
Theoretical Analysis of a
Mutation-Based Evolutionary Algorithm

for a Tracking Problem in the Lattice

Thomas Jansen
Universität Dortmund
FB Informatik, LS 2

44221 Dortmund, Germany

Thomas.Jansen@udo.edu

Ulf Schellbach
Universität Dortmund
FB Informatik, LS 2

44221 Dortmund, Germany

Ulf.Schellbach@uni-dortmund.de

ABSTRACT
Evolutionary algorithms are often applied for solving opti-
mization problems that are too complex or different from
classical problems so that the application of classical meth-
ods is difficult. One example are dynamic problems that
change with time. An important class of dynamic problems
is the class of tracking problems where an algorithm has to
find an approximately optimal solution and insure an almost
constant quality in spite of the changing problem. For the
application of evolutionary algorithms to static optimiza-
tion problems, the distribution of the optimization time and
most often its expected value are most important. Adopting
this perspective a simple tracking problem in the lattice is
considered and the performance of a mutation-based evolu-
tionary algorithm is evaluated. For the static case, asymp-
totically tight upper and lower bounds are proven. These
results are applied to derive results on the tracking perfor-
mance for different rates of change.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Probabilistic Algorithms; F.2 [Theory of Comput-
ing]: Analysis of Algorithms and Problem Complexity—
Numerical Algorithms and Problems

General Terms
Algorithms, Performance, Theory

Keywords
dynamic optimization, tracking problems, mutation opera-
tors, offspring population size, run time analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

1. INTRODUCTION
Evolutionary algorithms (EAs) are a class of randomized

search heuristics and are often used for optimization. They
are easy to implement, can be applied to almost any kind of
optimization problem and are therefore often the method of
choice if no problem-specific optimization method is known
and there is no time or expertise to develop one. There are
many reports on successful applications. In order to deepen
our understanding of evolutionary algorithms it is desirable
to have analytical results on their behavior. In the context
of optimization, the optimization time is the most impor-
tant issue to investigate. Different from other algorithms,
evolutionary algorithms are not designed in a way that sup-
ports their analysis. Thus, EA theory is quite difficult and it
makes sense to start with simplified evolutionary algorithms.
There are a lot of examples for such research for static op-
timization problems (see [1] for an overview). For dynamic
evolutionary algorithms, only few papers deal with rigorous
analyses of the optimization and tracking behavior. For ex-
ample, Branke [2] concentrates on the development of EA
variants for dynamic optimization and presents mostly em-
pirical results. Some work by Droste [4, 5] is an exception:
for a dynamic variant of the well-known OneMax-problem
the expected first hitting time of the global optimum is an-
alyzed. Since only the case of locating the global optimum
exactly is considered, the problem has to be restricted to
a slowly changing problem. Moreover, the more interesting
tracking behavior is not examined.
Here, we consider a simple problem in the two-dimensional

lattice that may be described as a OneMax-variant, too.
The original problem was introduced by Weicker [11], but
we consider a more general variant. Furthermore, Weicker
[11] concentrates on the behavior of an EA in one genera-
tion whereas we are interested in the expected time to come
sufficiently close to a global optimum for a simple EA and
in its tracking behavior.
In the next section, we give precise definitions of the class

of problems, the evolutionary algorithm used, and our an-
alytical framework. We begin our analysis with the simple
and degenerate case of a static problem that does not change
over time (Section 3). For this case we can prove asymptot-
ically tight upper and lower bounds for the expected op-
timization time. Furthermore, these results deliver tight
bounds on the average speed of the evolutionary algorithm
that turn out to be very helpful in the dynamic case. In

841

Section 4, we distinguish slow and fast changing problems
and prove results on the tracking behavior. However, our
emphasis is on problems which change in some sense more
slowly than the EA we consider. We add to our theoretical
analysis the results of empirical investigations in Section 5.
Since all our results are asymptotic, this provides valuable
insights for “small cases.” Furthermore, it demonstrates the
effects of small changes to the algorithm. This may be seen
as a first step towards a more complete theoretical analy-
sis. We conclude with a discussion of our results and some
remarks on possible future research in Section 6.

2. DEFINITIONS
We consider dynamic problems in the lattice where the

objective function is defined as function f : Z2 × N → R.
The first argument x ∈ Z2 is a point in the two-dimensional
lattice and the second argument t ∈ N gives the time step.
Without loss of generality we assume that the aim of opti-
mization is minimization. We consider a very simple prob-
lem here that is defined by a single moving target point
at ∈ Z2. For a point x ∈ Z2 and a time step t ∈ N, the func-
tion value f(x, t) is given by the distance between x and
the current target point at. We use the Manhattan met-
ric to measure distances, thus for x = (x1, x2) ∈ Z

2 and
y = (y1, y2) ∈ Z2, the distance between x and y is given by
d(x, y) = |x1 − y1|+ |x2 − y2|. By d(x) we denote the length
of x given by d((0, 0), x). We limit the speed of the target
by requiring that d(at, at+1) ≤ dmax holds for all t ∈ N and
some fixed dmax ∈ N. In each generation, the evolutionary
algorithm can produce some offspring and compute the fit-
ness values, i. e. the distances to at. Since the target may
move in the next generation, it makes no sense to ask for
hitting the target point at+1 exactly. Instead, we are sat-
isfied if d(x, at+1) ≤ dmax holds for some member x of the
population. This can be guaranteed if the algorithm man-
ages to locate at and is thus in some sense the best that can
be achieved. An even better performance is possible only
if some additional assumption on the movement of the tar-
get at is made. In particular, one may think of the case of
a target point that moves uniformly by addition of a fixed
movement vector v ∈ Z

