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ABSTRACT 
In support vector machines (SVM), the kernel functions which 
compute dot product in feature space significantly affect the 
performance of classifiers.  Each kernel function is suitable for 
some tasks.  A universal kernel is not possible, and the kernel 
must be chosen for the tasks under consideration by hand.  In 
order to obtain a flexible kernel function, a family of radial basis 
function (RBF) kernels is proposed.  Multi-scale RBF kernels are 
combined by including weights.  Then, the evolutionary strategies 
are used to adjust these weights and the widths of the RBF 
kernels.  The proposed kernel is proved to be a Mercer’s kernel.  
The experimental results show that the use of multi-scale RBF 
kernels result in better performance than that of a single Gaussian 
RBF on benchmarks.   

Categories and Subject Descriptors 
I.5.2 [Pattern Recognition]: Design Methodology – classifier 
design and evaluation.  

General Terms 
Algorithms, Performance, Design. 

Keywords 
Evolutionary Strategies, Support Vector Machines, Kernel 
Function, Radial Basis Function 

1. INTRODUCTION 
 
Support vector machines (SVM) are learning algorithms proposed 
by Vapnik et al. [1, 2], based on the idea of empirical risk 
minimization principle.  It has been widely used in many 
applications such as pattern recognitions and function 

approximations.  Basically, SVM operates a linear separation in 
an augmented space by means of some defined kernels satisfying 
Mercer’s condition [2, 3, 4].  These kernels map the input vectors 
into a very high dimensional space, possibly of infinite dimension, 
where linear separation is more likely [4].  Then, a linear 
separating hyperplane is found by maximizing the margin between 
two classes in this space.   

Hence, the complexity of the separating hyperplane depends on 
the nature and the properties of the used kernel [4].  There are 
many types of kernel functions such as linear kernel, polynomial 
kernel, sigmoid kernel, and RBF kernel.  The RBF kernel is a 
most successful kernel in many problems, but still has the 
restrictions in some complex problems.   

Therefore, we propose to improve the RBF kernel by combining 
several terms of RBF kernels at different scales.  These kernels are 
combined by including weights.  These weights and the widths of 
the RBF kernels are the adjustable parameters in our kernel.  In 
order to obtain good accuracy, a large number of kernel 
parameters are needed for testing.  A question arises: how to 
search the best values of these parameters?  We answer this 
question by proposing the use of evolutionary strategies for 
choosing these kernel parameters.   

In this paper, we show that the proposed kernels with the help of 
ES provide better performance than the traditional RBF, and ES 
effectively searches good parameters for our kernel.  In Section 2, 
we briefly review the support vector machines and the 
evolutionary strategies.  In Section 3, an adaptive multi-scale RBF 
is proposed and proved to be the Mercer's kernel.  Then, the 
evolutionary strategies are applied to adjust the weights and the 
widths of RBF kernels.  After that, Section 4 illustrates the 
performances of the proposed kernel on benchmark datasets and 
gives a discussion.  Finally, Section 5 draws a general conclusion. 

2. NOTATION AND BACKGROUND 

2.1 Support Vector Machines 
A support vector machine is a classifier which finds an optimal 
separating hyperplane.  In the simple pattern recognitions, SVM 
uses a linear hyperplane to create a classifier with a maximum 
margin [5].  Consider the problem of binary classification.  The 
training dataset are given as  

),(,...,),(,),( ll yxyxyx 2211 , 
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where N
i Rx ∈  and },{ 11−∈iy  for li ,,K1=  when ix  is a 

sample data and iy  is its label [6].  A linear decision surface is 
defined by the equation:  

 0=+⋅ bxw . (1) 

The goal of learning is to find NRw ∈  and the scalar b  such that 
the margin between positive and negative examples is maximized.  
An example of the decision surface and the margin are shown in 
Figure 1. 

 

 
Figure 1.  An Example of Decision Surface and Margin 

 

In most cases, seeking a suitable linearly hyperplane in an input 
space has the restrictions.  There is an important technique that 
enables these machines to produce complex nonlinear boundaries 
inside the original space.  This performs by mapping the input 
space into a higher dimensional feature space through a mapping 
function Φ  and separating there [7].  

A good property of SVM is that it is not necessary to know the 
explicit form of Φ .  Only the inner product in feature space, 
called kernel function )()(),( yxyxK Φ⋅Φ= , must be defined.  
The decision function is the following equation: 
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where 0≥iα  is the coefficient associated with a support vector 

ix  and b  is an offset. 

