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ABSTRACT

The C-value Paradox is the name given in biology to the
wide variance in and often very large amount of DNA in
eukaryotic genomes and the poor correlation between DNA
length and perceived organism complexity. Several hypothe-
ses exist which purport to explain the Paradox. Surprisingly
there is a related phenomenon in evolutionary computation,
known as code bloat, for which a different set of hypotheses
has arisen. This paper describes a new hypothesis for the C-
value Paradox derived from models of code bloat. The new
explanation is that there is a selective bias in preference
of genetic events which increase DNA material over those
which decrease it. The paper suggests one possible concrete
mechanism by which this may occur: deleting strands of
DNA is more likely to damage genomic material than mi-
grating or copying strands. The paper also discusses other
hypotheses in biology and in evolutionary computation, and
provides a simulation example as a proof of concept.
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1. INTRODUCTION

Evolutionary computation derives much of its inspiration,
and indeed its very name, from evolution and genetics. Ideas
and terminology in biology are readily adapted and repur-
posed, sometimes inappropriately, to form new approaches
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in stochastic optimization and search. This paper instead
goes the other way. It suggests one possible solution to the
biology’s C-value Paradox inspired by explanations of simi-
lar phenomena in evolutionary computation.

The C-value of an organism is the amount of DNA in
the organism’s genome. The variation in DNA size across
eukaryote species is nothing short of astonishing. Accord-
ing to Gregory [11], the genome of Amoeba dubia is over
200,000 times the size of the genome of Encephalitozoon cu-
niculi (and 200 times the size of the Homo sapiens genome).
Surprisingly, there is very little variation among prokaryote
genomes,' and generally speaking prokaryote genomes are
very small relative to those of most eukaryotes.

In 1971, Thomas [23] coined the term C-value Paradox®
to denote the unexpected lack of relationship between the
presumed complexity of an organism and its C-value (con-
sider the C-value of the Amoeba). Notably, there often ex-
ists wide variation in DNA content among closely related
species. This was seen as a paradox because at the time
genomes were believed to be simply sets of genes. Why
then, it was asked, would DNA be so large if the number of
genes was expected to be small?

As was later discovered, much of a genome’s DNA may
not code for any gene at all. This apparent non-coding
DNA was termed, perhaps inappropriately, “junk DNA” ?
The existence of non-coding DNA provided one answer to
the question of how it was possible for DNA to be large rel-
ative to organismal complexity or its number of genes, but
not the reason why it was large. As such the C-value Para-
dox survives today partly in this form: why is there so much
non-coding DNA in some organisms? This is the question
which this paper will address. Other major questions (not
discussed in this paper) include: why is there so much vari-
ation in amount of non-coding DNA across species? And:
why do some “complex” organisms have few genes while
some “simple” organisms have many?

'For the forgetful: a prokaryote lacks a nucleus and various
other organelles, and its genome is a single loop of DNA
which wends its way through the cell. A eukaryote has or-
ganelles and a nucleus, and a genome consisting of one or
more chromosomes, plus certain auxiliary DNA such as mi-
tochondrial DNA.

2 As the C-value Paradox is not a “paradox” any more per se,
Gregory [11] has suggested using the term C-value Enigma
instead: but I believe the earlier term is still in common use.
3Gince then some junk DNA has been found to serve one
purpose or another in the genome, so at least part of it may
not be junk after all. At any rate, the term “junk” is falling
out of favor.



Eukaryotic non-coding DNA is considerable. In Homo
sapiens extragenic DNA accounts for over 70% of the
genome. Within the boundaries of a gene, on average 90%
of the material consists of introns and other non-coding ma-
terial. Only 3% of the human genome actually codes for
protein, and some percentage of those genes may have no
real purpose [4]. Interestingly, prokaryotic DNA tends to
have very little “junk”, though this may be explained by se-
lection pressuring prokaryotes to be small and to reproduce
rapidly (small DNA size is correlated with both of these fea-
tures). Many large, multicellular eukaryotes do not have this
constraint, though this does not explain why some small,
single-celled eukaryotes (such as Amoeba) have among the
largest genomes in existence.

