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ABSTRACT
The Differential Evolution (DE) is a floating-point encoded
evolutionary strategy for global optimization. It has been
demonstrated to be an efficient, effective, and robust op-
timization method, especially for problems containing con-
tinuous variables. This paper concerns applying a DE-based
algorithm to training Radial Basis Function (RBF) networks
with variables including centres, weights, and widths of RBFs.
The proposed algorithm consists of three steps: the first step
is the initial tuning, which focuses on searching for the cen-
ter, weight, and width of a one-node RBF network, the sec-
ond step is the local tuning, which optimizes the three vari-
ables of the one-node RBF network — its centre, weight, and
width, and the third step is the global tuning, which opti-
mizes all the parameters of the whole network together. The
second step and the third step both use the cycling scheme
to find the parameters of RBF network. The Mean Square
Error from the desired to actual outputs is applied as the
objective function to be minimized. Training the networks
is demonstrated by approximating a set of functions, using
different strategies of DE. A comparison of the net perfor-
mances with several approaches reported in the literature
is given and shows the resulting network performs better
in the tested functions. The results show that proposed
method improves the compared approximation results.

Categories and Subject Descriptors
G.1.6 []: Global optimization; G.1.2 []: Nonlinear approxi-
mation; I.1.2 []: Nonalgebraic algorithms

General Terms
Algorithms
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1. INTRODUCTION
Radial Basis Functions (RBFs) emerged as a variant of

artificial neural networks in the late 80’s. RBFs are embed-
ded in a three layer neural network, i.e., the input layer,
the hidden layer, and the output layer, where each hidden
unit implements a radial activation function. The output
units implement a weighted sum of hidden unit outputs.
Approximation capabilities of RBFs have been studied in
[16, 18]. Due to their nonlinear approximation properties,
RBF networks are able to model complex mappings [5, 7].
RBFs have been used to build a class of nonlinear models,
i.e., RBF models for multivariate approximation partially
because the RBF models have the properties of localization,
boundedness, stability, good interpolation, and smoothness.
The performance of a trained RBF neural network de-

pends on the number of the RBFs as well as their locations,
orientations, shapes, widths, and the method used for learn-
ing the input-output mapping. Finding the variable factors
of RBFs is called network training. If a set of input-output
pairs, called the training set, is at hand, the network pa-
rameters are optimized in order to fit the network outputs
to the given inputs. The fit is evaluated by means of a
cost function. After training, the RBF network can be used
to respond to data whose underlying statistics is similar to
that of the training set. Different approaches for training
RBF networks have been developed and can be divided into
four categories [1, 2, 9, 10, 17, 20, 25, 27]: (i) Learning
the centres and widths in the hidden layer; (ii) Learning
the connection weights from the hidden layer to the output
layer; (iii) Learning the network structure; and (iv) hybrid
learning: learning the centres, orientations, widths, weights,
or the network structure together. On-line training algo-
rithms adapt the network parameters to the changing data
statistics [1, 3, 6, 14]. RBF networks have been success-
fully applied to a large diversity of applications including
interpolation [4, 15], etc.
Artificial neural networks are widely recognized for their

ability to approximate complicated non-linear relationships
and to estimate underlying trends, even when substantial
noise is present in the data. RBFs using Evolutionary tech-
niques have the following advantages:
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1. Evolutionary algorithms (EAs) have been successfully
applied to finding the global optima of various multidi-
mensional functions where local optima in the space of
possible solution are common, while in training RBF
networks, the global optimum is usually surrounded
by local optima.

2. EAs are able to handle the optimization of parameters
for which no gradient information or other auxiliary
information is available, while in training incremen-
tal RBF networks, the objective function changes with
node that increases with generation and the objective
function parameters evolve with generation so that of-
fering gradient information or any other auxiliary in-
formation would become burdensome.

3. EAs can optimize a broader range of network param-
eters; even adaptively change the type of the transfer
functions of nodes because of discontinuities of the dis-
cussed functions [5].

The Differential Evolution (DE) introduced by Price and
Storn [22], a floating-point encoded EA for global optimiza-
tion, has been found to be an efficient, effective, and ro-
bust optimization method, especially for problems contain-
ing continuous problem variables [19, 22, 23]. This paper
applies a DE-based incremental training method to search-
ing for variables — centres, weights, and widths — of the
RBF network, which provides the best possible function ap-
proximation.
The rest of the paper is structured as follows: the train-

ing problem is explained in Sect. 2, the training method is
described in Sect. 3, and experimental results are shown in
Sect. 4. The conclusion is given in Sect. 5.