2.2 Evolutionary Strategies 
Evolutionary strategies (ES, [8, 9]) are based on the principles of 
adaptive selection found in the natural world.  They have been 
successfully applied to obtain good solutions in optimization 
problems.  Each generation (iteration) of the ES algorithm takes a 
population of individuals (potential solutions) and modifies the 
problem parameters to produce offspring (new solutions).  Both 
the parents and the offspring are evaluated but only the highest fit 
individuals (better solutions) survive to produce new generations.  
The ES has been successfully used to solve various types of 
optimization problems [10].  The basic ES algorithm is shown 
below. 

1. Randomly generate a parent population of µ solutions. 

2. Evaluate all parents to determine their fitness. 

3. Apply reproduction operators to create λ offspring. 
4. Evaluate and keep the µ fittest individuals. 

5. Go to step 3 unless an acceptable solution has been 
found or a fixed number of generations has been 
produced and evaluated.  

Every point in the search space is an individual.  The ES uses a 
population of µ individuals to conduct the search for possibly 
better solutions [11].  During each generation, each individual is 
mutated to produce offspring.  This means the ES is 
simultaneously investigating several regions of the search space, 
which greatly decreases the amount of time required to locate 
good solutions. 

The initial population of individuals is randomly generated but, 
ideally, should be uniformly distributed throughout the search 
space so that all regions may be explored.  Each individual in each 
generation is evaluated to determine its fitness.  Individuals with 
high fitness represent approximations which produce low error 
estimates.  The ES terminates after a fixed number of generations 
have been produced and evaluated or earlier if the acceptance 
criterion is reached [11]. 

There are several different versions of the ES.  The ( µ + λ )-ES 
and ( µ , λ )-ES are two of the more common versions.  In the 
former, µ parents produce λ offspring. The parents and the 
offspring compete equally for survival.  In the latter, µ parents 
produce λ > µ offspring, but only the µ best offspring survive.  
Thus the lifespan of any solution is only a single generation [11].  
In this work, we use the ( µ + λ )-ES.  Our results indicate that 
this method finds the parameters of SVM kernels which yield high 
accuracy.  In the next section we discuss how the ( µ + λ )-ES are 
applied in our proposed kernel. 

3. ADAPTIVE MULTI-SCALE RBF 
All kernel functions in the literature are either dot product 
functions )(),( yxKyxK ⋅=  or distance functions 

)(),( yxKyxK −=  [4].  The examples of dot product kernels are 
linear, polynomial, and sigmoid kernels, while the examples of 
distance kernels are exponential RBF, Gaussian RBF, and multi-
quadratic kernels.  Each kernel is suitable for some datasets.  One 
of the most widely used kernels is the Gaussian RBF kernel.  In 
the several classification tasks, the Gaussian RBF kernel provided 
the better results among the other kernels.  However, it has still 
restrictions in some complex problems.  In this section, a family 
of RBF kernels is proposed.  Multiple RBF kernels at different 
scales are combined and proved to be the Mercer’s kernel.  
Moreover, the evolutionary strategies are applied to adjust the 
parameters of this kernel.    

3.1 Multi-Scale RBF Kernels 
The Gaussian RBF kernel uses the Euclidean distance between 
two points in original space to find the correlation in the feature 
space.  The points very close to each other are strongly correlated 
whereas points far apart have uncorrelated image in the 
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augmented space [4].  This correlation is rather smooth.  There is 
only one parameter for adjusting the width of RBF, which is not 
powerful enough for some complex problems.   

In order to get a better kernel, one possible way is to adjust the 
velocity of decrement in each range of distance between two 
points.  Moreover, the obtained kernel should maintain the good 
characteristic of the RBF kernel.  To implement this capability, 
the combination of RBF kernels at difference scale is proposed.  
The analytic expression of this kernel is following: 

 ∑
=

=
n

i
ii yxKayxK

1
),,(),( γ  (3) 

where n  is a positive integer,  ia  for ni ,...,1=  are the arbitrary 
nonnegative weighting constants, and  

 ),,( iyxK γ  = )exp( 2yxi −−γ  (4) 

is the RBF kernel at the width iγ  for ni ,...,1= . 