There are various hypotheses which attempt to solve the
C-value Paradox and explain why many genomes may con-
sist of so much non-coding DNA. Each has advantages and
difficulties. In this paper I will enumerate these meth-
ods, and then discuss the curiously related “bloat” phe-
nomenon found in various evolutionary computation and
related stochastic optimization techniques (particularly ge-
netic programming). Following this, I will propose a new
hypothesis which attempts to explain the C-value Paradox,
and which is interestingly derived not from biological foun-
dations but from inspiration drawn from the results of these
optimization techniques. Even more surprisingly, to my
knowledge this hypothesis has not been proposed in the bi-
ological literature, despite its relative obviousness. The new
hypothesis is not intended to replace the others: indeed I
believe that several of them are likely to be true. Instead,
I think that several forces are behind the C-value Paradox,
and that the new hypothesis may be one of them.

2. GENOME GROWTH HYPOTHESES

Most explanations for the C-value Paradox rely on some
underlying force involved in producing additional DNA in-
dependent of the selection process. Acted on by this force,
the genome will grow in size until the length of the genome
places the organism at selective disadvantage [17]. One
source of this selective disadvantage is that DNA size is
correlated with cell and nucleus size and with (slower) cell
division rate. If, for example, the organism required rapid
cell division, then a large genome would be selected against.
Doolittle and Sapienza also note that underlying genome-
growth events (they referred to transposition as described
below) might also be “frankly destructive” to the genome,
which in turn could produce selection against them [10].

What forces might act upon the genome to cause it to
grow? There are several possibilities, including:

o Bulk Modifications might erroneously occur during
DNA replication.

e Strand Slippage is the unintended repetition of a few
DNA base pairs during DNA replication, possibly
caused by incorrect DNA repair. Charlesworth et al
state that “In vitro studies suggest that strand slippage
during DNA replication is a major cause of the ob-
served length polymorphism of microsatellites* within
populations.” [7]

4Short, heavily repeated sequences of non-coding DNA are
termed satellites, minisatellites, or microsatellites, depend-
ing on the length of the sequence.
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e Transposable Elements are sequences of DNA capa-
ble of transposing to another location in the DNA
strand. These may be divided into two classes: ele-
ments which act on the DNA directly from the DNA it-
self, and “retroelements” which insert in the DNA from
RNA (for example, retroviruses) [7]. Transposable el-
ements may simply move themselves to a new location
in the DNA; or they may insert copies of themselves
into the DNA, resulting in genome growth. Again,
Charlesworth et al state that “much of the moderately
dispersed repeated DNA of eukaryotes appears to con-
sist of transposable elements....” [7]

Copying via transposition events is also likely the pri-
mary way by which new genes are formed. If an exist-
ing gene is important to the function of the organism,
then mutating that gene (to convert it to a new gene)
is likely to be deleterious. But if the gene were dupli-
cated through the copying of a DNA sequence, then
the original gene would be free to mutate as there is
now another copy of the gene producing the original
gene’s crucial RNA [16].

Gregory [11] describes four prominent hypotheses for
genome growth: Junk DNA, Selfish DNA, Nucleoskeletal,
and Nucleotypic, and provides an excellent comparison of
them. I list these four plus two more.

The Junk DNA Hypothesis. This hypothesis argues that
transposable elements, strand slippage, and other gene-
accumulating events might simply accumulate on their own
independent of selection. These changes then are spread
through the population via genetic drift [11, 18]. Dawkins
sums it up thus: “The simplest way to explain the surplus
DNA is to suppose that it is a parasite, or at best a harm-
less but useless passenger, hitching a ride in the survival
machines created by the other DNA.” ([8], p. 42)°

The Selfish DNA Hypothesis. This hypothesis may be
viewed as an extension of the Junk DNA Hypothesis that
asserts an actual selective force which drives the transpos-
able element-copying procedure [10, 17]. Here transposable
elements will repeatedly copy themselves elsewhere into the
genome, and those copies will copy themselves, etc. result-
ing in considerable genome growth.

