).

The converse is typically incorrect. Therefore, consider an
arbitrary function f , where the investigated algorithm is in-
efficient on. (E.g., every general search heuristic is inefficient
on Plateau, see Lemma 18 in Section 5.) But the function
g ◦ f , where the t.s.i. transformation g is an arbitrary con-
stant function (e.g., g(v) = 0 for all v) will be optimized
by every algorithm within the first query since there exist
optimal elements only. We remark that this also holds for
black-box algorithms.

2.2 Not T.S.I. Transformations
For a simple and typical rank-based EA, the (µ+1) EArank,

we will prove rigorously that the class of neutral transfor-
mations consists of all t.s.i. functions. The lower bound was
shown in the previous section. For the upper bound it is
sufficient to present for each not t.s.i. transformation a class
of functions, where the EA turns from being efficient to in-
efficiency. Here, even a turnover to total inefficiency can
be demonstrated. Let us assume without simplifying the
setting that the search space S equals {0, 1}n, i.e., we inves-
tigate pseudo-Boolean functions. Moreover, the investigated
mutation-based steady-state (µ+1) EArank is defined as fol-
lows (see [5]).

Algorithm 5. (µ+1) EArank

1. Choose µ different individuals xi ∈ {0, 1}n, 1 ≤ i ≤ µ,
uniformly at random. These individuals constitute the
population P, i.e., P := {x1, . . . , xµ}.

2. Choose an individual x from the population P uni-
formly at random. Create y by flipping each bit in x
independently with probability 1/n.

3. If y 6∈ P, i.e., y 6= xi for all 1 ≤ i ≤ µ, then let z ∈
P ∪ {y} be randomly chosen among those individuals
with the worst f -value and let the population be P ∪
{y} \ {z}, goto 2., and else let the population be P,
goto 2.

The population merely consists of different elements which
implies that the structure of the population is not only a
multiset, but a set. Hence, only choices µ ≤ 2n are feasible.
In the rest of the paper, let the size of the population µ be
polynomially bounded. Otherwise, even the initialization of
the algorithm implicates inefficiency.

Now, we will demonstrate the possible turnover to total
inefficiency of the (µ+1) EArank, if an arbitrary not t.s.i.
transformation is applied.

Theorem 6. If g : Z → Z is not t.s.i., then there exist
classes of functions F , where the (µ+1) EArank needs for
every f ∈ F an expected polynomial number of steps for op-
timization (in particular O(µn3)). The (µ+1) EArank needs
for all but an exponential small fraction of functions f ∈ F ,
i.e., 2−Ω(n), with an exponential small failure probability an
exponential number of steps to optimize g ◦ f . Every black-
box algorithm needs at least an expected exponential number
of steps to optimize g ◦ f , f ∈ F .

Proof. (sketch of) We will present for each function
g a class of functions F with the proposed properties. The
results concerning black-box algorithms follow directly by
Lemma 18 in Section 5.

We will distinguish three cases. The first case considers
the situation that there exists at least one integer which is
transformed to a larger value than its successor (Case 1).
Afterwards, we just have to investigate functions, where
g(v) ≤ g(v + 1) holds for all v ∈ Z and furthermore, for
at least one integer v holds g(v) < g(v + 1) (otherwise, g
would be t.s.i. with z(g) = −∞). We distinguish two fur-
ther cases – for technical reasons only. One case considers
the situation that there are enough integers (what enough
means will be specified later) which are transformed to the
same non-optimal value (Case 2). To be more precise, for
some `2 large enough there are at least `2 − 1 < ∞ integers
v1 < · · · < v`2−1, where g(vi) = g(vi+1), 1 ≤ i < `2 − 1,
holds and at least one more integer v`2 > v`2−1, where
g(v`2−1) < g(v`2) holds. If this is not the case, then there
are at least two integers v`3−1 < v`3 transformed to the
same non-optimal value g(v`3−1) = g(v`3) and since we are
not in the second case and there are infinite many integers
smaller than v`3−1 there exist at least `3 − 2 < ∞ more
integers v1 < · · · < v`3−2 < v`3−1, where g(vi) < g(vi+1),
1 ≤ i < `3 − 1, holds. I.e., there are enough integers (what
enough means will be specified later) transformed to differ-
ent values (Case 3).
Case 1. There is an integer v, where g(v) > g(v + 1) holds.
Then, we investigate the class of functions F1 that consists
of all functions f1,a : {0, 1}n → Z, where for a ∈ {0, 1}n

835

f1,a(x) :=

(
v if x = a

v + 1 otherwise
.

Each function contains one non-optimal element only. Hence,
it is even not probable to find this element instead of an op-
timal one. After applying the transformation the algorithm
has to search for the needle in the haystack.