2. TRAINING PROBLEM

2.1 Radial Basis Functions Network
RBFs have their origin in the solution of the multivariate

interpolation problem [4]. Arbitrary function g(v): �d → �
can be approximated by mapping, using a RBF network
with a single hidden layer of p units:

bg(v,x) =

pX
j=1

wjrj(v,�j , cj)

=

pX
j=1

wjφj(�j , ‖v − cj‖), (1)

where v ∈ �d; x is the vector of variable factors includ-
ing wj , �j , and cj ; p denotes the number of basis func-
tions; w = (w1, w2, ..., wp)

T contains the weight coefficients;
rj(·) represents the d-dimensional activation function (also
known as the radial basis function) from �d to �; ‖ · ‖ is the
Euclidean norm; cj = (cj1, cj2, ..., cjd)

T , j = 1, 2, ..., p, are
the centres of the basis functions; �j = (σj1, σj2, ..., σjd)

T ,
j = 1, 2, ..., p, are the widths, which are called scaling factors
for the radii ‖v − cj‖, j = 1, 2, ..., p, of the basis functions,
respectively; and φ(·) is a non-linear function that mono-
tonically decreases (or increases) as v moves away from cj .
In order to simplify the notation, coordinate axes-aligned
Gaussian RBF functions are used. When a 1-D Gaussian

Figure 1: The DE algorithm.

RBF is centred at the centroids cj , it follows from (1) that

bg(v,x) =

pX
j=1

wjexp(−‖v − cj‖2

2�2
j

)

=

pX
j=1

wjexp(− (v− cj)
2

2σ2
j

), (2)

where x can be written as

xT = (wT ,�T
1 , c1

T , ...,�T
j , cj

T , ...,�T
p , cp

T )T

= (w1, ..., wp, σ1, c1, ..., σj , cj , ..., σp, cp)
T . (3)

The network can be trained to approximate g(v) by find-
ing the optimal vector x given a (possibly noisy) training
set, V = {(vn, yn)|n = {1, 2, ..., N},vn ∈ �d, yn ∈ �}.
2.2 Cost Function
Given the number of RBFs and a training set, the network

parameters are found such that they minimize the Mean
Square Error (MSE) between the desired and actual outputs,
i.e., the objective function:

f(x) =
1

N

NX
n=1

�
yn − bg(vn,x)

�2

. (4)

2.3 Description of Differential Evolution

Minimize :f(x) : �D → �, (5)

by finding the optimal vector, x = (x1, x2, ..., xD)
T , com-

posed of D parameters, which are usually subject to the
lower and upper boundary constraints x(L) and x(U):

x(L)
k ≤ xk ≤ x(U)

k , k = 1, 2, ..., D. (6)

DE utilizes a population of parameter vectors (Fig. 1):

PG = (x1,G,x2,G, ...,xNpop,G), G = 1, ..., Gmax, (7)

xi,G = (x1,i,G, x2,i,G, ..., xD,i,G), i = 1, ..., Npop, (8)

where Npop is the population size, G is the generation index,
and Gmax is the maximum generation.
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The initial population is chosen randomly to cover the
entire parameter space uniformly (unless otherwise stated).
A natural way to seed the initial population P0 is to generate
random values within the given boundary constraints:

P0 = {xi,0, i = 1, ..., Npop}, (9)

xi,0 = {xj,i,0 = rnd j · (x(U)
j − x(L)

j ) + x(L)
j , (10)

j = 1, ..., D},
where rnd j denotes a uniformly distributed random value
in the range of [0, 1) for each j.
There are several variants of DE (Table 1): (i) in mu-

tation, the vector subject to perturbation can be a random
member of the current population, the current best member,
or the target member, marked as rand, best, and rand-to-
best respectively; (ii) 1 indicates that one difference vector
is used and 2 two difference vectors; (iii) exp and bin are ex-
ponential and binomial crossover operations. For example,
if Strategy 7 is used, its main ingredients are:

1. Mutation: for each vector xi,G, a perturbed vector v
is generated according to

vi,G+1 = xr1,G + F · (xr2,G − xr3,G),

where randomly selected r1, r2, r3 ∈ {1, ..., Npop}, r1 �=
r2 �= r3 �= i, and mutation parameter F ∈ (0, 1+].

2. Crossover: the trial vector is generated as follows:

ui,G+1 = (u1,i,G+1, u2,i,G+1, ..., uD,i,G+1),

uj,i,G+1 =

�
vj,i,G+1 if rnd j ≤ Cr ∨ j = ki,
xj,i,G otherwise,

where parameter index j = 1, ..., D, population index
i = 1, ..., Npop, generation index G = 1, ..., Gmax, ran-
dom parameter index ki ∈ {1, ..., D}, and crossover
parameter Cr ∈ [0, 1].