The “selective” force is not at the organismal level but
within the genome. Doolittle and Sapienza argue: “trans-
posability itself ensures the survival of the transposed el-
ement...” [10]. Thus because it is capable of transposing,
a transposable element is more likely to survive deleterious
mutation than a non-transposable element. This is plausi-
ble, though given the relative rarity of a element-damaging
event when compared to the death or survival of an organ-
ism, such a force seems very weak compared to the selective
force on genes to ensure survival of their host organism. Ad-
ditionally, while the Junk DNA hypothesis might predict a
linear increase in genome size, Selfish DNA suggests an ex-
ponential increase in size as children of selfish copiers them-
selves begin copying until the length becomes a hindrance
to fitness. This seems problematic.

The hypothesis’s name is derived from from Dawkins’ The
Selfish Gene [8], which posits that selection must be viewed

5This statement of Dawkins’s may also be used to argue
partly for the Selfish DNA hypothesis.



at the gene level rather than at the genome or organismal
level. The borrowing is unfortunate, as Dawkins’ treatise
deals with the spread of genes through populations, not
genomes [11], and more importantly, his “selfish genes” are
selected for because they have an effect on their organism,
whereas Orgel and Crick [17] define selfish DNA as having
the following features: “(1) It arises when a DNA sequence
spreads by forming additional copies of itself withing the
genome. (2) It makes no specific contribution to the pheno-
typ&n(j

It is important to note that both of these hypotheses are
additive only: they presume that the mechanisms for in-
creasing genome size are much more prevalent than those
for reducing it [11]. Instead they rely on selection as the
force for maintaining a cap on unrestricted genome growth.
However, it is known that genome-reduction mechanisms do
exist [6, 11]. Indeed, such mechanisms have had a dramatic
effect in reducing genome size in certain organisms such as
Arabidopsis [9].

The Nucleoskeletal and Nucleotypic Hypotheses. These
hypotheses rely on the positive relationship between the size
of the genome and cellular features. The nucleoskeletal the-
ory argues that organisms have an optimal cell size for main-
taining metabolism, cell division, etc. [5] Selection for this
cell size in turn places selective pressure on producing an
appropriate nucleus size relative to the cell size, and this
in turn selects for some mechanism (ostensibly an appropri-
ately sized genome) for producing the desired nucleus size.
The nucleotypic hypothesis is closely related, but instead
asserts a more direct relationship between genome size and
resulting cell size and other cellular parameters. Selection
for these parameters in turn puts pressure on an appropri-
ate genome size [2]. For extensive elaboration on these two
hypotheses, see [11].

Unfortunately, neither of these hypotheses suggests a
function by which genome growth occurs: they simply at-
tribute it to selection for those external features which
genome size can affect. No real causal link asserted. While
a larger genome may be able to produce a larger nucleus, a
larger cell, and changes in cellular parameters, surely these
features can be come by through other means, such as sup-
port mechanisms coded in the organism’s DNA. The com-
plex task of increasing or decreasing DNA to produce the
desired effect seems to be the most roundabout of several
approaches to meeting the selective needs of the cell.

The Defense Against Recombination Hypothesis. This
is the term I give to the hypothesis casually suggested by
Pagel [18].” The idea is that large swaths of non-coding
DNA may be selected for because in some way they pro-

SDawkins himself and Stephen J. Gould openly disagree on
whether Selfish DNA has much to do with the Selfish Gene
(each finding the others’ reasoning “wrong but interesting”).
Gould argues that “selfish genes increase in frequency be-
cause they have effects on bodies...selfish DNA increases in
frequency...because it has no effect on bodies....” whereas
Dawkins, enamored with Orgel and Crick’s borrowing of
selfish genes to make the selfish DNA argument, puts forth
vari)ous—and in my view unsatisfactory —responses ([8], p.
275).

