
Multiple-Level Concatenated Coding in Embryonics:
A Dependability Analysis

Lucian Prodan Mihai Udrescu Mircea Vladutiu
Advanced Computing Systems and Architectures Laboratory

“Politehnica” University, Computer Department
2 V.Parvan Blvd, 300223 Timisoara TM, Romania

www.acsa.utt.ro

+40-722-664779
lprodan@cs.utt.ro

+40-723-154989
mudrescu@cs.utt.ro

+40-256-403258
mvlad@cs.utt.ro

ABSTRACT
Computing machines require the highest possible dependability in
order to provide accurate functionality in aggressive, critical
environments. For this purpose, the Embryonics (for embryonic
electronics) project explores Nature’s structural redundancy
mechanisms in digital electronics. It offers a hierarchically
reconfigurable framework [4][5][18], whose effectiveness was
assessed only for some particular cases [8]. Following the
introduction of specialized memory structures [10][13], this paper
proposes a more thorough reliability analysis, inspired by fault-
tolerant quantum computing theory. After adopting the accuracy
threshold measure as the main parameter for our qualitative
evaluation, the concepts and implementation details about
concatenated coding are presented. This technique, also inspired
from reliable quantum computing, seems particularly well suited
for the multiple-level architecture in Embryonics and allows
preserving arbitrary long fault-tolerant computation.

Categories and Subject Descriptors
B.8.1–Reliability, Testing, and Fault-Tolerance

General Terms
Algorithms, Reliability, Theory

Keywords
Embryonics, reliability, accuracy threshold, concatenated coding

1. INTRODUCTION
The technological era of our present days relies on computers as
some of its finest representatives. They offer a variety of balance
between sheer computational power and ability of running their
programs both accurately and relentlessly. While there is no

argument over the necessity of computer evolution, it is the
choice of directions that raises difficulties, because of its dual
purpose: some applications require speed above anything else,
others require highest possible reliability. It is a largely
acknowledged fact in engineering that enhancing certain
parameters usually affects others, unfortunately leading to a
common situation in which computers find themselves unable to
fully fulfill any of their tasks. The scientific rush for new
inspiration in both their hardware and software designs is
therefore well justified. Since their beginning, computers were
protagonists of the quest for performance; the resulting benefits
decisively led to both a scientific and industrial blossoming, the
pinnacle being the coming of the space exploration era. At this
stage, the critical mass accumulated in computing started to
encourage a shifting in performance priorities from brute
computing force (which seems to have reached somewhat
sufficient levels today) towards the advent of computers offering
superior dependability.
As stated by Avižienis et al., dependability can be defined as “the
ability of a system to avoid service failures that are more frequent
or more severe that is acceptable” [1]. It is therefore a synthetic
term that involves a list of attributes including reliability, fault
tolerance, availability, and others. In real world, a dependable
system would have to operate normally over long periods of time
before experiencing any fail (reliability, availability) and to
recover quickly from errors (fault tolerance). The term
“acceptable” has an essential meaning within the dependability’s
definition, setting the upper limits of the damage that can be
supported by the system while still remaining functional.
Dependable systems are crucial for applications that prohibit or
limit human interventions, such as long-term exposure to
aggressive (even hostile) environments.
The quest of building digital systems that offer superior
dependability can draw benefits from at least two distinct sources.
The first one is the oldest and most complex computing system,
which has been around since the dawn of times: Nature. Its living
elements continuously demonstrate a variety of solutions for
achieving robustness in an error-prone, macro-scale environment.
There are numerous similarities and differences between artificial,
digital computing systems and living beings; although such a
thorough analysis is beyond the scope of this paper, Nature has
the upper hand at least when it comes to design periods: if