2 with d(v) ≤ dmax, a target mov-
ing randomly according to some bounded probability distri-
bution, or even a target that is moved by some adversary.
However, we make no other assumptions about the way the
target moves which has the advantage of leaving us with a
quite broad class of tracking problems.
The evolutionary algorithm used can be described as a

(1+λ) EA: it utilizes a population of size only 1, i. e., a
single point x in the search space Z2. Since we make no
assumption about the initial position of the target a1, the
initial population can be chosen in an arbitrary fashion. In
each generation, the EA produces λ offspring independently
by mutation of x. In the selection step, the parent x is
replaced by one of its offspring y1, y2, . . . , yλ, if and only if
at least for one i the distance to the target is not larger,
i. e., ∃i ∈ {1, 2, . . . , λ} : d(x, at) ≥ d(yi, at) holds. In this
case, an offspring with minimal distance to at replaces x. If
there is more than one such offspring we choose one of these
randomly.
It is well known that the choice of the offspring population

size can have great impact on the behavior of the (1+λ) EA
[9]. We are interested in the effects of λ and dmax on the
expected time needed to reduce the distance to the target to

at most dmax for the first time and the subsequent tracking
behavior.
Clearly, the choice of the mutation operator is crucial. For

the two-dimensional lattice Z2 there is no standard muta-
tion operator that is widely used. Clearly, it is a discrete
search space. Thus, it seems appropriate to design a mu-
tation operator that coincides at least in spirit with typi-
cal mutation operators for other discrete search spaces. We
consider standard bit mutation with a fixed mutation prob-
ability of 1/l to be the most widely used such mutation
operator. It is applied in the search space {0, 1}l. It may
be described in the following fashion. A local mutation step
consists of the flipping of a single bit. In each mutation,
there is a random number k of such local steps where (for
the standard mutation probability 1/l) this number k is ap-
proximately distributed according to a Poisson distribution
with parameter 1. We mimic this behavior in the follow-
ing way. One local operation consists of choosing one of
the vectors (1, 0), (−1, 0), (0, 1), and (0,−1) uniformly at
random, thus choosing any of these vectors with probability
1/4. One mutation consists of k independent local opera-
tions with outcome m1,m2, . . . ,mk, and computing the sum

m :=
kP

i=1

mi. The number of local operations k is a random

number drawn according to the Poisson distribution with
parameter 1, i. e., we have Prob(k = r) = 1/(e · r!). The
offspring y ∈ Z

2 that results from this mutation applied to
some x ∈ Z

2 is y := x +m. For the sake of clarity, we give
a formal definition of the complete algorithm.

Algorithm 1. The (1+λ) EA

1. Initialization
t := 1
xt := (0, 0)

2. Mutation
For i := 1 To λ Do

m := (0, 0)
Choose k ∈ N according to a Poisson distribution
with parameter 1.
For j := 1 To k Do

Choose m′ ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}
uniformly at random.
m := m+m′

yi := xt +m
3. Selection

fmin := min{f(y1, t), . . . , f(yλ, t)}
If fmin ≤ f(xt, t) Then

Choose y ∈ {y′ ∈ {y1, . . . , yλ} | f(y′, t) = fmin}
uniformly at random.
xt+1 := y

Else xt+1 := xt

4. t := t+ 1
Continue at line 2.

We measure the computational effort of this (1+λ) EA by
counting the number of function evaluations. Let Tλ,dmax(n)
denote the number of function evaluations the (1+λ) EA
makes before decreasing the distance to the target point at

to at most dmax for the first time when n denotes the dis-
tance between the initial target point a1 and the initial pop-
ulation x1. We are mainly interested in the expected value of
this random variable Tλ,dmax(n). Since the maximal speed
dmax and the initial distance n are our only assumptions

842

about the target and its movement, the expectation is taken
over the random choice the (1+λ) EA makes.
We use the well known notions for describing the asymp-

totic growth of functions, see for example [3]. For the sake
of completeness, we repeat the definition here. Using this
notation implies that our results are valid if the parameter
n that is assumed to be growing is sufficiently large. So for
all n that are at least as large as some constant n0 ∈ N our
results hold. Note that this is different from an analysis that
assumes n → ∞ and is valid in the limit case, only.

Definition 1. For two functions f : N → R and g : N → R,
we say that f does not grow faster than g, f = O(g), if
there exist n0 ∈ N and c ∈ R

+ , such that for all n ≥ n0

we have f(n) ≤ c · g(n). We say that f grows at least as
fast as g, f = Ω(g), if g = O(f). We say that f and g
have the same order of growth, f = Θ(g), if f = O(g) and
f = Ω(g). We say that f grows slower than g, f = o(g), if
lim

n→∞
f(n)/g(n) = 0 holds. We say that f grows faster than

g, f = ω(g), if g = o(f) holds.

We begin our considerations in the next section with the
special case dmax = 0. Note that this implies that we are
actually investigating the expected first hitting time of the
static target point a. Obviously, this first hitting time co-
incides with the quotient of the initial distance between the
(1+λ) EA and the target point and the average speed of the
(1+λ) EA. Therefore, results on this static case are useful
for the investigation of the dynamic case: it is already in-
tuitively clear that if the maximal speed of the target dmax

is below the average speed of the algorithm, the (1+λ) EA
will be able to track the target very steadily. Thus, one may
read the following section as an investigation of the average
speed of the algorithm.