The correlations in feature space (relations between the kernel 
functions and the distance between two points in the original 
space) of the multi-scale RBF kernels for n =1, 2, and 3 are 
displayed in Figure 2.  The figure shows that the correlation of the 
RBF kernel is rather smooth, while 2-RBF and 3-RBF are more 
flexible.  This can be interpreted that the increase of adjustable 
parameters provides a more adaptive kernel. 

 

Figure 2.  Graph of RBF, 2-RBF, and 3-RBF Kernels 

   

In general, the function which maps the input space into the 
augmented feature space is unknown.  However, the existence of 
such function is assured by Mercer’s theorem [5].  The Mercer’s 
theorem tells that any symmetric function ),( yxK  in the input 
space can represent an inner product in feature space if  

 0≥∫∫ dydxygxgyxK )()(),(  (5) 

be valid for all 0≠g  for which ∫ ∞<duug )(2 .  Then the 

kernel function K  can be expanded in terms of iΦ   

 ∑
∞

=
ΦΦ=

1i
iii yxyxK )()(),( λ  (6) 

with 0≥iλ  [3, 5].  In this case, the mapping from input space to 
feature space is expressed as  

( )K,)(,)(: xxx 2211 ΦΦ→Φ λλ  

such that K  can be the inner product 

 ),()()()()( yxKyxyx
i

iii =ΦΦ=Φ⋅Φ ∑
∞

=1
λ . (7) 

In the next corollary, the proposed kernel functions will be proved 
to be an admissible kernel by the Mercer’s theorem. 

Corollary.  The linear combination of Mercer’s kernels is a 
Mercer’s kernel. 

Proof.  Let ),( yxKi  be Mercer’s kernel, for ni ,...,1= , and let 

 ∑
=

=
n

i
ii yxKayxK

1
),(),(  (8) 

According to the Mercer’s theorem, we know that   

 0≥∫∫ dydxygxgyxKi )()(),( , g∀  (9) 

for ni ,...,1= . 

By taking the linear combination with nonnegative coefficients 
ia , we will get 

 0
1

≥∑ ∫∫
=

n

i
ii dydxygxgyxKa )()(),( . (10) 

And then 

 0
1

≥∫∫∑
=

n

i
ii dydxygxgyxKa )()(),( . (11) 

Therefore,  

 0≥∫∫ dydxygxgyxK )()(),( , g∀ . (12) 

Hence, the function ∑
=

Κ=
n

i
ii yxayxK

1
),(),(  is a Mercer’s kernel. 

  

The RBF is a well-known Mercer’s kernel.  Therefore, the linear 
combination of RBFs in equation 3 can be proved to be the 
Mercer’s kernel.  When the various RBF functions are combined, 
the results of classification are more flexible than using a single 
RBF function.  Users can choose some of suitable RBF kernels 
for their problems.  The examples of classification with a simple 
RBF kernel and a combination of two RBF kernels are shown in 
Figure 3 and 4, respectively. 

In these examples, the training data are non-linearly separable.  
The SVM with a single RBF and 2-RBF (the proposed kernel 
with n =2) kernels can correctly classify the data.  However, the 
2-RBF kernel yields the result that is more flexible and easier to 
comprehend.  Moreover, the margin of the 2-RBF kernel in this 
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example is larger than the single RBF kernel.  This means that the 
classification results of the 2-RBF kernel on unseen data are more 
plausible than those of the single RBF kernel. 

 

Figure 3.  An Example of Classification with an RBF Kernel 

 
 

Figure 4.  An Example of Classification with a 2-RBF Kernel

 

3.2 Evolving Multi-Scale RBF Kernels 
As shown in equation 3, the proposed kernel has n2  parameters 
for adjusting correlation in the augmented space, when n  terms 
of RBF kernels are used.  There are n  parameters for adjusting 
weights and n  values of the widths of RBF.  Though one may 
reduce the number of parameters to 12 −n (for example, by fixing 

1a  to 1), we decide to use n2  parameters for ease of 
understanding.  These values have influence to the efficiency of 
the proposed kernel.  In order to obtain the optimal values, the 
evolutionary strategies (ES) are considered. 