3. Selection: population PG+1 for the next generation is
selected from the current population PG and the child
population P ′

G+1, according to the following rule:

xi,G+1 =

�
ui,G+1 if f(ui,G+1) ≤ f(xi,G),
xi,G otherwise.

A noisy parameter vector is generated by mutation oper-
ation. In crossover operation, a trial vector is obtained. If
the resulting trial vector yields a lower or equal objective
function value than the predetermined vector, the trial vec-
tor is sent to the next generation; otherwise, the counterpart
is retained [21].

3. TRAINING METHOD

3.1 Algorithm
Figure 2 shows the algorithm training RBF networks.

3.1.1 Initial tuning
It searches the centre, weight, and width of a one-node

RBF network. The sample pair (vi, yi) from set V , having
the biggest difference between the desired and actual out-
puts of the existing RBF network, i.e., |yi − ĝp−1(vi)| =
max{|yn − ĝp−1(vn)|, (vn, yn) ∈ V, n = 1, 2, ..., N}, where
ĝp−1 is the existing Gaussian RBF network, is chosen. The

Table 1: Strategies of DE

Strategy Scheme∗

1 DE/best/1/exp

2 DE/rand/1/exp

3 DE/rand-to-best/1/exp

4 DE/best/2/exp

5 DE/rand/2/exp

6 DE/best/1/bin

7 DE/rand/1/bin

8 DE/rand-to-best/1/bin

9 DE/best/2/bin

10 DE/rand/2/bin

Figure 2: The DE-based training RBFN algorithm.

node has centre vi, weight yi − ĝp−1(vi), and the width ob-
tained after running DE for Glocal generations, which min-
imizes the MSE between the desired and actual outputs of
the present RBF network.

3.1.2 Local tuning
The centre, weight, and width of the one-node RBF net-

work are replicated to get a population. Optimal parameters
of the one-node RBF network are determined by the cycling
scheme, which will repeat running DE Glocal generations for
γ times with the objective function (4) of dimensionality 3.
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3.1.3 Global tuning
It searches for the parameters of the whole RBF network

by the cycling scheme. p is increased by one and the node
from the local tuning is added to each population member
from last global tuning. The cycling scheme repeats running
DE for γ times, while the function (4) has dimensionality of
D = 3 · p and the maximum number of generations of each
run is Gglobal = Glocal · �√p�.

3.1.4 Cycling scheme
It searches the parameters of RBF network and is con-

ducted in both the local tuning and global tuning by regen-
erating the initial population based on the current popula-
tion. The regeneration can be explained as the following:

x′
i,0,t+1 = xi,G,t +mxi,G,t, (13)

where xi,G,t is the ith population member of generation G
at cycle t, x′

i,0,t+1 is the ith initial population member for
cycle t+1, and m = ABτ with A a diagonal matrix having
D random values from a normal distribution, B a diagonal
matrix having the ith element of x(U) − x(L) at bii (1 ≤ i ≤
D), and τ a constant. The cycling scheme consists of γ time
repeats, with each accomplished by running DE for Glocal

(the local tuning) or Gglobal generations (the global tuning).

3.1.5 Condition of termination
The process, conducting the initial tuning, local tuning,

and global tuning one after one, will continue if f(x) > εf

and p < pmax, where εf is a threshold and pmax is the max-
imum number of RBFs, both of which will be numerically
agreed on in the experiments in Sect. 4.

3.1.6 Testing performance
For each run of a function, testing set Vt and training set

V are generated anew independently and contain the same
number of samples – uniformly distributed random values
in the function domain.

3.1.7 Handling constraint violation
The parameters of the objective function are bounded

by the defined region and the boundaries of the discussed
function, g(v), i.e., cj ∈ [−0.25 + v(L), 0.25 + v(U)], �j ∈
(0, (v(U)−v(L))/2], and wj ∈ [−2 · |g|max,+2 · |g|max], where
v(L) and v(U) are the vectors of the lower and upper limits
of v respectively, and |g|max is the maximum of the absolute
function values of g(v). After regeneration, mutation, and
crossover, individuals that go out of the parameters’ bound-
aries should be replaced by random values generated within
the boundaries. The objective function values are calculated
according to (4) after individuals have been repaired.

3.2 Control Parameters’ Setting of DE
The strategies are listed in Table 1 as in [13, 21, 23]. The

control parameters’ setting affects the algorithm’s perfor-
mance and its values were chosen based on discussions in
[8, 11, 21]. All strategies use the same setting: F = 0.9,
Cr = 0.9, and Npop = 100.