3. THE STATIC CASE
We employ the perspective of asymptotic analysis that

is common for the analysis of algorithms. In the classical
setting, the (expected) run time is investigated depending
on the input size and the results are given asymptotically for
growing input sizes. Here, we investigate Tλ,0(n) depending
on the initial distance n and its expectation is given for
growing n. Note that the offspring population size λ may
depend on this initial distance n, too.

Theorem 1.

E (Tλ,0(n)) = Θ

�
λ ·
�
1 +

n · log log λ
log λ

��

Proof. In the special case λ = O(1) one should read
Θ(λ · (1 + (n log log λ)/ log λ)) as Θ(n). All our proof ideas
work for this special and very simple case, too. However,
most of the calculations presented here hold only for λ =
ω(1) which is the more difficult and interesting case. For the
simple case λ = O(1) it suffices to notice that the average
speed of the (1+λ) EA is Θ(1) and deviations from this
expected value are highly unlikely.
In each generation λ offspring are generated and evalu-

ated. Thus, we have to prove that the number of genera-
tions that are needed and sufficient in order to hit the target
point exactly is Θ(1 + (n log log λ)/ log λ).
We begin with the upper bound. We do not only prove the

upper bound on the expectation but show that this bound

holds with a probability that is exponentially close to 1.
Start with considering some point y with d(x, y) = d where
x denotes the current population of the (1+λ) EA. Let pd

denote the probability that at least one of the λ offspring
equals y, i. e., pd := Prob (∃i ∈ {1, . . . , λ} : yi = y). Since
the λ offspring are generated independently, we can start by
considering the creation of y1 by mutation of x. Regardless
of the exact position of y, there is at least one sequence of
exactly d local operations that leads from x to y. With prob-
ability 1/(e · d!), y1 is generated with exactly d local opera-
tions. With probability at least 4−d, these d local operations
lead exactly to y. Thus, we have Prob(y1 = y) ≥ 1/(e · d! ·
4d). Using Stirling’s formula we get Prob (y1 = y) > ed/(e ·√
3πd · dd · 4d) = Θ

�
1/(dd+1/2 · (4/e)d)

�
. With b := 4/e

we get Prob (y1 = y) = Ω
�
b−d−(1/2) logb(d)−d logb(d)

�
and we

see that Prob (y1 = y) ≥ b−c̃d logb(d) holds for any constant
c̃ > 1 (given that d is sufficiently large).
We consider the case d ≤ (c logb λ)/ logb logb λ and ob-

serve that c̃d logb(d) ≤ c̃ · (c logb λ/(logb logb λ)) ·(logb(c)
+ logb(logb λ) − logb logb logb λ) ≤ c̃·c·logb λ follows. Choos-
ing the constant c in a way that c · c̃ ≤ 1/2 holds yields

Prob (y1 = y) ≥ b−(1/2) logb λ.
Since the λ offspring are generated independently, we have

pd ≥ 1−
�
1− b−(1/2) logb λ

�λ

= 1−
�
1− 1/

√
λ
�λ

≥ 1−e−
√

λ.

So, for all y with d(y, x) ≤ (logb λ)/(2c̃ logb logb λ) (with

b = 4/e), pd ≥ 1−e−
√

λ holds. We can conclude that in each
generation the distance between the current population x of
the (1+λ) EA and the static target point a is decreased by
at least �(logb λ)/(2c̃ logb logb λ)� with probability at least

1 − e−
√

λ. This decreasement �(logb λ)/(2c̃ logb logb λ)� can
only be less than 1 for constant values of λ. Thus, we see

that this implies E (Tλ,0(n)) = O
�
λ ·
�
1 + n·log log λ

log λ

��
. It

is not difficult to see that this bound even holds with a
probability exponentially close to 1. For λ = Ω(n2), this

follows immediately from the bound e−
√

λ on the probability
not to have the necessary decreasement in one generation.
For smaller values of λ, we can consider the Ω(n) generations
as independent experiments, where in each experiment we
have a probability of decreasing the distance as desired that
is bounded below by some positive constant. Application
of Chernoff bounds (see for example [10]) yields that the
probability not to reach the target point is exponentially
small.
The proof of the lower bound is slightly more involved.

First note that at least one generation is necessary in order
to reach the target point. This implies E (Tλ,0(n)) = Ω(λ).
Thus, it suffices to prove that the (1+λ) EA needs on average
Ω((n log log λ)/ log λ) generations to reach the target point.
Clearly, one offspring can only decrease the distance to

the target by d if it is created via a mutation consisting of
at least d local operations. Therefore, we have 1/(e · d!) as
upper bound on the probability that one specific offspring
decreases the distance to the target by d. Since in each
generation λ offspring are created independently, we are in-
terested in an upper bound of the maximal number of local
operations in the λ mutations producing these λ offspring.
Since the number of local operations is a Poisson distributed
random variable for each offspring, there is no strict up-
per bound. We begin with bounding the expected maximal
number of local operations in one generation from above.

843

Let ki denote the number of local operations in the cre-
ation of offspring yi, let k := max {ki | i ∈ {1, . . . , λ}} be
the maximal number of these local operations in one gen-
eration. We want to prove an upper bound on E(k). By

definition of the expectation, E(k) =
∞P

r=1

r · Prob(k = r) =

∞P
r=1

Prob(k ≥ r) holds. We have k ≥ r if there is at least

one offspring with r local operations, i. e., there is some
i ∈ {1, . . . , λ} with ki ≥ r. If we have ki < r for all i, then
k < r holds. Since the λ offspring are generated indepen-
dently, Prob(∀i ∈ {1, . . . , λ} : ki < r) =

Qλ
i=1 Prob(ki < r)

holds. The λ offspring are all generated in the same way,
thus the ki are identically distributed and we have Prob(∀i ∈
{1, . . . , λ} : ki < r) = Prob(k1 < r)λ. Putting this together

yields E(k) =
∞P

r=1

�
1− (1− Prob(k1 ≥ r))λ

�
and we are in-

terested in an upper bound on Prob(k1 ≥ r). Since we have

Prob(k1 ≥ r) =

∞X
s=r

Prob(k1 = s)

=

∞X
s=r

1

e · s! =
1

e · r! ·
∞X

s=r

r!

s!