At the beginning, the training data are divided into five subsets, 
each of which has the same number of data.  For each generation 

of ES, the classifier is trained and validated five times.  In the i th 
iteration ( i  = 1, 2, 3, 4, 5), the classifier is trained on all subsets 
except the i th one.  Then, the accuracy of classification is 
evaluated for the i th subset.  These partitions are displayed in 
Figure 5.  Only real training data sets are used to produce the 
classifiers by a set of parameters.  Then, the validation set are 
used for calculating the accuracies of the classifiers.  The average 
of these five accuracies is used to be the objective function )(vf v  
in this work.  It is a rather good estimate of the generalization 
accuracy for adjusting the parameters. The testing data set is 
reserved for testing the final classifier with the best parameters 
found by the evolutionary strategy.  

 

Figure 5.  Partition Training Data into 5 Subsets 

 

Let vv  be the vector of real number that has n2  dimensions.  Our 
goal is to find vv  that makes the maximum )(vf v .  Each attribute 
of vector vv  is a parameter of the proposed kernel.  The vector vv  
is represented in form ( 1a , 1γ , 2a , 2γ , … , na , nγ ), where ia  
and iγ   for i =1,2,…, n  are the parameters of the kernel in 
equation  3. 

The (5+10)-ES is applied to adjust the parameters of our kernel.  
At the first generation, 5 solutions are selected randomly to be 
parents.  All parents are evaluated to calculate their fitness.  Then, 
these 5 solutions are used to create new 10 solutions, and all 5+10 
solutions are evaluated.  Only the 5 fittest solutions are selected 
from 5+10 solutions to be the parents in the next generation.  
These processes will be repeated until good solutions are found.  
The algorithm of (5+10)-ES is shown in Figure 6.   

This algorithm starts with 0th generation (t=0) which selects 5 
solutions 51 ,..., vv vv  and standard deviation nRσ 2

+∈v  using 
randomization or assigning initial values.  Then, the 
recombination function will create a new solution.  We use the 
global intermediary recombination method for creating 10 new 
solutions.  Ten pairs of solutions are selected from conventional 5 
solutions.  The average of each pair of solutions is a new solution.   
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 1v ′v  = ( )212
1 vv vv +  (13) 

 2v ′v  = ( )312
1 vv vv +  (14) 

M  

 10v ′v  = ( )542
1 vv vv +  (15) 

 
 

 t = 0; 

 initialization( 51 ,..., vv vv , σv ); 

 evaluation )(),...,( 51 vfvf vv ; 

 while (t < 1000) do 

  for i =1 to 10 do 

   iv ′v  = recombination( 51 ,..., vv vv ); 

   iv ′v  = mutate( iv ′v ); 

   evaluate )( ivf ′v ; 

  end 

  ( 51 ,..., vv vv ) = select( 51 ,..., vv vv , 101 ,..., vv ′′ vv )  

  σv = mutate σ ( σv ); 

  t = t+1; 

 end 

 

Figure 6.  (5+10)-ES Algorithm 

 
After that, these solutions are mutated by the following function: 

 mutate( vv ) = ( 11 za + , 21 z+γ , … , 12 −+ nn za , nn z2+γ ) (16) 

 ),0(~ 2
iii σNz . (17) 

The iv ′v  for i =1,..,10 are mutated by adding v ′v  with 
( 1z , 2z ,…, nz2 ), and iz  is a random value from normal 

distribution with zero mean and 2
iσ  variation.  In each 

generation, the standard deviation will be adjusted by equation 18. 

 mutate σ ( σv ) = ( 1
1

zeσ ⋅ , 2
2

zeσ ⋅ , … , nz
n eσ 2

2 ⋅ ) (18) 

 ),0(~ 2τNz ii , (19) 

when τ  is an arbitrary constant.  Then, this algorithm is repeated 
until t reaches a predefined value.   

4. RESULTS AND DISCUSSION 
In order to verify the performance, SVMs with the proposed 
kernel are tested on 10 datasets from UCI repository [12].  Each 
of datasets contains two classes.  The number of attributes and the 
sample size of each dataset are shown in Table 1. 

 
Table 1.  Datasets from UCI Repository 

Datasets # Attributes # Training 
Examples 

# Test 
Examples 

Checkers 2 128 64 

Liver Disorder 6 230 115 

Pima Diabetes 8 512 256 

Glass 9 108 55 

Parity of Bits 10 100 1024 

Cleveland Heart 13 180 90 

Australian 14 460 230 

Random 20 100 3000 

German-org 24 666 334 

Ionosphere 34 234 117 
 

In the experiment, the evolutionary strategies are used to find the 
optimal parameters of kernels in both the conventional RBF and 
the proposed kernels.  Training examples (not including test data) 
are divided into five subsets with the same number of examples.  
For each generation, classifier with same parameters is trained and 
validated five times.  For i =1,…, n , the widths of RBFs ( iγ ) are 
between 0.0 and 10.0, and the weights of RBFs ( ia ) are between 
0.0 and 0.1, when n  is the number of RBFs in equation 3.  These 
parameters are inspected within 1000 generations of ES.  Then, 
the best parameters will be used to test on unseen data (test data).  
The value of τ  in these experiments is 1.0.  The accuracies of the 
proposed kernel for n  = 2, 3, 4, and 5 are compared with the 
single RBF in Table 2.  