4. EXPERIMENTAL RESULTS
The proposed approach is applied to single-input and single-

output test functions in Table 2 without any noise. For

Table 2: Test functions
Index Test function

1 g1(v) = 1.1 · (1− v − 2v2) · exp(−v2/2),

v ∈ [−4, 4]
2 g2(v) = sin(12v), v ∈ [0, 1]
3 g3(v) = sin(20v

2), v ∈ [0, 1]
4 g4(v) = 1 + (v + 2v

2)sin(−v2), v ∈ [−4, 4]
5 g5(v) = sin(v) + sin(3v) + sin(5v),

v ∈ [−0.35, 3.5]
6 g6(v) = 0.5 · exp(−v)·sin(6v),

v ∈ [−1, 1]
7 g7(v) = sin(v) + sin(3v) + sin(6v),

v ∈ [−0.35, 3.5]
8 g8(v) =

P4
n=1

�
n · exp(−n2 · (v − 4 + 2n)2)�,

v ∈ [−4, 4]
9 g9(v) = v, v ∈ [0, 1]

(a) (b)

Figure 3: An example with Strategy 1. (a) g1 and ĝ1;
(b) The training error and testing error with node.

function g(v), training set V is considered as:

V =
�
(vn, yn) ∈ �d ×�, 1 ≤ n ≤ N : yn = g(vn)

	
,

where d denotes the dimension of g(v), (i.e., d = 1 for single-
input functions and so on) and vn, n = 1, 2, ..., N , are N
uniformly distributed random values in the defined region of
the computed function. In order to get general performance,
each function was tested for 30 times with each strategy.

4.1 Experiments with Test Functions
Each function in Table 2 was used, setting N = 100, while

εf and pmax were set as the training error and the number
of nodes found in [12]. Key experimental results are:

1. Fig. 3 shows an example of the net function, its ap-
proximation, the training error, and the testing error.
Table 3 and Table 4 list the numerical results.

2. As can be seen from Fig. 3, Table 3, and Table 4 the
DE-based trainings are effective with respect to lower
MSE and a lower number of nodes. The proposed al-
gorithm is efficient since the functions in Table 2 can
be represented by a number of RBFs, each with a rela-
tively small error compared to the respective range of
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Table 3: Experimental results with test functions (to be continued)
Func Method p Training Testing
-tion Training error Max. error std Testing error Max. error std
g1 S1 3 6.2688 · 10−6 4.2403 · 10−5 1.30 · 10−3 6.9504 · 10−6 5.20 · 10−3 1.40 · 10−3

S2 4 2.8334 · 10−4 1.3004 · 10−4 1.02 · 10−2 3.0721 · 10−4 3.87 · 10−2 1.03 · 10−2

S3 3 7.7167 · 10−6 6.0969 · 10−5 1.50 · 10−3 8.6393 · 10−6 6.20 · 10−3 1.60 · 10−3

S4 5 1.2000 · 10−3 2.3049 · 10−4 2.10 · 10−2 1.2000 · 10−3 7.45 · 10−2 2.10 · 10−2

S5 7 5.0188 · 10−4 1.3477 · 10−4 1.46 · 10−2 5.7918 · 10−4 5.83 · 10−2 1.52 · 10−2

S6 3 5.8461 · 10−6 4.6424 · 10−5 1.30 · 10−3 6.8661 · 10−6 5.30 · 10−3 1.40 · 10−3

S7 4 4.8761 · 10−4 1.9768 · 10−4 1.19 · 10−2 4.6489 · 10−4 4.34 · 10−2 1.19 · 10−2

S8 3 7.2710 · 10−6 4.4102 · 10−5 1.50 · 10−3 8.1637 · 10−6 6.00 · 10−3 1.60 · 10−3

S9 5 1.1000 · 10−3 2.3310 · 10−4 1.93 · 10−2 1.0000 · 10−3 6.67 · 10−2 1.88 · 10−2

S10 7 4.9793 · 10−4 1.2220 · 10−4 1.39 · 10−2 5.2305 · 10−4 5.15 · 10−2 1.38 · 10−2

DE0 16 9.4648 · 10−5 2.2400 · 10−4 5.40 · 10−3 1.3142 · 10−4 1.64 · 10−2 5.30 · 10−3

g2 S1 4 6.4807 · 10−4 1.7292 · 10−4 2.02 · 10−2 6.6467 · 10−4 1.251 · 10−1 2.01 · 10−2