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

941

engineers have a limited time for providing ever better computer
designs, Nature uses time frames that are impossible to attain. It is
likely, therefore, that the field of digital computing could benefit
by exploiting some of the mechanisms implemented by Nature
and adapting them to the electronic environment; a representative
attempt is the Embryonics project [4][5].
A second source of inspiration may be constituted by novel
computing paradigms, whose research already considered
dependability-raising techniques. Although pertaining to the
category of artificial systems, quantum computing represents an
emerging field in which successful calculus takes place in an
error-prone, micro-scale environment. Since frequent errors are
(as of yet) intrinsic to quantum systems, a number of techniques
were established in order to recover from their damaging effects.
However, though a variety of methodologies for estimating
dependability parameters have been proposed, they usually
remain localized to their originating field and rarely reach other
architectures. This paper proposes a unifying view by drawing
inspiration from both quantum and bio-inspired computing. We
argue upon the benefits drawn by importing a methodology of
estimating the computing accuracy threshold from quantum
computing to the Embryonics project. As a member of the
evolvable hardware family, the Embryonics platform is also
subject to evolution of its concepts. An updated reliability
analysis introduces the concatenated coding as a supplemental
dependability-raising technique.

2. Dependability in Quantum Computing
Quantum computation uses atomic-scale dynamics [15] and
therefore takes place in a microscopic environment. The
information storage unit in quantum computing is the quantum bit
or qubit, which is presented here in bra-ket notation [15]. Any
qubit ψ is a normalized vector in an H 2 Hilbert space, with 0

and 1 as the orthonormal basis being equivalent to the classical,

binary states: 0 10a aψ = + 1 . Parameters a0, a1∈ , called
quantum amplitudes, represent the square root of the associated
measurement probabilities for the superposed states 0 and 1

respectively, with 12
1

2
0 =+ aa . The qubits can be organized

in linear structures called quantum registers, encoding a
superposition of all possible states of a corresponding classical
register [7].
An essential promise of quantum computing is solving in
polynomial time problems that are otherwise known (in classical
computing) to have exponential solutions only. We will not go
into details, as the transition from classical computing to this new
paradigm is far from immediate and beyond the scope of this
paper. The new computational environment requires a new set of
problems to be solved first [16][17] before any benefits are to be
drawn. Dealing with dependability issues constitutes a priority in
quantum computing because of its innate erroneous nature. Faults
are native to the quantum environment, since a quantum state
cannot be fully isolated from the environment; the environment
continuously attempts to measure it, which in turn decays to one
of the basis (classical) states, a phenomenon called decoherence.
Although they can be classified into 3 categories (namely bit
flips, phase shifts and small amplitude errors), all faults can be
reduced to bit flips [7][9]. The errors affecting quantum

computing processes are considered to be uncorrelated, neither in
space, nor in time [9]. These error characteristics are also
common in classical computing, where soft fails are induced in
digital devices by aggressive radiations [2][10]. As a prerequisite
for building dependable computing systems, dealing with these
errors may successfully act as a liaison between the fields of
quantum and classical computing: the latter may benefit by
adapting readily available fault tolerant techniques from the
former, such as the accuracy threshold as the basic reliability
measure.
As quantum computing takes place in an error-injecting
environment, the frequency of errors imposes recovery
procedures (through redundant coding) for accurate computation.
However, the recovery process is by itself vulnerable to errors: as
information is restored through the use of additional, redundant
information, new errors may occur and affect data during the very
recovery process. In order to ensure a sufficient level of fault
tolerance, the following questions have to be raised: what is the
accuracy threshold that still warrants valid computation? Or, what
is the upper bound of the error frequency that would still allow a
successful recovery? These questions were answered in the
quantum context [9][19]; we will however revisit the proposed
qualitative assessment since we believe a similar reasoning may
also be applied to bio-inspired computing systems (Embryonics)
and fault-tolerant digital systems in general.
If the redundant coding allows the correction of t errors, then an
unrecoverable error occurs if at least t+1 errors occur before the
recovery process ends. Therefore, if the probability of an error is
ξ , then an unrecoverable error occurs with a probability of the

order 1tξ + [9][19]. Apparently, choosing a reasonably high value
for t can make this probability as small as desired; however, the
complexity of the code rises steeply with the value of t, with a
polynomial function of the form tb, eventually leading to the
situation when correcting the data takes so long that an
unrecoverable event occurrence becomes most likely. The block
error probability (BEP) of t+1 errors accumulating in a codeword
before the recovery is complete will then have the form [9]:

 () () 1tbBEP t t ξ
+

∼ (1)

Minimizing the BEP function after parameter t yields:

()

0
dBEP t

dt
= (2)

which results in:

1 111 1

ln ln 1 0 t bt te e
b t

ξ ξ
−−+ + + = ⇔ = (3)

Solving Equation 3 and assuming that t is large [9] gives:

11 bt e ξ

−−∼ (4)

Substituting this result into Equation 1, the minimum block error
probability MBEP then becomes of the form:

() ()11exp bMBEP e bξ ξ
−−−∼ (5)

The result for ()MBEP ξ is important with respect to estimating

942

the required accuracy for a reliable computation. If T is the time
interval without any unrecoverable error occurring, then:

() () () ()1
 exp bT MBEP Tξ ξ ξ ξ

−
⇒∼ ∼ (6)

From this equation, ξ can then be extracted under the form:

 (7) ()ln
b

Tξ
−

∼

For the situation when no codes are used at all, the accuracy
decreases as the computation becomes longer and therefore gives:

 (8) 1
NoCodes Tξ −∼

Equation 7 provides a qualitative assessment of the computational
accuracy threshold with error protecting codes that is clearly
superior to the case when no codes are used at all (Equation 8).
Due to the lack of standardization when dependability measures
are concerned [1], providing precise values is difficult. However,
criteria for a dependability comparison between two functionally
identical systems, before and after applying fault tolerance
measures, are established.

3. EMBRYONICS
Natural computation occurs at a macroscopic scale, the
environment being subject to dynamic changes, which affect
living beings by inducing a variety of wounds and illnesses
(faults). Though the natural computation is also error-prone,
successful healing and recovery are quite common: in a majority
of cases, natural systems continue to carry on their vital functions
while their overall functionality levels do not drop abruptly.
With the exception of unicellular organisms (bacteria),
multicellular organisms share some key features [4]:

− Multicellular organization divides the organism into a finite
number of cells, each accessing the same genetic program;

− Cellular division and differentiation allow any cell to
generate daughter cell(s) with certain features through
execution of part(s) of the genome.

A consequence is that each cell is "universal", as it contains the
whole of the organism’s genetic material, the genome. This
enables very flexible redundancy strategies, the living organisms
being capable of self-repair (healing) or self-replication (cloning).
These two properties, based on a multicellular tissue, are
essentially unique to the living world.
The capacity of healing is what gives natural systems their
robustness. Fault tolerance is hierarchical, being present at several
different levels: redundancy and self-repairing features can be
found at molecular level (the DNA contains redundancies and can
repair a variety of faults [11]), at the cellular level (cells can
replace each other when required) and even at higher levels (brain
hemispheres, for instance, are known to be able to transfer some
functionalities in case of damage). The success of Nature’s
solutions is proven by the rich variety of living beings, and,
considering the amounts of time spent for evolving them, they are
as close to perfection as possible. This alone makes for a strong
argument supporting bio-inspiration in digital computing, an idea
enounced in the 1950s by John von Neumann, who may also be
considered the pioneer of reliable systems [6].
The Embryonics (from embryonic electronics) project made its
debut as long-term research aimed at exploring the potential of

biologically-inspired mechanisms adapted into digital devices [5].
Rather than achieving a specific goal, the purpose is building
novel, massively parallel, computational systems, that implement
the key features shared by all multicellular organisms and would
also borrow the remarkable robustness present in biological
entities. As a bio-inspired digital platform, the Embryonics
architecture consists of a quasi-biological hierarchy based on four
levels of organization (Figure 1) [4][5]. The targeted applications
are those in which the failure frequency must be very low to be
“acceptable”.

