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1. INTRODUCTION
Evolutionary algorithms (EA) mimic nature’s mechanisms

of evolution and have proven as good problem solvers for
parameter optimization problems of the type f : Rn → R.
In dynamic optimization problems the function definition is
ascribed to the static function by

fd(x, t) := f(x− x∗t ) .

The optimum x∗t moves during the optimization process and
therefore depends on the time t.

In the case of dynamic environments the main task is not
to find one good solution. Instead, the algorithm must fol-
low the moving target with a small distance. For this pur-
pose many evolutionary algorithms consists of self-adaptive
mechanisms. This means, that they can adjust their pa-
rameter settings during the evolutionary run. In evolution
strategies (ES) [1] the adaptation is done on a set of strat-
egy parameters which influence the variation of the object
variables. One variant of ES consists of up to n mutation
step sizes. On the one hand, using a separate step size for
every single coordinate the adaptation of the algorithm to
the problem at hand is regarded to work better. On the
other hand, the higher the number of strategy parameters
the higher is the time needed for adaptation [2]. There-
fore, one must find the silver bullet between a fast and a
good adaptation by choosing an appropriate number of step
sizes.

Several options are lying between the two extremes of one
and n mutation step sizes. A frequent choice is to choose two
mutation step sizes. In this case, usually the first step size
is used for one coordinate and the second step size is used
for the others. Mostly, it is not known in advance which
of the n coordinates should be varied by the separate step
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size. This difficulty holds for static as well as for dynamic
environments.

In this study we take a first step to investigate the influ-
ence of the used number of different mutation step sizes in
dynamic environments. To make things easier we concen-
trate on the two extremes of one and n mutation step sizes.
Depending on the obtained results it is reserved to further
studies to investigate other choices.

2. EXPERIMENTAL INVESTIGATIONS
Our experimental investigations are conducted on three

test functions. Every test function is a representative of a
class of similar optimization problems. We use the

• well-known sphere model as a unimodal function,

• Ackley function as a multimodal function of moderate
difficulty and

• Rastrigin function as a representative of the class of
multimodal functions of high difficulty.

For the case of dynamic environments various types of dy-
namics are known. In our study we restrict the dynam-
ics to a continuously changing environment. More exact,
the moving frequency is ∆g = 1 meaning that the opti-
mum moves before every generation. We call this pseudo-
continuous movement. The optimum moves in one direction
with a constant severity. It is hoped that the algorithm
could adapt to the mean severity and follows the optimum
with a small distance.

For every test run the optimum is relocated by one of
three moving types:

I: The optimum moves only in one (the first) coordinate,
all other coordinates remain constant.

II: The optimum moves in all n coordinates. In every
coordinate the moving strength is equal.

III: Here, the optimum moves in all coordinates, too. But
the covered distance is different in every coordinate.
The covered distance in every coordinate increases from
the first coordinate to the last one.

The results for the different moving types are comparable
because the total severity s is always the same.

The experiments are conducted with a standard parame-
terization of a (15, 100)-ES. The first population is initial-
ized in the optimum. The initial mutation step sizes match
the expected distance of the moving optimum in the next
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step. Hence, no time is needed to reach the tracking phase
in which the ES follows the optimum within a certain mean
distance. Therefore, the used run time of 1000 generations
is sufficient for informative results.

To compare the results for different strategies and mov-
ing types we use the performance measure average best
function value (ABFV). Abridging, the ABFV is a ro-
bust measure for the average fitness of a mean run and is
described in more detail in [3]. In the case of minimization,
a smaller ABFV means a better behavior.

The first test function used here is the well-known sphere
model This is a simple function with one local optimum,
which is therefore also the global one. In the static case
the consideration of this function serves for measuring the
convergence velocity of an algorithm.

If the optimum moves following moving type I the usage
of one mutation step size seems to be a very inappropriate
choice, because the ES must adapt one step size to the mov-
ing severity whereas for the other step sizes a value near
zero is optimal. Hence, the results of such a strategy are
very poor compared to an ES with n mutation step sizes
(Fig. 1). Notice, that on the y-axis the square root of the
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Figure 1: ABFV of an (15, 100)-ES with nσ = {1, 10}
mutation step size/s on the dynamic 10-dimensional
sphere. The optimum moves every generation in one
coordinate (moving type I) with a total severity s.

ABFV is plotted. The linear run of the curve proofs that the
results perfectly depend quadratically on the moving sever-
ity s. The ES is able to follow the moving optimum for the
moving severities tested here. Random samples assists the
assumption that this assertion is true even for much higher
severities. But the distance may be too high.

If the optimum moves in all dimensions with an equal
severity only one step size is necessary. Because an ES with
n step sizes must adapt n strategy parameters instead of
only one, one could assume that it would perform worse
than an ES with one mutation step size. The experiments
revealed that the curves of both strategies are nearly the
same. This means that the ES with n step sizes behaves not
worse than the ES with only one step size.

Figure 2 shows the results for moving type III. Here, the
ES with n step sizes performs slightly better. But the differ-
ences are smaller than expected. One reason may be that in
this situation the trade off to adapt n step sizes to an value
significant greater than zero is so high that the benefits of
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Figure 2: ABFV of an (15, 100)-ES with nσ = {1, 10}
mutation step size/s on the dynamic 10-dimensional
sphere. The optimum moves every generation in all
coordinates (moving type III) with a total severity s.

the different step sizes is compensated. If this holds we ex-
pect that for much higher problem dimensions the situation
changes meaning that the ES with one step size performs
better. Indeed, this could be observed for n = 30 dimen-
sions.

From the point of characteristic of the curves the results
for the three moving types on the Rastrigin function are
comparable to the ones on the sphere function. For both ES
the ABFV increases quadratically with the moving severity.
Due to the problem hardness the ABFV for the Rastrigin
function are worse than the ones on the sphere. Again, for
moving type I the ES with n step sizes is superior to the
ES with only one step size. As it was already seen on the
sphere model, there exist no significant differences between
the results of the two ES variants when the optimum moves
following type II and III.

The overall behavior of the two ES variants on the Ackley
function is the same. In contrast to the two other functions
the ABFV does not depend quadratically on the moving
severity. Anew, it could be observed that the ES with n
mutation step sizes performs better than or as good as the
ES with one mutation step size.
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