S2 7 3.9397 · 10−4 1.0657 · 10−4 1.25 · 10−2 6.9897 · 10−4 1.058 · 10−1 1.79 · 10−2

S3 4 6.0102 · 10−4 1.8221 · 10−4 1.94 · 10−2 6.6546 · 10−4 1.284 · 10−1 2.02 · 10−2

S4 8 4.4979 · 10−4 1.2539 · 10−4 1.39 · 10−2 9.1095 · 10−4 1.031 · 10−1 2.01 · 10−2

S5 9 7.0127 · 10−4 1.5380 · 10−4 1.79 · 10−2 3.7000 · 10−3 2.155 · 10−1 3.31 · 10−2

S6 4 5.1323 · 10−4 1.8767 · 10−4 1.81 · 10−2 7.9480 · 10−4 1.416 · 10−1 2.23 · 10−2

S7 6 4.9819 · 10−4 1.6998 · 10−4 1.38 · 10−2 6.8989 · 10−4 8.100 · 10−2 1.66 · 10−2

S8 4 4.7896 · 10−4 1.4639 · 10−4 1.69 · 10−2 7.3431 · 10−4 1.435 · 10−1 2.16 · 10−2

S9 8 4.7025 · 10−4 1.2053 · 10−4 1.40 · 10−2 7.2490 · 10−4 9.340 · 10−2 1.82 · 10−2

S10 9 1.0000 · 10−3 2.1320 · 10−4 2.13 · 10−2 1.8000 · 10−3 1.256 · 10−1 2.71 · 10−2

DE0 10 1.8412 · 10−4 8.2400 · 10−4 9.40 · 10−3 1.1533 · 10−4 3.010 · 10−2 5.50 · 10−3

g3 S1 6 1.1800 · 10−2 1.9924 · 10−4 9.84 · 10−2 1.390 · 10−2 6.343 · 10−1 9.700 · 10−2

S2 12 2.5000 · 10−3 1.8365 · 10−4 3.33 · 10−2 1.510 · 10−2 5.030 · 10−1 8.290 · 10−2

S3 6 1.1500 · 10−2 2.2820 · 10−4 8.92 · 10−2 1.500 · 10−2 6.971 · 10−1 1.013 · 10−1

S4 12 2.7000 · 10−3 3.7319 · 10−4 3.50 · 10−2 1.050 · 10−2 4.660 · 10−1 7.260 · 10−2

S5 11 4.2000 · 10−3 3.7551 · 10−4 4.21 · 10−2 9.300 · 10−3 4.172 · 10−1 6.860 · 10−2

S6 6 1.2100 · 10−2 2.3301 · 10−4 9.38 · 10−2 2.260 · 10−2 7.409 · 10−1 1.240 · 10−1

S7 10 3.8000 · 10−3 2.4183 · 10−4 4.10 · 10−2 9.300 · 10−3 3.668 · 10−1 6.420 · 10−2

S8 6 1.0800 · 10−2 1.7173 · 10−4 9.16 · 10−2 1.920 · 10−2 7.843 · 10−1 1.189 · 10−1

S9 11 4.7000 · 10−3 3.0143 · 10−4 4.46 · 10−2 1.330 · 10−2 4.654 · 10−1 8.050 · 10−2

S10 11 4.3000 · 10−3 3.9439 · 10−4 4.37 · 10−2 1.020 · 10−2 4.482 · 10−1 7.270 · 10−2

DE0 14 8.6318 · 10−4 7.0700 · 10−4 1.79 · 10−2 7.732 · 10−4 6.970 · 10−2 1.680 · 10−2

g4 S1 8 2.0374 1.0100 · 10−2 1.0499 · 100 1.10406 · 101 1.45972 · 101 2.5048 · 100
S2 8 2.8345 2.4700 · 10−2 1.1608 · 100 1.22190 · 101 1.58814 · 101 2.6610 · 100
S3 7 5.0079 1.3000 · 10−2 1.7083 · 100 1.50913 · 101 1.63633 · 101 3.0321 · 100

S4 8 2.5437 1.5100 · 10−2 1.0966 · 100 1.11552 · 101 1.49150 · 101 2.4646 · 100
S5 8 2.8898 1.0600 · 10−2 1.1637 · 100 1.35024 · 101 1.75178 · 101 2.8050 · 100
S6 8 2.1082 1.1900 · 10−2 1.0720 · 100 9.70850 · 100 1.48984 · 101 2.3313 · 100

S7 8 3.2409 1.1500 · 10−2 1.2671 · 100 1.52609 · 101 1.82320 · 101 3.0016 · 100
S8 8 2.2163 1.2100 · 10−2 1.0371 · 100 1.30727 · 101 1.61196 · 101 2.7109 · 100
S9 8 2.5608 9.7000 · 10−3 1.0957 · 100 1.23909 · 101 1.61828 · 101 2.6356 · 100
S10 7 5.2230 1.6800 · 10−2 1.6732 · 100 1.29511 · 101 1.42184 · 101 2.7251 · 100
DE0 22 1.9026 8.1361 · 10−2 1.0579 · 10−1 1.81710 · 100 7.08310 · 100 9.9070 · 10−1

g5 S1 6 1.0000 · 10−3 3.0637 · 10−4 2.27 · 10−2 7.3000 · 10−3 2.252 · 10−1 4.44 · 10−2