The expected number of steps of the (µ+1) EArank on f1,a

is bounded by O(1). If µ = 1 and the initial element is even
the single non-optimal element a, then with a probability ofPn

i=1

�
n
i

�
1/ni(1 − 1/n)n−i = 1 − (1 − 1/n)n ≥ 1 − 1/e an

optimum is created since an arbitrary mutation changing
at least one bit has to be performed to generate an opti-
mum. If µ ≥ 2, then at the latest the second element of the
initialization is an optimum.

Let us consider the class of functions g ◦ F1 now. Let
h : {0, 1}n → Z be the constant function h(x) := g(v + 1)
for all x ∈ {0, 1}n. We will investigate the (µ+1) EArank on
h, where an optimum of h is created within the first step.
Moreover, let pt(x), t ≥ 1, denote the probability that the
(µ+1) EArank on h creates the element x in step t and let
Q denote the set of elements which have a probability of
at least 2−n/3 to be generated at least once within the first
b2n/3c steps of the (µ+1) EArank. It holds |Q| ≤ d22n/3e.
Therefore, we assume |Q| ≥ d22n/3e + 1 which leads to a

contradiction since (d22n/3e + 1)2−n/3 > b2n/3c and the

(µ+1) EArank has created at most b2n/3c different elements

for the first time within the first b2n/3c steps. Hence, at
least as long as the optimum of g ◦ f1,a, f1,a ∈ F1, was not
created the next query is chosen with equal probability for
the (µ+1) EArank on h and g◦f1,a. The probability that the

optimum is created within the first b2n/3c steps is bounded

by 2−n/3 for all functions g ◦ f1,a, where a 6∈ Q. Moreover,
Q represents only an exponential small fraction of all inves-
tigated functions since |Q|/|F1| ≤ d22n/3e/2n = 2−Ω(n).
Case 2. There exist at least n integers v0 < · · · < vn−1,
where g(vi) = g(vi+1), 0 ≤ i < n − 1, holds and at least
one further integer vn > vn−1, where g(vn−1) < g(vn) holds.
Then, we investigate the class of functions F2 which consists
of all functions f2,a : {0, 1}n → Z, where for a ∈ {0, 1}n

f2,a(x) := vn−H(x,a) .
Let H(x, a) denote the Hamming distance of x and a. The
fitness increases with a decrease of the Hamming distance
up to the optimum. This makes it easy for the (µ+1) EArank

to optimize the function. After applying the transformation
the algorithm has to search for the needle in the haystack.

The expected number of steps of the (µ+1) EArank on
f2,a ∈ F2 is bounded by O(µn log n). The function f2,a has
the same properties than the well-known function OneMax,
OneMax(x) := |x|. A proof that the expected number of
steps of the (µ+1) EArank, where µ = 1, on OneMax equals
Θ(n log n) can be found in [2]. Let x denote an element with
the current largest function value vn−H(x,a). For all non-
optimal elements x (has a probability of 1/µ to be selected
for mutation) at least H(x, a) special 1-bit mutations (has
a probability of H(x, a)/n(1 − 1/n)n−1 ≥ H(x, a)/(en) to
be performed) increase the function value. Moreover, at the
beginning the largest function value is at least v0. Hence, we
can bound the expected number of steps of the (µ+1) EArank

by
Pn

i=1 eµn/i = O(µn log n) to optimize f2,a.
Let us consider the class of functions g◦F2 now. This class

of functions is similar to the one in the first case. Moreover,
the same arguments lead to the proposed result.

Case 3. There exist at least n integers v1 < · · · < vn, where
g(vi) < g(vi+1), 1 ≤ i < n, at least one integer vn+1 > vn,
where g(vn) = g(vn+1), and at least one more integer vn+2 >
vn+1, where g(vn+1) < g(vn+2) holds. Then, we investigate
the class of functions F3 that consists of all functions f3,a :
{0, 1}n → Z, where

f3,a(x) :=

8
>>><
>>>:

vn+2 if x = pn

vn+1 if x = pi, 0 ≤ i < n, and pi 6= pn

vn if x ∈ T

v|x| otherwise

for a = a1 · · · an ∈ {1n−dn/20ey | y ∈ {0, 1}dn/20e} with

pi := a1 · · · ai0
n−i, 0 ≤ i ≤ n, and T := {1n−dn/20ey | y ∈

{0, 1}dn/20e} − {p0, . . . , pn}. The sequence p0, . . . , pn−1 de-
scribes a path of constant fitness, where some elements can
be equal. A sequence s0, . . . , sr is called a path if the Ham-
ming distance of si, 0 ≤ i < r, and si+1 is (at most) one. The
beginning of the path will be created probably and quickly
by the (µ+1) EArank. Afterwards, such an element will not
be replaced by an element of the plateau T . A (connected)
subset of elements which all have the same function value is
called a plateau. The path guides the (µ+1) EArank through
the plateau and furthermore, the optimum will be created
quickly. The probability to create an element of T prior to
an pi, 0 ≤ i ≤ n, is so small that the expected optimization
time in these cases does not effect the expected number of
steps in total strongly. After applying the transformation
the algorithm has to search for the needle in the haystack
T ∪ {pi | 1 ≤ i ≤ n − 1, pi 6= pn} which is now smaller than
in the previous cases, but still of exponential size.