≤ 1

e · r! ·
∞X

s=0

�
1

2

�s

=
2

e · r!
we can conclude that

E(k) ≤
∞X

r=1

1−

�
1− 2

e · r!
�λ
!

holds. Clearly, the term in the sum decreases with increas-
ing values of r. Therefore, it makes sense to consider some
threshold value t, use 1 as trivial upper bound on the first
t terms and be more accurate for the following terms. This

yields E(k) ≤ t +
∞P

r=t+1

�
1− (1− 2/(e · r!))λ

�
for all values

of t ∈ N. It is well known that (1 + q)m ≥ 1 + q · m holds
for all q > −1 and all m ∈ N (Bernoulli inequality). Since
−2/(e · r!) > −1 holds for all r, we can apply this with
q := −2/(e · r!) and m := λ. This yields

E(k) ≤ t+
∞X

r=t+1

2λ

e · r! ≤ t+
2λ

e · t! ·
∞X

r=t+1

t!

r!

≤ t+
2λ

e · t! ·
∞X

r=1

�
1

2

�r

= t+
2λ

e · t!
for all t ∈ N. Using t := �(e · lnλ)/ ln lnλ� we get E(k) ≤
e lnλ/(ln lnλ) + 1/λ, since for t = �(e · lnλ)/ ln lnλ� appli-
cation of Stirling’s formula yields

2λ

e · �(e · lnλ)/ ln lnλ�! <
λ

e(e ln λ)/(ln lnλ)·((ln ln λ)−ln ln lnλ)

< λ/e2 ln λ = 1/λ.

Remember that k denotes the maximal number of local op-
erations in the λ mutations in one generation and that k
is an upper bound on the decreasement of the distance be-
tween x and the target in this generation. Let Xi denote this
decreasement in the i-th generation. Since the target is not
moving and we are considering a (1+λ) EA, the distance to
the target cannot increase. Thus, in the t-th generation this

distance equals n−X1−X2−· · ·−Xt = n−(X1+ · · ·+Xt).
Clearly, each Xi is a random variable and we have E(Xi) ≤
E(k) for all i. Thus, E(X1 + · · · +Xt) ≤ t · E(k) holds and
we have E

�
tP

i=1

Xi

�
≤ t (e lnλ/(ln lnλ) + 1/λ). Observing

that

t ≤ n ln lnλ

6 lnλ
⇒ t <

n · λ · ln lnλ

2eλ lnλ+ 2 ln lnλ

suffices to see that for t ≤ (n ln lnλ)/(6 lnλ) we have

E

�
tP

i=1

Xi

�
< n/2. Using Markov’s inequality, we get that

after (n ln lnλ)/(6 lnλ) generations with probability at least
1/2 the distance to the target is decreased by less than n
and thus still larger than 0. This implies the lower bound
on E (Tλ,0(n)).

We see that the expected first hitting time is minimal for
constant offspring population sizes. This could be expected
since for simple fitness functions often a (1+1) EA is the
most efficient variant of all (1+λ) EAs. We see that off-
spring population sizes that even grow very slowly with n
are inferior to any static choice of λ. Thus, in some sense
the problem considered here is even simpler than OneMax
for bit strings as a comparison with the results by Jansen
and De Jong [9] shows. Note that for implementations in
parallel computing environments setting λ > 1 still makes
sense since it decreases the first hitting time.
The most important observation that stems from Theo-

rem 1 is that the (1+λ) EA achieves on average a “speed” of
Θ((log λ)/ log log λ). If the target does not move at all, the
distance to the target is decreased by Θ((log λ)/ log log λ) on
average in each generation. If the target moves, the distance
to the old target is on average decreased by this amount but
the new target may have a distance of dmax to the old target.
In the worst case, this distance dmax adds to the distance
to the old target. This suggests a case inspection since we
expect very different behavior depending on the speed of the
target point. If this speed exceeds the average speed of the
(1+λ) EA the target will probably escape very easily while
for targets moving slower than the (1+λ) EA we expect sta-
ble tracking behavior. We make these ideas concrete in the
following section.

4. THE DYNAMIC CASE
In accordance to our findings in the last section we distin-

guish two main cases. The case of a target point that moves
slowly from the case of a target point moving quickly.
Before the tracking behavior can be observed, the target

point needs to be found. Remember that this means that
the distance to the target point has to be decreased to at
most dmax. Reusing our results from Section 3, one neces-
sary change is obviously to replace n by n − dmax. In fact,
Theorem 1 already deals with reducing the distance to the
target point to at most n − dmax but for the special case
dmax = 0. The second component in the proof of Theo-
rem 1 is the decreasement of the distance to the target that
can be achieved in each generation. Depending on the ac-
tual movement of the target point, this can be very different
from the static case. For upper bounds on the expected first
“hitting” time (we are actually not interested in hitting the
target point but coming within a distance of at most dmax),
we can assume that the target point moves away from the

844

(1+λ) EA as fast as possible. For lower bounds, additional
assumptions are necessary. Otherwise it may be the case
that the target point actually moves towards the current
search point of the EA leading to a misleading small time.
We begin with a result on this expected first “hitting”

time and continue with two results on the tracking behav-
ior. For results on the tracking behavior, we consider a sce-
nario where the initial distance between the population of
the (1+λ) EA and the target point is 0. Then, the process
is started and we want to see whether the algorithm is able
to keep the distance small with probability close to 1. The
result on the expected first “hitting” time is very similar to
Theorem 1 and meets intuitive expectations.