S2 10 1.9000 · 10−3 2.7178 · 10−4 2.80 · 10−2 8.0000 · 10−3 4.054 · 10−1 6.15 · 10−2

S3 6 1.2000 · 10−3 2.3432 · 10−4 2.53 · 10−2 2.2000 · 10−3 1.597 · 10−1 3.27 · 10−2

S4 10 1.9000 · 10−3 2.9730 · 10−4 2.86 · 10−2 1.1400 · 10−2 3.930 · 10−1 6.66 · 10−2

S5 10 2.2000 · 10−3 5.4841 · 10−4 3.18 · 10−2 7.9000 · 10−3 3.579 · 10−1 5.77 · 10−2

S6 6 1.1000 · 10−3 3.1156 · 10−4 2.49 · 10−2 2.3000 · 10−3 1.684 · 10−1 3.37 · 10−2

S7 10 1.7000 · 10−3 3.5056 · 10−4 2.78 · 10−2 1.0800 · 10−2 4.023 · 10−1 6.63 · 10−2

S8 6 1.0000 · 10−3 2.0291 · 10−4 2.32 · 10−2 1.7000 · 10−3 1.581 · 10−1 2.94 · 10−2

S9 10 1.9000 · 10−3 2.4729 · 10−4 2.86 · 10−2 1.1200 · 10−2 4.492 · 10−1 7.21 · 10−2

S10 10 2.2000 · 10−3 5.4108 · 10−4 3.08 · 10−2 2.2900 · 10−2 5.179 · 10−1 8.57 · 10−2

DE0 10 4.9735 · 10−4 5.1300 · 10−4 1.32 · 10−2 5.2135 · 10−4 5.160 · 10−2 1.31 · 10−3

Note: “Sn” stands for Strategy n. std stands for standard deviation. p is the smallest value in 30 runs with the same
strategy. Errors are average values of 30 runs.
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Table 4: Experimental results with test functions (continuation of Table 3)
Func- Method p Training Testing
tion Training error Max. error std Testing error Max. error std
g6 S1 4 1.5149 · 10−4 1.1702 · 10−4 9.50 · 10−3 2.3666 · 10−4 7.86 · 10−2 1.21 · 10−2

S2 4 2.5868 · 10−4 2.8790 · 10−4 1.07 · 10−2 3.8920 · 10−4 8.68 · 10−2 1.35 · 10−2

S3 4 1.6914 · 10−4 8.8973 · 10−5 1.00 · 10−2 1.9087 · 10−4 6.76 · 10−2 1.07 · 10−2

S4 6 2.2036 · 10−4 8.7193 · 10−5 9.30 · 10−3 3.5864 · 10−4 7.00 · 10−2 1.27 · 10−2

S5 7 2.4233 · 10−4 1.2773 · 10−4 9.90 · 10−3 4.3162 · 10−4 6.64 · 10−2 1.33 · 10−2

S6 4 1.3907 · 10−4 8.4124 · 10−5 9.10 · 10−3 2.0890 · 10−4 7.87 · 10−2 1.15 · 10−2

S7 4 2.8093 · 10−4 1.4095 · 10−4 1.20 · 10−2 4.1309 · 10−4 8.46 · 10−2 1.44 · 10−2

S8 4 1.3156 · 10−4 8.9528 · 10−5 8.90 · 10−3 2.5018 · 10−4 8.16 · 10−2 1.25 · 10−2

S9 5 3.0128 · 10−4 9.4716 · 10−5 1.09 · 10−2 4.1289 · 10−4 7.40 · 10−2 1.34 · 10−2

S10 7 2.8934 · 10−4 1.1403 · 10−4 1.03 · 10−2 4.0724 · 10−4 6.81 · 10−2 1.29 · 10−2

DE0 7 1.1842 · 10−4 4.4200 · 10−4 6.70 · 10−3 7.1339 · 10−5 2.08 · 10−2 5.00 · 10−3

g7 S. 1 6 2.7 · 10−3 2.4544 · 10−4 4.39 · 10−2 3.00 · 10−3 2.745 · 10−1 4.57 · 10−2