The expected number of steps of the (µ+1) EArank on
f3,a ∈ F3 is bounded by O(µn3). The following holds for n
large enough. At first, let us neglect the possibility to create
an element of T . Within 2eµn2 steps an element of the path
pi, 0 ≤ i ≤ n, is first generated with a probability of at least
1− 2−n/4. Moreover, even the expected number of steps for
this event is bounded by O(µn2). This holds similar to the
second case since after at most n special 1-bit mutations of
an individual with the largest function value an element of
the path is generated. The probability for such an event
is lower bounded by 1/(eµn) and the expected number of
steps results directly. An application of Chernoff bounds
(see e.g., [4]) shows that within 2eµn2 steps with a proba-

bility of at most 2−n/4 less than n special 1-bit mutations
are performed. Generating the population by choosing each
element independently and uniformly at random leads with
an exponential small probability to a different initial popula-
tion than creating it by the investigated strategy. This holds
since we can upper bound the probability that the selection
of µ out of 2n elements results in the choice of a duplicate
by
Pµ

t=1 1/(2n − t − 1) ≤ 2−n/2. Moreover, an application
of Chernoff bounds shows that the probability to create ini-
tially an element with more than d3n/4e ones is again upper

bounded by 2−n/16. Hence, the probability that at least one
of the initially chosen elements consists of more than d3n/4e
ones is upper bounded by 2−n/2 +µ2−n/16 ≤ 2−n/17. Apart
from elements of T ∪ {pi | d3n/4e + 1 ≤ i ≤ n}, afterwards,
only elements with at most d3n/4e ones are accepted in the
population. Hence, at least dn/6e bits have to change to cre-
ate an element of T . The probability to create within 2eµn2

steps an element of T can be bounded by 2eµn2/nn/6 ≤ 2−n.
Moreover, we can upper bound the probability to create an

836

element of T prior to an element pi, d3n/4e+ 1 ≤ i ≤ n, by

2−n/4 + 2−n/17 + 2−n ≤ 2−n/18 in total. We recall that an
element of T never replaces an element of the path and es-
pecially the optimum has a larger function value than every
element of T . In this situation, we can bound the expected
number of steps by O(µ2n/20) until an element pi, 0 ≤ i ≤ n,
is created. (Due to space limitations we omit the proof for
this argument.) Hence, we can upper bound the expected
number of steps until an element pi, 0 ≤ i ≤ n, is generated
by (1−2−n/18)O(µn2)+2−n/18 max{O(µn2),O(µ2n/20)} =
O(µn2) in total. If an element pi 6= pn, 0 ≤ i < n, is created,
then the expected number of steps to create the optimum
is bounded by O(µn3). (Due to space limitations we omit
the proof for this argument.) In summary, this leads to an
expected number of O(µn3) steps on f3,a.

Let us consider the class of functions g ◦ F3 now. The
function g ◦f3,a, f3,a ∈ F3, is similar to f3,a but there is one
essential exception. All elements T∪{pi | 0 ≤ i < n, pi 6= pn}
have the same non-optimal function value. Therefore, g ◦F3

is similar to g ◦ F1, but the size of its plateau is 2dn/20e

only. Hence, a similar analysis as for g ◦ F1 shows that
with exception of an exponential small fraction of g ◦F3 the
(µ+1) EArank needs with a failure probability of at most

2−n/60 more than b2n/60c steps to optimize g ◦ f3,a.

2.3 Not Fitness-Based EAs
Let us again investigate functions with an arbitrary dis-

crete search space first. In the following let the Anot fitness

be an arbitrary not fitness-based algorithm operating on S.

Theorem 7. Let pt,f be the probability that the Anot fitness

needs more than t ≥ 1 steps to optimize f : S → Z. If
g : Z → Z is increasing, then it needs with a probability of
pt,g◦f ≤ pt,f more than t steps to optimize g ◦ f .