I also note with interest that Pagel’s suggestion predates
genetic programming’s defense against crossover theory by
two years.
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tect against the possibility of recombination during the cell
replication process, perhaps by encouraging recombination
events to occur in the non-coding regions of DNA rather
than the coding regions. As informal evidence Pagel points
to mitochondrial DNA, which does not undergo recombina-
tion and also is believed to lack non-coding DNA.

I feel that one difficulty with this hypothesis is that it pre-
sumes that the presence of one recombinative event some-
how diminishes the likelihood of a related nearby event.
Were this the case, then non-coding DNA, and particularly
such DNA designed to encourage recombination, could thus
somehow stifle recombination in more crucial regions. How-
ever I am not aware of support for this presumption.

The Genome Selective Benefit Hypothesis. There exist
examples in the literature where non-coding DNA act suffi-
ciently on the genome itself as to possibly impart a selective
benefit. For example, intron size has been shown to be both
positively correlated and negatively correlated with recom-
bination rate, depending on the species [19]. Whether there
is a general selective benefit remains to be seen: but it re-
mains worthwhile mentioning this as a possible hypothesis.

3. CODE BLOAT IN EVOLUTIONARY
COMPUTATION

One of the unexpected, coincidental consequences of evo-
lutionary computation deriving its inspiration from evolu-
tion and genetics is that the EC field too has its own C-
value Paradox of a sort. This is the phenomenon of code
bloat (or as Bill Langdon calls it, “survival of the fattest”).
Bloat is the tendency for individuals’ genomes to grow signif-
icantly in size during an evolutionary run, and to do so in a
fashion unrelated to significant improvement in fitness. The
phenomenon is prevalent in genetic programming, though it
has cropped up in a variety of evolutionary computation con-
texts —in fact, the first reported example of bloat occurred
in Pitt-approach rule programs [20]. While we are beginning
to better understand the underlying causes of code bloat, at
least in tree-based genetic programming representations, we
are still a ways off from constructing methods to counter it:
instead we tend to resort to the blunt instrument of parsi-
mony pressure.

For further information on bloat, theoretical models of
the phenomenon, methods for countering it, and examples
of bloating features, see [13]. Here is a summary of the
major theories, all of which primarily concern themselves
with evolutionary computation genomic representations in
the forms of strings or trees.

Hitchhiking. This model places blame on the presence of
introns, regions of code which serve no purpose in the
genome. The idea is that such chunks (the “hitchhikers”)
attach themselves to parents of “important” active code
in such a way that when the active code is propagated
from individual to individual, the hitchhikers come along
for the ride [22]. This hypothesis has many parallels to the
Junk DNA hypothesis, and in fact Dawkins’s quote refers to
“hitchhikers”.

Defense Against Crossover. Here blame is placed on a
subset of introns called inviable code. These are regions of
code which serve no purpose, and furthermore cannot be



replaced with any code which can possibly serve a purpose.
Modification (via crossover or other recombination; or some
form of mutation) of these regions cannot change the fitness
of the individual in any way. Late in the evolutionary pro-
cess, individuals in the population have largely converged in
fitness, and so any major fitness change is likely downward.
Thus it is in the individual’s interest to not change at all.
As the breeding step in genetic programming consists of a
single recombinative event, selection can thus pressure the
individual to sprout large amounts of inviable code to reduce
the probability that viable parts of the genome will be mod-
ified (and likely damaged). Defense against crossover has
long been a popular model ([3, 15, 1] among many others).