S2 10 6.8 · 10−3 5.8102 · 10−4 5.70 · 10−2 8.80 · 10−3 2.864 · 10−1 6.34 · 10−2

S3 6 2.7 · 10−3 2.3279 · 10−4 4.44 · 10−2 3.10 · 10−3 2.664 · 10−1 4.70 · 10−2

S4 10 6.6 · 10−3 4.7762 · 10−4 5.64 · 10−2 1.04 · 10−2 3.178 · 10−1 6.97 · 10−2

S5 10 6.0 · 10−3 7.1615 · 10−4 5.27 · 10−2 1.04 · 10−2 3.961 · 10−1 7.10 · 10−2

S6 6 2.9 · 10−3 2.0089 · 10−4 4.48 · 10−2 3.30 · 10−3 2.787 · 10−1 4.84 · 10−2

S7 10 6.8 · 10−3 4.4925 · 10−4 5.67 · 10−2 1.55 · 10−2 3.856 · 10−1 7.48 · 10−2

S8 6 2.8 · 10−3 1.8938 · 10−4 4.44 · 10−2 3.40 · 10−3 2.744 · 10−1 4.75 · 10−2

S9 10 8.4 · 10−3 6.2800 · 10−4 6.31 · 10−2 1.17 · 10−2 3.170 · 10−1 7.21 · 10−2

S10 10 7.0 · 10−3 5.0563 · 10−4 5.80 · 10−2 2.59 · 10−2 4.928 · 10−1 9.77 · 10−2

DE0 10 1.9 · 10−3 1.1740 · 10−3 2.75 · 10−2 1.60 · 10−3 1.174 · 10−1 2.55 · 10−2

g8 S1 4 5.0706 · 10−5 5.2218 · 10−6 4.900 · 10−3 2.2048 · 10−4 7.0900 · 10−2 9.500 · 10−3

S2 4 2.5900 · 10−2 7.9489 · 10−4 1.012 · 10−1 4.0500 · 10−2 6.5820 · 10−1 1.306 · 10−1

S3 4 6.4792 · 10−5 5.5160 · 10−6 4.800 · 10−3 3.8000 · 10−3 1.9060 · 10−1 2.260 · 10−2

S4 4 5.7000 · 10−2 2.1000 · 10−3 1.507 · 10−1 6.6500 · 10−2 6.2290 · 10−1 1.581 · 10−1

S5 4 5.9300 · 10−2 2.1000 · 10−3 1.566 · 10−1 1.059 · 10−1 1.0151 · 100 2.196 · 10−1

S6 4 4.8815 · 10−5 1.2173 · 10−5 4.700 · 10−3 3.7576 · 10−4 7.1000 · 10−2 9.900 · 10−3

S7 4 2.8800 · 10−2 4.9589 · 10−4 1.086 · 10−1 3.6900 · 10−2 5.8720 · 10−1 1.248 · 10−1

S8 4 1.4000 · 10−3 8.1319 · 10−6 1.030 · 10−2 2.9000 · 10−3 8.200 · 10−2 1.570 · 10−2

S9 4 6.1600 · 10−2 3.3000 · 10−3 1.518 · 10−1 9.7500 · 10−2 8.5280 · 10−1 1.896 · 10−1

S10 4 7.8800 · 10−2 2.6000 · 10−3 1.742 · 10−1 9.6800 · 10−2 8.2430 · 10−1 1.969 · 10−1

DE0 4 1.8868 · 10−5 1.8800 · 10−4 3.700 · 10−3 1.4703 · 10−5 1.8800 · 10−2 3.200 · 10−3

g9 S1 3 2.3271 · 10−7 8.5283 · 10−6 2.8277 · 10−4 3.0140 · 10−7 1.90 · 10−3 3.3595 · 10−4

S2 3 9.8649 · 10−6 4.3543 · 10−5 1.9000 · 10−3 1.2589 · 10−5 1.11 · 10−2 2.2000 · 10−3

S3 3 2.6935 · 10−7 9.6234 · 10−6 3.1556 · 10−4 3.4114 · 10−7 2.00 · 10−3 3.6233 · 10−4

S4 4 2.0736 · 10−5 4.2483 · 10−5 2.6000 · 10−3 2.3813 · 10−5 1.38 · 10−2 2.9000 · 10−3

S5 5 2.5199 · 10−5 4.2751 · 10−5 3.1000 · 10−3 2.8449 · 10−5 1.39 · 10−2 3.3000 · 10−3

S6 3 2.3943 · 10−7 6.4724 · 10−6 2.8993 · 10−4 3.2458 · 10−7 2.10 · 10−3 3.5655 · 10−4

S7 3 9.8293 · 10−6 5.1352 · 10−5 1.9000 · 10−3 9.2539 · 10−6 9.60 · 10−3 1.8000 · 10−3

S8 3 2.3357 · 10−7 8.6406 · 10−6 2.7981 · 10−4 3.3171 · 10−7 2.00 · 10−3 3.5957 · 10−4

S9 3 3.2613 · 10−5 5.5223 · 10−5 3.3000 · 10−3 3.4828 · 10−5 1.65 · 10−2 3.4000 · 10−3

S10 5 3.1501 · 10−5 4.2401 · 10−5 3.4000 · 10−3 4.4804 · 10−5 1.91 · 10−2 4.0000 · 10−3

DE0 8 7.6906 · 10−6 1.5100 · 10−4 2.0000 · 10−3 7.1346 · 10−6 1.02 · 10−2 1.8000 · 10−3

the original function. For example, in approximating
function g1 with Strategy 1, averagely, the training er-
ror is 6.2688 · 10−6, the testing error is 6.9504 · 10−6,
and the standard deviation during testing is 1.4 ·10−3 ,
while only three RBFs are used and the original func-
tion is in the range of [−1.7897, 1.2077].