Proof. The proof is similar to the one of Theorem 4. We
have to remember that an optimal element for f is surely one
for g◦f . Moreover, for every t ≥ 1 it holds, if the Anot fitness

on f queries a sequence of elements (st) with probability
p(st),f , then with probability p(st),f the Anot fitness on g ◦ f
queries (st), too. This holds for all sequences (st).

For a simple and well-known not fitness-based algorithm,
the random search, we will mention similar to the previous
section and also for search space {0, 1}n that the class of
neutral transformations consists of all increasing functions.
The considered algorithm Arandom queries in each step a
search point chosen independently and uniformly at random.

Theorem 8. If g : Z → Z is not increasing, then there
exist classes of functions F , where the Arandom needs for
every f ∈ F an expected number of 1/(1 − 2−n) = O(1)
steps for optimization. The Arandom needs for every function
f ∈ F with an exponentially small failure probability, i.e.,
2−Ω(n), at least an exponential number of steps to optimize
g ◦ f . Every black-box algorithm needs at least an expected
number of (2n + 1)/2 steps to optimize g ◦ f , f ∈ F .

Due to space limitations we omit the proof of this result.
However, we remark that it is sufficient to investigate the
same class of functions as in the proof of Theorem 6.

3. NOT RANK-BASED EAS
Beside fitness-proportional selection which is also called

roulette wheel selection, Boltzmann selection and stochastic

universal sampling are well-known not rank-based selection
schemes. We consider in detail the following simple steady-
state (µ+1) EAprop which is similar to the (µ+1) EArank but
comes up with fitness-proportional selection, i.e., in step 2.
the individual x is chosen with probability f(x)/

P
x′∈P f(x′)

from P. Obviously, the algorithm operates on functions with
positive function values only. Therefore, we investigate ob-
jective functions f : {0, 1}n → Z>0. We remark that the
(µ+1) EAprop and the (µ+1) EArank are the same for µ = 1.

Let us first investigate the (µ+1) EAprop and not t.s.i.
functions g. The same example functions f with similar
proofs as for the (µ+1) EArank in Theorem 6 show that
g is not neutral for the (µ+1) EAprop on f . Hence, the
(µ+1) EAprop and the (µ+1) EArank reach the same situa-
tions with similar probabilities and within a similar number
of steps. In order to show this, the main observation is the
equivalence in the behaviors of the (µ+1) EAprop and the
(µ+1) EArankon plateaus. Moreover, the probability to se-
lect an element with largest function value for mutation is
lower bounded by 1/µ for the (µ+1) EAprop. As proposed,
we will prove that a t.s.i. transformation g is not neutral for
a particular function f with (µ+1) EAprop.

Let us consider the function PP : {0, 1}n → Z>0, where
(PP stands for PathPeak):

PP(x) :=

8
>>>>><
>>>>>:

3n2 + 2n + i if x = 0n−i1n =: pi and

i = n− dn/3e or i = n

3n2 + n + i if x = 0n−i1i =: pi, 0 ≤ i < n,

and i 6= n− dn/3e
3n2 + n− |x| otherwise

Hence, we observe that the decision space consists of the val-
ues {3n2, . . . , 3n2+3n} at most and it is 3n2+3n < 3(n+1)2.
The function is similar to the one defined by Storch [5].
The element pn−dn/3e is called a peak since an element with
at least the same function value has a large Hamming dis-
tance. Here, the distance is linear in n. Moreover, for a
path s0, . . . , sr and a population P we call the individual
smax{i | si∈P} the element with largest index. The beginning
of the path will be created probably and quickly by the
(µ+1) EAprop. If the population contains at least two (dif-
ferent) elements and none is optimal, then a special 1-bit
mutation of the individual with largest index creates an ele-
ment with an even larger index. Moreover, such an element
will also be accepted in the population. This holds since in
particular the probability to select the element with largest
index for mutation is high. Let g be defined as:

g(v) :=

8
><
>:

v if v < 0

v + 2n2
if 3n2 ≤ v ≤ 3n2 + 2n, n ≥ 0

v + 2n2+n if 3n2 + 2n < v < 3(n + 1)2, n ≥ 0

The transformation g is well-defined and t.s.i. since it holds

g(3n2 − 1) = 3n2 − 1 + 2(n−1)2+(n−1) < 3n2 + 2n2
= g(3n2)

for all n ≥ 1. For all other values of v this property is obvi-
ous. After applying this transformation the function value
of the peak and the optimum are increased enormously. The
probability not to select the peak for mutation is extremely
small, if this individual is contained in the population, but
not the optimum. Moreover, the probability to create the
optimum by a mutation of the peak is extremely small, too.

Theorem 9. The expected number of steps until the
(µ+1) EAprop, where µ ≥ 2, has optimized PP is upper
bounded by O(µn2).