Theorem 2. Let b := 4/e, n′ := n − dmax, c̃ > 1, and
s := �(logb λ)/(2c̃ logb logb λ)�.

For dmax ≤
��

2− 3e−
√

λ
�
/3
�
s

Prob

�
Tλ,dmax(n) = O

�
λ ·
�
1 +

n′ · log log λ
log λ

���

= 1− 2−Ω(n′/s)

holds.
Proof. We consider the current distance from the tar-

get point Dt := d(xt, at), so D1 = n holds. Due to the
plus-selection employed d(xt+1, at) ≤ Dt holds for all t.
However, it may be the case that Dt+1 > Dt holds for
some t since the target point at+1 may be different from
at. Since we have d(at, at+1) ≤ dmax for all t, we can
conclude that Dt+1 ≤ Dt + dmax holds. For an upper
bound we can assume that at+1 is chosen in such a way that
Dt+1 = d(xt+1, at)+dmax holds. The sequence D = (Dt)t≥1

describes a stochastic process on N0 . We are interested in
the minimal t = tmin such that Dt ≤ dmax holds. Note that
t counts generations and we have λ function evaluations in
each generation. Thus, the value of tmin·λ equals Tλ,dmax(n).
Due to our worst case assumption D can be simplified to a
time and space homogeneous Markov chain D′ = (D′

t)t≥1

with state space N0 which stochastically dominates D, i. e.,
Prob(Dt ≥ k) ≤ Prob(D′

t ≥ k) holds for all t, k ∈ N. Ob-
viously, an upper bound on tmin · λ such that D′

tmin ≤ dmax

holds is an upper bound on Tλ,dmax(n), too.

We know Prob (d(xt+1, at) = Dt − s) ≥ 1 − e−
√

λ from
the proof of Theorem 1. Let pi,j denote the probability for
a transition from i to j for the Markov chain D′. We define
pi,j in the following way.

pi,j :=

8><
>:
1− e−

√
λ if j = i− (s− dmax)

e−
√

λ if j = i+ dmax

0 otherwise

We know from the proof of Theorem 1 that with probability

at least 1−e−
√

λ the distance to the target point is decreased
by at least seff := s − dmax. With the remaining probabil-

ity of at most e−
√

λ this distance may be increased, but
such an increase is bounded above by dmax. Thus, D

′ does
indeed stochastically dominate D. We have D′

1 = n and
consider the situation after t steps. Application of Cher-
noff bounds yields that with probability 1− e−Ω(t) we have

at least 3t(1−e−
√

λ)/4 steps where D′ decreases. So we have

Prob
�
D′

1+t ≤ n− (3/4)t
�
1− e−

√
λ
�
seff + (t/4)

·
�
4− 3

�
1− e−

√
λ
��

dmax

�
= 1− 2−Ω(t) for all values of t.

We consider t = 4n′/seff. Since we have seff = s−dmax with
dmax ≤ (2/3)s, seff = Θ(s) holds and 4n′/seff = Θ(n′/s)
follows. Since in all non-trivial situations at least one gen-
eration is needed, it suffices to prove that for t = 4n′/seff we

have D′
1+t ≤ dmax with probability 1− 2−Ω(t).

We have dmax ≤
��

2− 3e−
√

λ
�
/3
�
s for all offspring pop-

ulation sizes λ. We can conclude that
�
2− 3e−

√
λ
�
s −�

2− 3e−
√

λ
�
dmax ≥

�
1 + 3e−

√
λ
�
dmax holds. This implies�

2− 3e−
√

λ
�
seff ≥

�
1 + 3e−

√
λ
�
dmax and we get

4n′

seff
≥ 4n′

seff +
�
2− 3e−

√
λ
�
seff −

�
1 + 3e−

√
λ
�
dmax

and may consider this earlier point of time instead of t =
4n′/seff. This leads to

n− 4n′

seff +
�
2− 3e−

√
λ
�
seff −

�
1 + 3e−

√
λ
�
dmax

·
3
�
1− e−

√
λ
�
seff −

�
4− 3

�
1− e−

√
λ
��

dmax

4

= n− n′ = dmax

which completes the proof.

In Theorem 2 we implicitly defined that a target moves

slowly if dmax ≤
��

2− 3e−
√

λ
�
/3
�
s holds where s with

s = �(logb λ)/(2c̃ logb logb λ)� is in some sense a lower bound
on the speed of the (1+λ) EA that we can guarantee with

probability at least 1 − e−
√

λ. For such a slow target we
expect that tracking it is easy. The next theorem confirms
this intuition.

Theorem 3. Let b := 4/e, n′ := n − dmax, c̃ > 1, and
s := �(logb λ)/(2c̃ logb logb λ)�. For dmax ≤ (2/3)s and any
k ∈ N \ {1} the expected number of generations until the
(1+λ) EA has a distance to the target of at least k · dmax

after having a distance of at most dmax is bounded below by

eΩ(k
√

λ).