3. Strategies 1, 3, 6, and 8 worked better than other
strategies in each function: (i) lower values of errors —
training error, testing error, maximum error and std
with a smaller number of nodes (e.g., g1); (ii) lower

values of errors with almost the same number of nodes
(e.g., g9); (iii) lower or higher values of errors with a
lower number of nodes (e.g., g6 and g3).

4. The method in [12], short as DE0, is different from
the proposed method in two ways: (i) it selects cen-
tres and decides weights of the networks heuristically,
then uses DE for local and global tuning to search
for the widths of RBFs; (ii) it does not include the
cycling scheme. These differences results in that the
proposed method has better performance: (i) in g1 and
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g9, using lower than half of the nodes required by DE0,
Strategies 1, 3, 6, and 8 performed better than DE0,
i.e., each had a smaller error, while the rest strategies
each got a higher error; (ii) in g2, Strategies 1, 3, 6,
and 8 used lower than half of the nodes required by
DE0 but achieved results comparable to those by DE0
while and the rest strategies got worse results with a
lower number of nodes than required by DE0; (iii) in
g4, using smaller than half of the nodes required by
DE0, all strategies achieved results slightly worse than
those by DE0; (iv) in g3 and g5, Strategies 1, 3, 6, and
8 achieved results close to those by DE DE0, using
almost half of the nodes required by DE0, but each
of the rest strategies got close or worse results with
a smaller or the same number of nodes required by
DE0; (v) in g6 and g7, all strategies got results com-
parable to those by DE0, using same-sized (Strategies
2, 4, 5, 7, 9, 10) or smaller-sized (Strategies 1, 3, 6,
8) RBF networks; (vi) in g8, using the same number
of nodes required by DE0, Strategies 1, 3, and 6 got
results comparable to those by DE0, while each of the
rest strategies got a higher error.

4.2 Comparisons with Reported Approaches
Table 5 shows more results of four functions, including

comparison with three methods proposed in the literature.
Esposito et al showed an incremental algorithm for growing
RBF networks by means of an evolutionary strategy (short
as EA) [5], which can achieve better performance than a
greedy algorithm (short as FE) [24] and Wavelet Neural
Network (short as AW) [26] in terms of net size and compu-
tation time. εf and pmax were set for each function based
on the experimental results in [5]. It can be seen that the
proposed algorithm outperformed the three methods in the
tests, since:

1. Strategies 1, 3, 6, and 8 performed better than other
strategies in each function, i.e., each with a smaller
error while using a smaller number of nodes.

2. g5: each strategy performed better than FE; using a
lower number of nodes than required by EA, Strategies
1, 3, 6, and 8 offered results closer to those by EA than
other strategies.

3. g6: each strategy got results comparable to those by
AW with smaller than half of the nodes required by
AW, except that Strategy 5 got worse results with one
third of the nodes; Strategies 1, 3, 6, and 8 produced
results close to those by EA with lower than half of the
nodes required by EA, while the rest of the strategies
each produced close or worse results with a little higher
than half of the nodes required by EA.

4. g8: Strategies 1, 3, 6, and 8 performed better than EA,
i.e., each with a smaller error, using a lower number
of nodes than required by EA, while the rest of the
strategies performed much more worse than EA.

5. g9: Strategies 1, 2, 3, 6, 7, and 8 performed better
than EA, i.e., each with a lower error, using a lower
number of nodes than required by EA; Strategies 4, 5,
9, and 10 each had results close to those by EA with
a smaller number of nodes than required by EA.

5. CONCLUSION
A new DE-based approach was developed and applied to

training Gaussian RBF networks with variables including
centres, weights, and widths of RBFs for function approxi-
mation. The choice of the optimal network parameters cor-
responds to the minimum Mean Square Error between the
desired and actual outputs. The tests based on a set of func-
tions and different strategies of DE demonstrated the ap-
proach. The obtained results suggest that the proposed ap-
proach is effective in optimizing the parameters of Gaussian-
type RBF networks. The comparison to other incremental
algorithms reported in the literature has shown that the
DE-based RBF network-growing approach combined with
cycling scheme performed better in terms of the lower MSE
with smaller network in the tested cases, especially Strate-
gies 1, 3, 6, and 8.
Future research should include tests with higher data di-

mensionalities and with less smooth data.
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