837

Proof. The proof is similar to the one in [5]. Within
an expected number of O(µn2) steps an individual pi, i >
n−dn/3e, is included in the population. Therefore, at most
2n − dn/3e special 1-bit mutations of an element with the
largest function value creates such an element. Hence, the
probability for such a mutation is bounded by 1/(eµn) since
the probability to select an element with the largest function
value is at least 1/µ and the probability for a special 1-bit
mutation equals 1/n(1 − 1/n)n−1 ≥ 1/(en). Afterwards, a
special 1-bit mutation of the individual with largest index
creates an element with an even larger index that will also
be accepted in the population. This element has either the
largest function value (if pn−dn/3e is not contained in the
population) or the second-largest function value (if pn−dn/3e
is contained in the population). The probability to select the
desired individual is lower bounded by 1/(2µ). This holds
since for the considered cases the second-largest function
value is at least 3n2+2n−dn/3e+1 while the largest function
value equals 3n2 +3n−dn/3e. Hence, the expected number
of steps for these at most dn/3e successes is upper bounded
by O(µn2) and therefore, the expected number of steps in
total as well.

Theorem 10. The probability that the (µ+1) EAprop has

optimized g ◦PP within 2Ω(n) steps is lower bounded by 1−
O(1/n). The expected number of steps is bounded by 2Ω(n).

Proof. The following holds for n large enough. We can
bound the probability to create the optimum prior to the
element pn−dn/3e by 1−O(1/n). Therefore, we observe that

the probability is bounded by 2−Ω(n) to create initially an
element with more than d7n/12e ones as an application of
Chernoff bounds shows (see e.g., [4]). The probability to cre-
ate by a mutation of an element which consists of at most
d7n/12e ones an individual on the path behind the peak is

bounded by 2−Ω(n) since therefore, at least dn/13e bits have
to change. Afterwards, to the best an element of the path
before the peak pn−dn/3e−k, k ≥ 1, generates the peak or
an element behind it. Hence, the probability to create an
element pn−dn/3e+i, i ≥ 1, prior to pn−dn/3e is bounded by
O(1/n) since a special k + i-bit mutation (has a probability
of at most

Pn
i=k+1 1/ni(1 − 1/n)n−i ≤ 2/nk+1) has to be

performed prior to a special k-bit mutation (has a proba-
bility of at least 1/nk(1 − 1/n)n−k ≥ 1/(enk)). If pn−dn/3e
is contained in the population, then the failure probabil-
ity to select this element for mutation is upper bounded by

(µ− 1) · (2n2
+ 3n2 + 2n− 1)/(2n2+n + 3n2 + 3n−dn/3e) =

2−Ω(n). This holds since the other µ − 1 individuals of the

population have a function value of at most 2n2
+3n2+2n−1

and the peak has a function value of 2n2+n+3n2+3n−dn/3e.
Moreover, the probability is bounded by 2−Ω(n) that a muta-
tion of the peak generates the optimum that is also the only

element which has a function value larger than 2n2
+3n2+2n.

Therefore, a special dn/3e-bit mutation is necessary. Hence,
the probability either to create the optimum or to select
a different element than the peak for mutation is upper
bounded by 2−Ω(n).

We remark that the upper bound of O(µn2) expected steps
holds for the (µ+1) EArank on PP, where µ ≥ 2. We are
even able to present a function, whereon the (µ+1) EAprop

provable turns to total inefficiency and not only to high inef-
ficiency, but we omit these results due to space limitations.

4. MINIMAL AND MAXIMAL CLASSES
In Section 4.1 we will prove that the t.i. are neutral for

every algorithm first and afterwards, we will present an algo-
rithm Aids, where the class of neutral transformations con-
sists of all t.i. only. Moreover, in Section 4.2 the other ex-
treme case will be investigated. We will present an algorithm
Aall, where all transformations are neutral transformations.
Both algorithms optimize all functions within a finite ex-
pected number of steps.

4.1 Minimal Class of Neutral Transformations
Let the search space S be a discrete one. In the following

let the A be an arbitrary algorithm operating on S.

Theorem 11. Let pt,f be the probability that the A needs
more than t ≥ 1 steps to optimize f : S → Z. If g : Z → Z
is a t.i., then the A needs with a probability of pt,g◦f ≤ pt,f

more than t steps to optimize g ◦ f .

Proof. The proof is similar to the one of Theorem 4.
For every t ≥ 1 it holds, if the A on f has history (st) with
probability p(st),f , then with equal probability p(st),f the A
on g ◦ f has history (st). This holds for all histories (st)
which do not contain an optimum with respect to g ◦ f and
therefore, especially not with respect to f .