Proof. We consider the same Markov chain D′ as in the
proof of Theorem 2. Since dmax ≤ (2/3)s holds, we have
seff = s − dmax ≥ dmax/2. The probability to decrease the
distance to the target by at least dmax in two subsequent gen-

erations is bounded below by
�
1− e−

√
λ
�2

. We can model

the situation now in the following way. With probability

p :=
�
1− e−

√
λ
�2

the distance to the target is decreased by

dmax, with the remaining probability 1− p it is increased by
dmax. This model obviously can only overestimate the dis-
tance to the target. Since we are aiming at a lower bound on
the expected number of generations to increase the distance
to the target beyond some limit, we can use this model to
derive such a lower bound. So, this symmetric model domi-
nates D′ stochastically. Since it is symmetric we can apply
results on the gambler’s ruin problem (see for example [7]
for the gambler’s ruin problem or [8] for another application
of its properties to the analysis of evolutionary algorithms).
Using the notation of the gambler’s ruin problem and nor-
malizing the step size dmax to 1, we have player A starting

845

with an amount of k− 1 (which corresponds to D1 ≤ dmax),
a probability of winning 1 of p, and a probability of losing
1 of 1− p. If player A increases her holdings to k, we start
a new game, again with an initial amount of k − 1. If we
decrease her holdings to 0, we say that she is ruined. We are
interested in an upper bound on the probability of player A’s
ruin. Observe that the reciprocal of this probability of ruin
is a lower bound on the number of generations the (1+λ) EA
needs to get a distance to the target point of at least kdmax

when starting with a distance of at most dmax. Applying
the results on the gambler’s ruin problem we get

�
1−p

p

�k−1

−
�

1−p
p

�k

1−
�

1−p
p

�k
≤ (1+ε)·

�
1− 1− p

p

�
·
�
1− p

p

�k−1

= (1+ε)

0
B@1− 1−

�
1− e−

√
λ
�2

�
1− e−

√
λ
�2

1
CA
0
B@1−

�
1− e−

√
λ
�2

�
1− e−

√
λ
�2

1
CA

k−1

≤ 2 · e−(k−1)
√

λ ·

2− e−
√

λ

1− 2e−
√

λ + e−2
√

λ

!k−1

= e−Ω(k
√

λ).

Note that both inequalities hold since we have p = p(λ) =�
1− e−

√
λ
�2

implying lim
λ→∞

p(λ) = 1. Thus, we have p ≥
1 − ε for any constant ε with 0 < ε < 1 given that λ is
sufficiently large.

If dmax exceeds the average speed of the (1+λ) EA consid-
erably, we do not expect that the EA will be able to track
the target. Of course, this depends on the actual move-
ment of the target. Let us consider a worst case scenario
where an adversary determines the movement of the target.
Now we can assume that the target moves away from xt by
dmax in each generation. Let us assume that the starting
point of the target and the (1+λ) EA are the same, thus
d(x1, a1) = 0 holds. We consider a run of the (1+λ) EA
after t generations and are interested in an upper bound on
the probability that the algorithm was able to track the tar-
get. We formalize “tracking” by asking for an upper bound
on the probability that the (1+λ) EA has a distance of at
most k · dmax to at+1 for some k ∈ N. Clearly, it makes
no sense to consider k ≥ t; thus we have to assume k < t.
However, we assume k ≤ (1 − ε)t in the following for some
constant ε with 0 < ε < 1. Now, it is easy to come up with
upper bounds on this probability in two different ways.
We know from Theorem 1 that the expected spatial gain

of the (1+λ) EA in one generation is bounded above by
O((log λ)/ log log λ). We can conclude that the expected
spatial gain in t generations is bounded above by
O (t · log λ/(log log λ)). It is easy to see that if the spatial
gain of the algorithm is bounded above by tdmax(1 − k/t)
the distance d(x1+t, a1+t) is bounded below by k ·dmax. Ap-
plication of Markov’s inequality yields that the probability
to have at least such a spatial gain within t generations
is bounded above by O (log λ/(dmax · log log λ)). Note that
this bound does neither depend on t nor k and is particularly
weak. This is due to the application of Markov’s inequality,
a very general but not very powerful tool.
A more direct approach yields an upper bound that is

somewhat stronger depending on the choice of t and dmax. It

is easy to see that with probability at most (tλ)/(m!) there
is at least one mutation with at least m local operations
in t generations. If there is no such mutation, the spatial
gain in these t generations is obviously bounded above by
t(m − 1). Thus, we have O (tλ/(�dmax(1− k/t)�!)) as up-
per bound. While this bound does depend on t, it does so
“in the wrong direction.” Since we consider the case where
the target moves faster than the (1+λ) EA, we expect the
bound to decrease with increasing values of t. However, our
quite primitive and direct estimation basically estimates the
probability to have at least one generation where the (1+λ)
EA achieves a speed of at least dmax(1 − k/t). Obviously,
this probability does increase with t. However, for not too
small values of dmax the second upper bound is much better
than the one based on Markov’s inequality. Consider some
fixed offspring population size λ, some number of genera-
tions that is polynomially bounded in this offspring popu-
lation size, i. e., t = λO(1), and a target speed dmax with
dmax = ω((log λ)/ log log λ). For the sake of simplicity, let
us consider dmax = lnλ. For not too large values of k (say
k ≤ t/2), we have O(1/ log log λ) as upper bound that the
(1+λ) EA is within a radius of kdmax after t generations
due to application of Markov’s inequality. The more di-

rect bound yields O
�
t/λ−1+((ln ln λ)−2)/2

�
which is super-

polynomial in λ.
Still, both upper bounds are very weak and far from the

truth. The difficulty in proving stronger results lies within
the Poisson distribution that is applied in mutation: There
is no upper bound on the decreasement of the distance to
the target in a single generation.