Pagel’s C-value Paradox hypothesis, which I termed “de-
fense against recombination”, is tantalizingly similar to de-
fense against crossover as described here. But keep in mind
that DNA copying not like the artificial breeding mechanism
in genetic programming: in real DNA it is not clear that the
probability of recombination in one DNA region has a strong
effect on the probability of recombination elsewhere. How-
ever in GP the relationship is very strong indeed: if an event
occurs in one place it will not occur elsewhere.

Removal Bias. This GP tree-specific model also places
blame on inviable code. Here inviable code takes the form
of subtrees typically located in the fringes of the genetic
programming tree genome [21]. If modification occurs in
inviable code regions, the removed subtree must therefore
generally be small compared to modification of viable code
regions (further up in the tree). Thus removing a small sub-
tree is more likely to have no effect on the individual. But
there is no such bias for inserting subtrees in these regions:
a subtree of any size can be added to an inviable code region
with no effect. Large removed subtrees are selected against,
but not large inserted subtrees.

Fitness Causes Bloat. This somewhat abstract hypothe-
sis argues that there are many more highly-fit large genomes
than highly-fit small genomes, if only because there are more
large genomes than small ones in general. But genetic pro-
gramming typically starts with very small genomes to begin
with, and so bloat might simply be the system moving to-
wards equilibrium [12].

Modification Point Depth. This GP tree-specific hypoth-
esis argues that there is a correlation between the depth
of the modification point in a tree genome and the likely
survivability of the child (defined as how well the child per-
forms against its peers in the population —such as how of-
ten the child or later ancestors are selected for reproduc-
tion). Deeper modification points are correlated with higher
survivability. But the choice of deeper modification points
also is correlated with larger parents (who generally create
larger children), and deeper modification points tend to root
smaller subtrees, creating a removal bias somewhat similar
to that discussed earlier. But unlike the defense against
crossover and removal bias models, modification point depth
does not rely on viable vs. inviable code: it posits a gradi-
ent of viability over various modification points [13]. Indeed,
the removal bias model may be viewed as a specific subset
of the modification point depth hypothesis.
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4. AN ALTERNATIVE EXPLANATION OF
THE C-VALUE PARADOX

From these hypotheses of artificial genome growth I pro-
pose a possible explanation for the C-value Paradox in real
biology. The explanation is inspired by the removal bias and
modification point depth models. The general form is very
simple: genomes grow because insertion of material is more
positively correlated (or less negatively correlated!) with fit-
ness improvement than is deletion of material.® This notion
is relatively intuitive given the existing EC bloat hypothe-
ses, though its application to the C-value Paradox has not,
to my knowledge, been stated.

Here is one concrete example of how this principle might
be applied to DNA. Consider the process, either via bulk
modification, transposition, or other method, whereby a
strand of DNA is either snipped out, transposed (snipped
and reinserted), or copied. Presume that these processes
are among the machinery by which DNA undergoes genetic
mutation and other adaptive change. Presume also that
elimination of genes in the genome on average tends to be
damaging to the individual. Then we ask the following ques-
tion: which process (deletion, transposition, or copying) is
more likely to destroy genes? Here they are in order of in-
creasing damage.

e Copying may damage those genes which presently
straddle or otherwise rely on material at the chosen
insertion point.

e Transposition damages the same genes as copying. It
also damages genes straddling or otherwise relying on
the two end-points of the sliced-out material. This
is effectively three times as many gene locations (or
perhaps two if the end-points are close together).

e Deletion damages not only the genes straddling the
two end-points of the sliced-out material, but of course
also eliminates any genes located within the sliced-out
region.

Importantly this order is also the same as: material added;
no change; material removed. Thus the application of these
processes constitute a kind of “removal bias” applied to the
genome. Increase in DNA material may be explained simply
because it is less likely to destroy the individual.