Let us now define the Aids operating on S = {0, 1}n and
where the class of neutral transformations consists of the
truncated identities only. Let a : Z→ N, where

a(v) :=

(
2|v| if v ≥ 0

2|v| − 1 if v < 0
.

Algorithm 12. Aids

• Step 1. Query 0n.
• Step 2. to 2n. Query x0, where

num(x0) = a(f(0n))mod (2n − 1) + 1.
• Step t > 2n. Choose xt ∈ {0, 1}n independently and

uniformly at random. Query xt.

If the function value of 0n does not direct to an optimum or
the element is optimal by itself, then the optimization takes
at least an exponential number of steps.

Theorem 13. If g : Z→ Z is not a t.i., then there exists
a function f , where the Aids needs at most two steps for
optimization. The Aids needs at least 2n+1 steps to optimize
g ◦ f .

Proof. There exist at least two integers v and w, where
g(v) 6= v < w and g(v) 6= g(w) holds. We distinguish the two
cases that g(v) > g(w) (Case 1) and g(v) < g(w) (Case 2).
Case 1. We investigate the function f1 : {0, 1}n → Z, where

f1(x) :=

8
><
>:

w if x = 0n or

num(x) = a(g(w))mod (2n − 1) + 1

v otherwise

.

The Aids on f1 queries 0n first which is an optimum.
The Aids on g ◦ f1 queries within the first 2n steps the

elements 0n and x0 only, where it is num(x0) = a(g(w))mod
(2n−1)+1. These are the two single non-optimal elements.
Case 2. We investigate the function f2 : {0, 1}n → Z, where

f2(x) :=

8
><
>:

v if x = 0n or

num(x) = a(g(v))mod (2n − 1) + 1

w otherwise

.

838

The Aids on f2 queries 0n first and x0 6= 0n second, where
num(x0) = a(v)mod (2n − 1) + 1. Since v 6= g(v) it holds
for n large enough that also a(v)mod (2n − 1) + 1 = a(v) +
1 6= a(g(v)) + 1 = a(g(v))mod (2n − 1) + 1. Therefore, x0

represents an optimum.
The Aids on g ◦ f2 queries within the first 2n steps the

elements 0n and x0 only, where it is num(x0) = a(g(v))mod
(2n − 1) + 1. These are again non-optimal elements.

4.2 Maximal Class of Neutral Transformations
Let us define the Aall operating on pseudo-Boolean func-

tions and where all functions are neutral transformations.

Algorithm 14. Aall

• Choose x0 ∈ {0, 1}n uniformly at random.
• Step 1. to 22n − 1. Query x0.
• Step t ≥ 22n. Choose xt ∈ {0, 1}n independently and

uniformly at random. Query xt.

Theorem 15. If and only if the Aall optimizes f within
an expected number of t < 2n steps, then the Aall optimizes
g ◦ f within an expected number of t steps, where g is an
arbitrary transformation.

Proof. We will show that the Aall needs an expected
number of t < 2n steps on the constant functions only. In
this case, even the first query is optimal. Then, the proposed
result follows since f is a constant function and each trans-
formation of a constant function leads to a constant function
as well. Therefore, if f is not the constant function, then
there exists at least one element x which is non-optimal.
With probability 2−n the algorithm Aall selects x0 = x ini-
tially. Afterwards, at step 22n an element which does not
necessarily equal x0 = x is queried and to the best this el-
ement is optimal. This leads to an expected number of at
least 2−n22n = 2n steps for the Aall on f , if f not a constant
function.

5. BLACK-BOX ALGORITHMS
We investigate functions with an arbitrary discrete search

space S. Nevertheless, we have to define black-box algo-
rithms more precisely first (see [3]).

Algorithm 16. Black-Box Algorithm
Step t ≥ 1. Depending on (x1, f(x1)), . . . , (xt−1, f(xt−1))
determine a probability distribution on S, choose xt accord-
ing to this distribution, query xt, and receive its function
value f(xt) from the black box.

A black-box algorithm which determines deterministically/
randomly the next query is called a deterministic/random-
ized black-box algorithm. We remark that the class of ran-
domized black-box algorithms includes the class of determin-
istic ones. However, for every function with discrete search
space S a black-box algorithm exists which requires an ex-
pected number of at most (|S|+1)/2 queries for optimization
(see [3]). We will obtain results, where every black-box algo-
rithm also needs at least (|S|+1)/2 queries for optimization.
Let us consider the class of t.s.i. transformations first.

Theorem 17. Let pt,f be the probability that a black-box
algorithm Bf needs more than t ≥ 1 steps to optimize f :
S → Z. If g : Z → Z is t.s.i., then there exists a black-box
algorithm Bg◦f with access to g which needs for every t with
a probability of pt,g◦f ≤ pt,f more than t steps to optimize
g ◦ f .