5. EXPERIMENTAL ANALYSIS
Our analysis of the (1+λ) EA provided us with rigorously

proven asymptotical results. However, it remains unclear
whether the asymptotic descriptions of the first hitting times
are realistic approximations for small initial distances, too.
Furthermore, they do not allow us to distinguish between
different static choices of λ that differ only by some con-
stant factor. Therefore, it makes sense to supplement our
theoretical findings with the results of some experiments.
The experiments are carried out using a straight-forward
implementation in Java, using the Mersenne Twister from
the colt distribution for generation of pseudo-random num-
bers1. For all settings, we did 100 runs each with different
random seeds and present the average over these runs to-
gether with their 95% confidence intervals.
Adding to Theorem 1, we did experiments for initial dis-

tances n ∈ {10, 20, 30, . . . , 1000} and λ ∈ {1, 7, �√n� , n}.
Theorem 1 predicts that the average first hitting time strictly
increases with λ whereas the average number of generations
decreases with λ. In Figure 1 the number of function evalua-
tions is displayed together with the theoretical upper bound
for the case λ = n. Clearly, the findings match our expec-
tations. Obviously, the evaluation of the λ offspring can be
done in parallel. Therefore, it makes sense to consider the
number of generations as a measure for the parallel compu-
tation time. In Figure 2 the number of generations for the
same experiments is displayed. As could be expected, the
number of generations decreases with λ.
For dynamic problems, often a non-elitism comma-selection

(sometimes also called truncation selection) is expected to

1http://hoschek.home.cern.ch/hoschek/colt/

846

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 100 200 300 400 500 600 700 800 900 1000
initial distance n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

1
7

sqrt(n)
n

bound

Figure 1: Number of function evaluations for Al-
gorithm 1 for λ ∈ {1, 7, �√n�, n}, together with the
theoretical upper bound for λ = n.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 200 300 400 500 600 700 800 900 1000
initial distance n

nu
m

be
r

of
 g

en
er

at
io

ns

1
7

sqrt(n)
n

Figure 2: Number of generations for Algorithm 1
for λ ∈ {1, 7, �√n�, n}.

be superior. Of course, one needs λ > 1 in this case. Oth-
erwise, the algorithm degenerates to a pure random search.
It is important to note that such observations are typically
made in the continuous domain. In discrete search spaces,
for practical values of λ, plus- and comma-selection are al-
most identical. They can only differ if all offspring are in-
ferior to their parent. In discrete search spaces with a suf-
ficiently large λ, there is almost certainly at least one off-
spring identical to its parent. Then it does not matter which
selection variant is used. We demonstrate this empirically
by displaying the performance of the (1+λ) EA and (1, λ)
EA for λ = �√n� (in the left graph) and λ = n (in the right
graph) in Figure 3. Obviously, there is hardly any difference.
Finally, we discuss a very similar mutation operator that

we conjecture to be more efficient in Section 6. We support
this conjecture by comparing the performance of the (1+λ)
EA as defined in Algorithm 1 with the same algorithm using
the other mutation operator. We do so for λ = �√n� (in the
left graph) and λ = n (in the right graph) in Figure 4.

 0

 5000

 10000

 15000

 20000

 25000

 100 200 300 400 500 600 700 800 900 1000
initial distance n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

+-selction
,-selction

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 100 200 300 400 500 600 700 800 900 1000initial distance n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns +-selction

,-selction

Figure 3: Number of function evaluations for λ ∈
{�√n�, n} for Algorithm 1 and the variant with trun-
cation selection.

 0

 5000

 10000

 15000

 20000

 25000

 100 200 300 400 500 600 700 800 900 1000
initial distance n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

Algorithm 1
variant

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 100 200 300 400 500 600 700 800 900 1000initial distance n

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns Algorithm 1

variant

Figure 4: Number of function evaluations for λ ∈
{�√n�, n} for Algorithm 1 and the variant with the
mutation from Section 6.

6. CONCLUSIONS
We have presented a rigorous complexity analysis of a

(1+λ) EA on a simple, OneMax-like dynamic problem in
the lattice. We gave asymptotically tight upper and lower
bounds on the expected first hitting time in the case that
the target point does not move in Section 3. Starting with
an initial distance of n, the first hitting time of the target is
Θ(λ · (1 + n · (log log λ)/ log λ)). Since in each generation λ
function evaluations are made, this reveals that the average
speed of the (1+λ) EA is Θ((log λ)/ log log λ). If in the
dynamic case a target moves clearly slower than this, it will
be located by the (1+λ) EA and tracked very steadily. We
did not discuss other cases in such detail. In particular, the
behavior of the (1+λ) EA when target point and algorithm
have asymptotically the same speed is an interesting subject
for future research.
We motivated the design of the mutation operator used

by its similarities to standard bit mutation for bit strings.
Considering this mutation operator independent of this mo-
tivation may make it appear somewhat silly. There is a
number of k local operations that are chosen uniformly at
random independently. Thus, some local operations may be
in the exactly opposite direction of previous local operations
in the very same mutation. In particular, due to its symme-
try the expected distance traveled in one mutation equals
0. Thus, considering one mutation as step-wise process, one
sees a random walk that has the tendency to return to its
origin. This is not a very wise strategy if one wants to travel
at high speed. It seems to be more sensible to replace the
mutation operator in the (1+λ) EA by the following.