These results show the ability of the proposed kernel.  All 
datasets, multi-scale RBF kernels yield the better accuracies than 
the single RBF on test data.  5-RBF provides the best accuracies 
in all datasets.  There is a trend that the accuracy increases with 
the increase of the number of terms of RBF kernels.  Moreover, 
the accuracies of multi-scale RBF kernels are significantly higher 
than those of the single RBF on some datasets.  The experimental 
results also show the evolutionary strategy is effective in 
optimizing the kernel parameters, especially when the ranges of 
the parameters are large.  Other methods for optimizing the 
parameters can also be used, such as gradient based methods.  We 
decided to use (5+10)-ES because the ability to escape from local 
minima and the population size is not large so that it fast 
converges to an optimal solution.  To avoid the over-fitting of the 
kernel parameters, the partition of training data into five subsets is 
employed so that the parameters which work well with all five 
subsets will have less chance to over-fit the data. 
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Table 2.  Experimental Results 

Training Accuracies Test Accuracies 
Datasets 

RBF 2-RBF 3-RBF 4-RBF 5-RBF RBF 2-RBF 3-RBF 4-RBF 5-RBF 

Checkers 81.77 92.19 92.97 94.53 94.53 71.87 81.25 81.25 82.81* 82.81* 

Liver Disorder 72.61 74.35 78.26 78.26 78.26 69.57 73.04 75.36 78.26* 78.26* 

Pima Diabetes 83.98 83.66 83.01 83.79 81.25 72.66 75.13 75.39 75.39 75.78 

Glass 78.70 88.89 92.59 92.59 88.98 81.82 85.45 87.27 87.27 87.27 

Parity of Bits 67.67 89.67 100.00 100.00 100.00 50.39 52.96 54.39** 54.39** 54.39** 

Cleveland Heart 82.78 77.78 77.78 76.11 76.11 61.11 63.33 64.44 65.56 65.56 

Australian 93.48 78.91 79.13 79.35 82.83 61.30 62.61 63.33 63.91 65.22 

Random 64.00 64.00 64.00 64.00 64.00 50.33 50.37 50.37 50.37 50.37 

German-org 68.62 73.57 72.37 71.02 71.02 72.75 72.85 72.85 73.05 73.05 

Ionosphere 96.15 96.15 97.01 97.01 96.15 85.47 92.31* 95.73*** 95.73*** 96.58*** 

Statistical significant at level for the difference in test accuracies between the corresponding kernel and ‘RBF’:  
* is 0.10, ** is 0.05, *** is 0.01 

5. CONCLUSION 
The linear combination of multiple RBF kernels with including 
weights is proposed for support vector classification.  The RBF 
kernel is the most popular distance based kernel that is applied to 
various applications and yields good results.  Here we show that 
the performance of the RBF kernel can be further enhanced by the 
combination of several RBF kernels.   

The evolutionary strategy is applied to adjust weights and widths 
of RBFs in the proposed kernel.  The proposed kernel is proved to 
be the admissible kernels by Mercer’s condition.  Moreover, the 
proposed kernel has more flexibility in complex problems. 

The experiments were performed on 10 benchmarks.  The results 
show the abilities of the proposed kernels through their accuracies 
on test examples.  The combination of RBF kernels yields the 
better results.  When the SVM uses this kernel, it is able to learn 
from data very well.  Therefore, this method is very suitable for 
the problems where we have no prior knowledge about kernels. 

Moreover, this combination can be applied to other Mercer’s 
kernels such as sigmoid or polynomial kernels, as the general 
form of linear combination of the Mercer’s kernels has been 
proved to be a Mercer’s kernel already.  Furthermore, there are 
the other combination techniques that can be used to improve the 
efficiency of SVM kernels, which will be investigated in the near 
future. 
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