Proof. The idea of the theorem and its proof is that
Bg◦f can simulate Bf if it has access to g.

We describe how the black-box algorithm Bg◦f works. It
is sufficient to simulate each step of Bf until an optimum
for g ◦ f is queried. We remark that if Bf reachs an op-
timum for f , then this is also an optimum for g ◦ f . We
prove by induction on the number t ≥ 1 of steps that each
step of Bf can be simulated properly. Prior to the first step
t = 1 the history of Bf is empty and Bg◦f can simulate
the first step of Bf and generate the initial element x1 ∈ S
according to the same probability distribution. For t > 1,
let (x1, g ◦ f(x1)), . . . , (xt−1, g ◦ f(xt−1)) be the history of
Bg◦f . Either xt−1 is optimal for g ◦ f and Bg◦f has suc-
cessfully finished or since g is injective for all non-optimal
function values we can evaluate f(xi), 1 ≤ i ≤ t − 1, from
g ◦ f(xi). Afterwards, Bf can be simulated with history
(x1, f(x1)), . . . , (xt−1, f(xt−1)) and Bg◦f can choose xt ∈ S
according to the same probability distribution as Bf .

For the proof it was essential that the black-box algorithm
has access to the specific transformation g. Before we inves-
tigate black-box algorithms and not t.s.i. transformations we
will demonstrate that the access to the specific transforma-
tion can be essential (at least up to some degree). In the fol-
lowing we will investigate the search space S = {0, 1}n. At
first, we analyze the behavior of all black-box algorithms on
plateaus with a single optimum (needle in the haystack) and
therefore, let Needlea : {0, 1}n → Z, where for a ∈ {0, 1}n

Needlea(x) :=

(
1 if x = a

0 otherwise
.

The class of functions Needle consists of all Needlea.

Lemma 18. Every black-box algorithm needs at least
an expected number of (2n + 1)/2 queries to optimize f ∈
Needle.

This was proven by Droste, Jansen, and Wegener [3].
We remark that the proposed results concerning black-

box algorithms in Theorem 6 and Theorem 8 follow directly
from the investigations made here.

Hence, let Pointera : {0, 1}n → Z, where for a ∈ {0, 1}n

Pointera(x) :=

(
2n+1 if x = a

num(a) otherwise
.

The class of functions Pointer consists of all Pointera.
Moreover, let Gt.s.i. be the class of all t.s.i. transformations.

Theorem 19. There exists a (deterministic) black-box al-
gorithm BPointer which needs for every f ∈ Pointer at most
two queries for optimization. Every (randomized) black-
box algorithm without access to g ∈ Gt.s.i. needs at least an
expected number of (2n + 1)/2 queries to optimize g ◦ f ,
f ∈ Pointer.

Proof. A black-box algorithm BPointer can query 0n first.
Either the element 0n is optimal or the algorithm with his-
tory (0n, num(a)) can compute and query the optimum a.

Let gi(v) : Z→ Z be the t.s.i. function, where

gi(v) :=

(
v − 2n if v < 0

v + i if v ≥ 0

for −(2n − 1) ≤ i ≤ 2n − 1. In the following, we will con-
sider these transformations only. Hence, independent of gi,

839

−(2n − 1) ≤ i ≤ 2n − 1, the element a stays the single opti-
mum for gi ◦Pointera and all other elements have the same
non-optimal function value. This holds for all a. More-
over, we observe that for every 0 ≤ w ≤ 2n − 1 there exists
a t.s.i. transformation, where gw−num(a) ◦ Pointera(x) = w,
x ∈ {0, 1}n\{a} holds. Hence, the class of investigated func-
tions Gt.s.i.◦Pointer := {g◦Pointer | g ∈ Gt.s.i.} especially
contains all functions fa,b : {0, 1}n → Z, where

fa,b(x) :=

(
max if x = a

num(b) otherwise

for a, b ∈ {0, 1}n. Let F ⊆ Gt.s.i. ◦ Pointer consist of all
these fa,b. We are in a similar situation as for Needle in
Lemma 18. Since each randomized black-box algorithm can
be interpreted as a probability distribution over determin-
istic ones (see [3]) we can apply Yao’s Minimax Principle
(see e.g., [4]). For this particular situation, it states that
the expected number of steps of each randomized black-box
algorithm on fa,b ∈ F is lower bounded by the minimal aver-
age number of steps – according to an arbitrary distribution
on F – with respect to every deterministic black-box algo-
rithm. We choose fa,b ∈ F uniformly at random and observe
that, if an arbitrary non-optimal element is queried, then
every element not queried before is optimal with the same
probability. This is equivalent to Needle and therefore,
by Lemma 18, every black-box algorithm needs an expected
number of at least (2n +1)/2 steps to optimize fa,b ∈ F and
moreover, especially with respect to Gt.s.i. ◦ Pointer.