2. Mutation
For i := 1 To λ Do

Choose k1 ∈ N according to a Poisson distribution
with parameter 1.
Choose m1 ∈ {(1, 0), (−1, 0)} uniformly at random

847

Choose k2 ∈ N according to a Poisson distribution
with parameter 1.
Choose m2 ∈ {(0, 1), (0,−1)} uniformly at random
yi := xt + k1 ·m1 + k2 ·m2

This mutation operator decides on the number of steps in
the directions of both axes in the lattice independently and
chooses only one direction on each of the two axes. This
way the distance traveled equals k1 + k2 where k1 and k2

are both chosen independently according to a Poisson distri-
bution with parameter 1. It is interesting to note that this
change in the mutation operator does not affect our results
at all. The reason for this perhaps surprising observation can
be found in the proof of Theorem 1 in Section 3. For the
lower bound on E(Tλ,0(n)) we estimated the distance trav-
eled by the number of local operations and ignored the fact
that some local operations may cancel each other. Thus, we
only have to take into account that with the new mutation
operator we double the number of local operations. This
does not change any of our asymptotic results. For the up-
per bound, the reason is slightly more subtle. We estimate
the probability to hit some target point y with a direct mu-
tation using Prob(y1 = y) ≥ 1/(e · d! · 4d). Considering the
denominator, the important factors are d! and 4d. The factor
d! stems from the Poisson distribution and is not changed by
the change of the mutation operator. The factor 4d however
comes from the choice of the local operations and can be
changed to 4 for the new mutation operator. However, sub-
sequent calculations reveal that the factor dd dominates the
order of growth of this probability so that changing 4d to 4
does not imply any change of our asymptotic bound. Note,
however, that in experiments the second mutation operator
would appear to be clearly superior. However, as we have
discussed this advantage is bounded above by some constant
factor that disappears in O-notation.
An interesting area for future research is the investigation

of different mutation operators for such tracking problems
in the lattice. This is similar in spirit to the work of Weicker
[11] who found biased and asymmetric mutations with a bias
coinciding with the movement of the target point clearly
superior. However, we considered a symmetric mutation
operator, i. e., for all x = (x1, x2), ya = (ya1, ya2), and
yb = (yb1, yb2) with

{|x1 − ya1| , |x2 − ya2|} = {|x1 − yb1| , |x2 − yb2|}
Prob(m(x) = ya) = Prob(m(x) = yb) holds. Note, however,
that this kind of symmetry does not imply that a mutation
operator is unbiased as defined by Droste and Wiesmann
[6] in their design rules for metric-based EAs. They call a
mutation operator m unbiased if for all x, y1, y2 ∈ Z2

d(x, y1) = d(x, y2) ⇒ Prob(m(x) = y1) = Prob(m(x) = y2)

holds. Obviously, unbiased operators are always symmetric.
Clearly, unbiased or at least symmetric operators are to

prefer unless some problem-specific knowledge suggests oth-
erwise. Such operators can be designed like the mutation op-
erator defined in this section, possibly using different prob-
ability distributions for k1 and k2. We conjecture that with
different probability distributions considerably higher speeds
can be achieved without losing the good tracking behavior.
In some sense the class of tracking problems in the lattice

considered here is quite general. We make no very specific
assumption about the way the target point moves in the

lattice. The only restriction we impose is the upper bound
dmax on the speed of the target. Our results reveal that such
an upper bound is necessary: if the target point may move
arbitrarily far in one generation, nothing can be achieved.
Our general setting leaves several more specific questions
as subject of future research. It makes sense to consider
the same problem class with more specific assumptions on
the movement of the target point. Two cases appear to
be of special interest. First, the target point may move by
adding a fixed movement vectorm with d(m) = dmax in each
step, i. e., at := a1 + (t − 1) · m. Together with a suitable
initial position of a1 this constitutes the worst case. Note
that all our bounds hold in this situation, too. A different
interesting scenario works with a target point that moves
randomly according to some distribution that guarantees
d(at, at+1) ≤ dmax for all t. Depending on the distribution
employed better bounds may be possible in this case.
In some sense, however, the class of tracking problems

in the lattice considered here is very specific. We assume
that the fitness value equals the distance to the current tar-
get point. This is equivalent to the situation for OneMax,
where there is a direct correspondence between the (Ham-
ming) distance to the optimum and the fitness value, too.
Therefore, the results presented here are merely a first step
into the direction of rigorous analyses of tracking problems.

7. REFERENCES
[1] H.-G. Beyer, H.-P. Schwefel, and I. Wegener. How to

analyse evolutionary algorithms. Theoretical Computer
Science, 287:101–130, 2002.

[2] J. Branke. Evolutionary Optimization in Dynamic
Environments. Kluwer, 2001.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 2001.

[4] S. Droste. Analysis of the (1+1) EA for a dynamically
changing onemax-variant. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO 2002), pages 55–60, 2002.

[5] S. Droste. Analysis of the (1+1) EA for a dynamically
bitwise changing onemax. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO 2003), pages 909–921, 2003.

[6] S. Droste and D. Wiesmann. On the design of
problem-specific evolutionary algorithms. In Advances
in Evolutionary Computing, pages 153–173. Springer,
2003.

[7] W. Feller. An Introduction to Probability Theory and
Its Applications. Volume I. Wiley, 1968.

[8] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. L.
Miller. The gambler’s ruin problem, genetic
algorithms, and the sizing of populations.
Evolutionary Computation, 7(3):231–253, 1999.

[9] T. Jansen and K. De Jong. An analysis of the role of
offspring population size in EAs. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO 2002), pages 238–246, 2002.

[10] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[11] K. Weicker. Analysis of local operators applied to
discrete tracking problems. Softcomputing Journal,
2005. To appear.

848