Unlike the Nucleoskeletal and Nucleotypic hypotheses, the
proposed explanation provides an actual functional mecha-
nism by which genome growth may occur, rather than sim-
ply assuming that genome growth is the only way to fulfill
the needs of larger nuclei, larger and slower-dividing cell
bodies, or other cellular parameters. And unlike the Junk
DNA and Selfish DNA hypotheses, the hypothesis presented
here expressly permits processes of material deletion, and in
fact benefits from them (though it does not formally require
them). It is worthwhile noting that examples of significant
DNA deletion (for example, in Arabidopsis [9]) are not nec-
essarily evidence against the theory: the presence of a potent
DNA reduction force does not preclude a more general, pos-
sibly weaker, DNA-increasing force. Finally, like the Junk
DNA hypothesis, the proposed hypothesis also suggests a
linear or sublinear increase in DNA size.

8Credit is due Kenneth De Jong, who first conveyed the
general concept to me in conversation, though in the context
of code bloat in evolutionary computation.
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Figure 1: Change in length of the genome with in-
creasing generations. Shown are the standard pro-
posed values and four variations.

Some caveats. This explanation is not derived from obser-
vation of biological data: it is instead inspired by observation
of a similar phenomenon in an artificial system. This, I be-
lieve, is the likely reason why the theory has not been (to my
knowledge) considered by the biological literature despite its
obviousness and simplicity. But though code bloat and the
C-value Paradox bear a great many similarities, this could
be entirely coincidental. As such, it is possible that this
hypothesis will not stand the test of biological experiment,
and further, I am not qualified to make such an assessment.
Instead, I offer this hypothesis and argue for it based on its
novelty and straightforwardness.

The explanation is also not intended to replace the exist-
ing hypotheses. Transposable element evidence is support-
ive of the other hypotheses, and strand slippage seems to be
well supported. There are problems with these hypotheses,
but they are hardly ruled out by these difficulties. Instead,
I view this new hypothesis as a complement to the others.
It is certainly possible for the C-value Paradox to be caused
by a variety of growth factors.

S. AN ILLUSTRATIVE EXAMPLE

The example employs a basic generational EC algorithm
using a population of 100 individuals, run up to 1000 gener-
ations, using tournament selection of size 2 and no elitism.
Each individual in the population contains a single chromo-
some, which is represented by a real-valued half-open in-
terval [0,c¢) where ¢ is the length, or C-value, of the chro-
mosome. Along this interval lie “genes”, which are simply
half-open intervals [z, y) representing the gene region along
the chromosome, 0 < x < y < c¢. Therefore, y — x is the
(non-zero) length of the gene. Individuals’ chromosomes in
the first generation are each created with an initial length
of 1.0. For each chromosome, we flip a true/false coin of
probability 0.5 until it comes up false. The number of trues
is the number of genes added to that chromosome. Genes
are created with a random length uniformly chosen from 0
to 0.01 and a random location chosen uniformly from 0 to
1.0. Overlaps are not permitted. If a gene extends beyond
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Figure 2: Change in number of genes with increas-
ing generations. Shown are the standard proposed
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the boundary of the genome or straddles an existing gene,
it is replaced with another randomly-generated gene.

Breeding is asexual. During breeding an individual may
be subjected to some number of replication events (these
events being deletion, copying, and transposition). The
number of events is defined as before by counting the number
of flips of a true/false coin of probability 0.5 until it comes
up false. Events are formed in the following way. First, a
copy start-location is chosen at random in the chromosome
[0, ¢). Second, a copy end-location is chosen at random from
a normal distribution with the start-location as mean and
1.0 as the standard deviation. If the end-location is out-
side the bounds of the chromosome, a new start-location
and end-location are again chosen, and so on, until a valid
end-location is formed. We then copy into a buffer the inter-
val between the start- and end-locations, including all genes
falling in this interval but not straddling the start- and end-
locations.