Finally, we investigate black-box algorithms on not t.s.i.
transformations.

Theorem 20. If g : Z → Z is not t.s.i., then there ex-
ist classes of functions F , where a (deterministic) black-box
algorithm BF exists which needs at most a linear number
of queries to optimize f for every f ∈ F . Every (random-
ized) black-box algorithm (with access to g) needs at least
an expected number of (2n + 1)/2 queries to optimize g ◦ f ,
f ∈ F .

Proof. We will distinguish two cases. The first case
considers the situation that there exists at least one inte-
ger which is transformed to a larger value as its successor
(Case 1). The second case considers the situation that there
is at least one integer which is transformed to the same non-
optimal value as its successor (Case 2).
Case 1. There is an integer v, where g(v) > g(v + 1) holds.
Then, equivalent to the corresponding case in the proof of
Theorem 6 we consider the class of functions F1 which con-
sists of all functions f1,a : {0, 1}n → Z, where for a ∈ {0, 1}n

f1,a(x) :=

(
v if x = a

v + 1 otherwise
.

A black-box algorithm BF1 can query 0n and 1n. The func-
tion value of at least one of these two elements is optimal.

The class of functions g ◦ F1 is similar to Needle since
g(v + 1) < g(v). Therefore, by Lemma 18, every black-box
algorithm needs at least an expected number of (2n + 1)/2
steps to optimize g ◦ f1,a, f1,a ∈ F1.
Case 2. There exists an integer v where g(v) = g(v +1) and
at least one further integer w > v +1 where g(v +1) < g(w)
holds. Then, we investigate the class of functions F2 which
consists of all functions f2,a : {0, 1}n → Z, where

f2,a(x) :=

8
><
>:

w if x = a

v + 1 if x = pi, 0 ≤ i ≤ n, and x 6= a

v otherwise

for a = a1 · · · an ∈ {0, 1}n with pi := a1 · · · ai0
n−i, 0 ≤ i ≤

n. The sequence of elements p0, . . . , pn describes a path.
A black-box algorithm BF2 can identify pi, 1 ≤ i ≤ n,

within one query, if pi−1 is contained in its history. The indi-
vidual pi can be determined by querying a1 · · · ai−110n−i =:
p′i−1 which differs with pi−1 in position i only. If the func-
tion value of p′i−1 is at least as large as the function value
of pi−1, i.e., it is v + 1 or w, then pi is p′i−1. Otherwise, i.e.,
the function value is v, the element pi is pi−1. Moreover,
BF2 queries p0 = 0n at first. Hence, within at most n + 1
queries the optimum pn is created.

For the class of functions g ◦ F2 we are in the same situa-
tion as in the previous case since g(v) = g(v+1) < g(w).

6. CONCLUSION
We have proven rigorously that the class of neutral trans-

formations for a simple rank-based EA consists of all trun-
cated strictly increasing functions. This also holds for black-
box algorithms with access to the transformation. This class
of neutral transformations is even a subset for all rank-based
algorithms. For all not fitness-based algorithms the class
of neutral transformations contains at least the increasing
functions, while for a simple fitness-based EA it was proven
that its class of neutral transformations even does not con-
tain all truncated strictly increasing functions. We have pre-
sented an algorithm whose class of neutral transformations
is completely described by the functions that are neutral for
all algorithms, the truncated identities. And we have pre-
sented an algorithm whose class of neutral transformations
even consists of all transformations.

Acknowledgements
This research was supported by a Grant from the G.I.F.,
the German-Israeli Foundation for Scientific Research and
Development. The author thanks Stefan Droste and Ingo
Wegener for their help while preparing this paper.

7. REFERENCES
[1] T. Bäck, D. Fogel, and Z. Michalewicz. Handbook of

Evolutionary Computation. Institute of Physics
Publishing and Oxford University Press, New York,
1997.

[2] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theoretical
Computer Science, 276:51–81, 2002.

[3] S. Droste, T. Jansen, and I. Wegener. Upper and lower
bounds for randomized search heuristics in black-box
optimization. Theory of Computing Systems, 2005.
Accepted for publication.

[4] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, Cambridge, 1995.

[5] T. Storch. On the choice of the population size. In
Genetic and Evolutionary Computation Conference –
GECCO 2004, LNCS 3102, pages 748–760, 2004.

[6] C. Witt. Worst-case and average-case approximations
by simple randomized search heuristics. In Symposium
on Theoretical Aspects of Computer Science – STACS
2005, LNCS 3404, pages 44–56, 2005.

840