Next we flip a coin of probability 0.5 to determine whether
or not to delete the copy-interval. If so, the interval is sliced
out of the chromosome, shortening it, and removing all genes
which fell in the interval or straddled its endpoints. Finally,
we flip a coin of probability 0.5 to determine whether or not
to reinsert the buffer into the chromosome. If so, we select
a random insertion location, delete from the chromosome
all genes which straddle that location, and then insert the
buffer at that location. Thus there is a 0.25 chance each
that the event may delete, copy, transpose, or do nothing.

There is a problematic sink condition when no selection is
involved: if a chromosome has zero genes, it cannot increase
in number of genes. To remedy this, if during deletion a
chromosome is emptied of genes, it must reinsert the buffer.
If all genes have been killed during insertion or deletion,
one new gene is added to the genome. Approximately half
of the chromosomes will start with zero genes in the first
generation, but very rapidly nearly all chromosomes have at
least one gene.

This is all a very crude arrangement. Among other things,
it presumes that the chromosome has a real-valued length; it
has completely preposterous values for typical gene length,



probability of replication events, and length of the sliced-
out region; it presumes that insertion points are completely
independent of deletion regions; and most problematically,
it assumes that the number of events is independent of the
length of the chromosome. This is freely admitted, as the
intention of the example is only to provide an illustration of
the general idea of how the hypothesis might operate, not a
proof of its correctness. For several of the decisions (such as
restriction of sliced-out region length and the independence
of event probability from the length of the chromosome) I
chose to err on the conservative side in the sense that those
decisions would be expected to help the hypothesis less.

We are left with the definition of fitness. This is not an
easy task: modeling fitness in a real biological system is
nontrivial. Here again I will use an extremely conservative
and crude measure of fitness for our example: an individ-
ual’s fitness is the number of genes, or some value M = 5,
whichever is smaller. Larger fitnesses are preferred. The
intuition here is that there is some fitness advantage to not
deleting genes, but it’s not strong: having many more than
than M genes conveys no advantage over having just a few
more than M genes.

5.1 Results

I performed five variations on this setup to gauge genome
growth. Each experiment ran for 50 independent trials using
the ECJ evolutionary computation system [14]. Figures 1
and 2 show the mean growth in genome length and in num-
ber of genes for the five variations respectively. Comparisons
among the experiments applied an ANOVA at p = 0.05 on
the log of the generation-1000 value of the number of genes
and of the genome lengths (logs were used to transform
strongly right-tailed results to a more normal distribution).

Standard. The initial experiment was performed using ex-
actly the parameters described earlier. Recall that the con-
servative fitness measure is simply the minimum of 5 and
the number of genes in the genome. Thus having a very
large number of genes should have a diminishing return in
fitness advantage, and so one would expect genome growth
to taper off rapidly. Number of genes does begin to taper,
but the average length increases almost linearly. By 1000
generations, these values achieved a surprisingly large mean
length of 68.32 and a mean number of genes of 24.18.

Changing the Cut Size. What happens when the average
cut size is changed? This affects the ratio of cut size to
typical gene length and also the ratio of cut size to typical
genome length. I modified the cut procedure to use a stan-
dard deviation of 2.0 for choosing cut sizes rather than a
standard deviation of 1.0. As can be seen, the result is a 3x
jump in number of genes and a 2x jump in length. Again,
growth in number of genes begins to taper, but growth in
length is very nearly linear. Due to large variances and
the transformation via logarithm, the difference in number
of genes was barely not statistically significant, but the in-
crease in length was significant. In experiments (not shown
here) involving standard deviations of 10 and 20, the number
of genes and genome length grew even further.

Random Selection. Was the result due to a random walk?
The number of genes and genome length both start out
small, and so a random walk would be expected to increase
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them slowly because they are both bounded below at 0. But
though the walk did head away from the lower bound, the
effect was rather small. With random selection, the mean
length only reached 12, and the mean number of genes only
reached 21. The difference with the “standard” experiment
was highly statistically significant.

Sensitivity to Deletion or Transposition. Deletion, Copy-
ing, and Transposition all had the same probability of oc-
currence. One would expect that less copying would re-
sult in slower growth. To test this, I changed the cut-
probability to 0.6, resulting in a major dampening of growth.
Growth occurred until at some point the forces of selec-
tion and additional deletion converged. Change in length
was not statistically significantly different from random se-
lection: but change in genes was statistically significantly
larger than random selection. The difference between this
and the “standard” experiment was statistically significant.

Initial Seeding. Because the coin-flip probability for creat-
ing genes was set to 0.5, many individuals would have very
few, or even 0, initial genes. This gave individuals with large
chromosomes a significant and perhaps unfair advantage, re-
sulting in a linear increase to many genes and a very long
genome. What if populations were seeded with many genes
to start with? I changed the probability of gene creation to
0.95, which raised the average number of initial genes to ap-
proximately 19 (from 5). Accordingly, I increased the initial
genome length to 3.5 to maintain approximately the same
gene density. Surprisingly, the result produced nearly iden-
tical change in length as the “standard” experiment, but
with twice as many genes (statistically significant).

Even with this very conservative measure of fitness, most
variations on the experiment produced longer genomes with
many more genes than random selection. Given the intuitive
nature of the hypothesis, this is hardly surprising, though it
is surprising that the genome length tends to grow seeming
without bound, even if the number of genes tends to taper
off. This growth is considerably higher than the natural
growth due to the random walk.

Of course, real biological fitness is different from this: no
organism has only 5 genes; and it is likely that destruc-
tion of any one of a large number of genes in the organism
could put it at selective disadvantage, if not kill it outright.
Sprouting multiple copies of the same gene would also help
defend against damage due to DNA deletion (shades of the
Protection Against Recombination hypothesis). Still, these
differences all would seem to point to even stronger genome
growth than in the conservative illustration put here.

6. CONCLUSIONS

This paper presented a new hypothesis explaining the phe-
nomenon of accumulation of non-coding DNA in genomes in
biology. This phenomenon forms a central question of the
so-called C-value Paradox. But the germ of the hypothesis
did not come from biological experiment but rather from
similar phenomena found in artificial genotype representa-
tions in evolutionary computation. Representations such as
genetic programming program trees, arbitrary-length lists
of machine-language instructions, rule sets, etc., can all suf-
fer from the scourge of code bloat, where the genome grows
without a reasonably justifying improvement in fitness.



The hypothesis suggests at the high level that one factor
in genome growth may be a selective bias towards events
which increase the amount of DNA rather than decrease
it. In one concrete example, selection may prefer DNA-
copying events over transposition events, and transposition
events over deletion events, because DNA copying is less
likely to destroy important gene material than transposi-
tion is, and transposition is in turn less likely to do so than
deletion is. Unlike the Junk DNA and Selfish DNA hypothe-
ses, this new hypothesis relies on natural selection itself as
the driving force, rather than resorting to drift or “selfish”
gene-level selection. And unlike the Nucleoskeletal and Nu-
cleotypic hypotheses, the new hypothesis provides an actual
functional explanation for growth.

I also presented a simple illustration of the process oc-
curring in simulation as a proof of concept. The simulation
example is admittedly extremely crude, but even with the
conservative assumptions it makes, the phenomenon is still
present. While the number of genes tends to reach an upper
limit (the predicted outcome of the simulation), the length
of the genome seems to grow linearly and without bound.

I do not suggest that this hypothesis should replace the
others: in fact I believe that much of the C-value Paradox
may rightly be explained by them. Instead I suggest this
hypothesis may describe a process which is at least partially
responsible for the phenomenon. The hypothesis has not
yet been tested against biological data: but the straightfor-
wardness and simplicity of the hypothesis recommend it for
consideration by the theoretical biology community. Evolu-
tionary computation steals a lot from biological theory. It’s
not often the field gets to give something back.
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