Figure 1. Structural hierarchy in Embryonics [10]

The upmost level in Embryonics, similar to what is found in
nature, is the population level. One step down inside the hierarchy
the focus zooms to the population’s components. This is the
organismic level, and corresponds to individual entities in a
variety of functionalities and sizes. Each entity may, however, be
further decomposed into smaller, simpler parts, called cells, and
then, molecules. According to Embryonics, a biological organism
corresponds in the world of digital systems to a complete
computer, a biological cell is equivalent to a processor, and the
smallest part in biology, the molecule, may be seen as the
smallest, programmable element in digital electronics [4].
The hierarchical architecture in Embryonics enables the
implementation of a multi-level self-repairing strategy. All
molecules are structurally identical and constitute a layer of
reconfigurable logic, thus providing support for universal
computation. Any change in the functionality takes place by
altering the binary configuration, allowing for a flexible
redundancy strategy: each cell is a rectangular array of molecules,
involving both active and spare columns. Whenever a faulty
molecule is detected, a reconfiguration process is triggered at this
level: the closest spare molecule becomes active and takes over its
role, while the faulty molecule is bypassed. The reconfiguration
process is shown in Figure 2; inside a simple cell consisting of
3x3 molecules, molecule E is detected as being faulty and
replaced by its closest spare neighbor from its right (molecule H)
through signal re-routing. The reconfiguration at the molecular
level protects the cell’s normal behavior as long as spare
molecules are available for repair. When these become
unavailable, the entire cell is disabled (or “killed”), thus triggering
the reconfiguration process at the higher, cellular level [18].

943

Organisms are also rectangular structures, where cells coexist as
both active and spare columns Let us consider the organism
shown in Figure 3 (left), which contains 6 active cells and 2 spare
cells. After an error affected molecule E and triggered the
reconfiguration process (presented in Figure 2), cell C suffers
another error inside molecule H. This is a non-repairable error
(there are no more spare molecules left for reconfiguration); the
cell will “die” and the reconfiguration process at the cellular level
will transfer the affected column’s functionality by activating an
available spare column [18]. The result of the reconfiguration at
the cellular level is presented in Figure 3 (right).

Figure 2. Reconfiguration at the molecular level [18]

A central purpose of the Embryonics’ bio-inspired architecture is
to ensure that the basic bricks are suitable for building extremely
dependable machines. Because design flexibility also requires the
existence of memory structures (which we call macro-molecules),
a new operating mode was added at the molecular level: each
molecule may be used either as programmable logic (when in
logic mode), or as a storage element with data shifting features
(when in memory mode). In order to detect the presence of faults
and to provide an architecturally efficient compromise, both off-
line and on-line self-testing strategies were used for what was
initially the logic mode [13].

Figure 3. Reconfiguration at the cellular level [13]

However, the added flexibility could not be protected by
employing the same self-repairing mechanism used in case of the
logic mode; a strategy based on redundant coding was chosen in
order to ensure the integrity of storage data [10]. Therefore a fault
tolerant memory structure based on Hamming-type codes would
require the existence of additional memory structures, together
with corresponding logic. Typically, a complete cell (see Figure
4) includes 3 categories of molecules: logic molecules (operating
in logic mode and used for combinational logic implementation),
storage molecules (operating in memory mode and used for
micro-programmed machine implementation) and spare molecules
(used as provisions for the reconfiguration mechanisms) [10].
Previous research efforts have covered reliability analyses in case
of Embryonic cells made of logic operating molecules only [8].
The addition of the new, fault-tolerant macro-molecules changes
the Embryonics architecture and reflects upon its reliability. We
will provide such an analysis in order to introduce the accuracy

threshold qualitative assessment and argue upon the concepts and
implementation of concatenated coding in Embryonics.

Figure 4. A typical cell includes 3 types of molecules: logic
(white), memory (gray), and spares (user transparent) [18]

3.1 Estimating the Computation Accuracy
Threshold
As long as a macro-molecule is concerned, T represents the time
frame required for an error to be corrected, the worst case being a
fault occurrence placed furthest from its corresponding data
output port [10]. Such a situation occurs when the flipped data bit
is positioned as the first bit from a bottom row molecule, the
shifting path until it may be put into evidence and corrected being
of length F M⋅ , where F is the storage dimension of the memory
molecule and M is the vertical dimension of the macro-molecule
(or the number of rows); thus T F . M= ⋅

Of course, when no techniques ensuring fault tolerance are
implemented, T is proportional with the size of the data:

 (9) ()[] 11 T FM Nξ ξ
−− ⇔ −∼ ∼ s

As for parameter b (see Equation 1), it depends on the size of the
code as an expression of the gain in complexity with its
dimension. In our case the size of the data word to be protected
results as t N s= − bits, where N represents the horizontal
dimension of the macro-molecule (or the total number of
columns) and s represents the number of spare columns. A single
error correcting Hamming code requires a number of k additional
check bits, where k represents the smallest integer that satisfies
the following equation:

 ()⎡ ⎤2log 1k k N= + + − s

)

 (10)

Therefore, the total size of the codeword, including the redundant
bits results as , with the

Hamming matrix being of dimensions . As a result, any
fault detection/correction process needs at most a number of
computational steps that is given by the dimensions of the
Hamming matrix, which is of the order

(⎡ ⎤2
log 1t k N s k N s+ = − + + + −

2kk ×

()2logt ⋅ t . Parameter b
can be estimated as the power of t that approximates best the

944

number of necessary detection/correction steps:

 (11) ()2logbt c t t⋅ ⋅∼

where c is a constant. Because there are several algorithms
performing the detection/correction process, we will choose the
value covering the worst case scenario; following Equations 10
and 11 this value results as , the macro-molecular accuracy
in case of integrated fault tolerance measures being:

2b =

 (12) ()[] 2
ln FMξ

−
∼

Parameter N does not appear directly in Equation 12 since its
influence is quantified by the gain in the code’s complexity
defined by parameter b (N signifies the number of data bits that
are to be protected, which in turn imposes the number of
redundant code bits and the total length of the codeword).
Equations 9 and 12 show how the macro-molecular accuracy
scales for situations with and without error correction techniques.
Plots for the accuracy trends are given in Figure 5, showing
superior scaling when using error-correcting codes as opposed to
when no codes are used at all.
For a macro-molecule with no data error protection mechanisms,
the graph from Figure 5 (top) shows an accuracy decrease when
the overall storage capacity increases. This is consistent with the
fact that the probability of an occurring error is directly
proportional with the area of the macro-molecule. The situation
changes when ECC codes are used: if each row can recover from
a single error, the accuracy dependencies show an increased
efficiency; because parameters are not involved in an exhaustive
manner in the graph from Figure 5 (bottom), the final results for
the macro-molecular reliability will probably result as less
optimistic but, at the same time, superior to the case when no fault
tolerant measures are taken into account (Figure 5, top).

3.2 Reliability Analysis of a Complete Cell
When regarded at molecular scale, an entire cell consists of two
parts. First, there is the cellular membrane [18], which is
implemented by a small automaton that has no functional role
(that is, does not participate actively to any logical machine
implementation), its only purpose being that of specifying the
borders of a cell. The second, and most important, part of a cell
consists of its molecules, their functionality being dictated by the
mode they operate in. There are no restrictions over the
proportions in which molecules may operate in a certain mode,
being possible for a cell to be made either of molecules operating
in logic mode only, molecules operating in any of the memory
modes, or any mixture between logic and memory modes.
Estimating the reliability of a cell is therefore not a trivial task,
since it depends on the reliability of its components, which may
operate differently. Furthermore, any reliability analysis has to be
carried out separately for logic molecules and memory molecules,
due to their different strategies in case of incurring faults. On one
hand, a faulty logic molecule will be eliminated through
reconfiguration, a spare one being activated in order to take its
place, whereas a fault detected inside a macro-molecule does not
trigger any structural reconfiguration measures.

3.2.1 Reliability of a Macro-Molecule
We will start our analysis by considering a general macro-
molecule consisting of a memory array of M lines and N columns

(of which S are spares) of molecules, each storing F bits worth of
data and with no fault tolerance in place. Considering that λ is the
failure rate for a single flip-flop, the reliability of the entire
macro-molecule is then given by Equation 13:

 ()() FM N S t
MMolR t e λ− −= (13)

On the other hand, adding single fault tolerance capabilities to this
macro-molecule leads to the employment of k additional columns
or arrays of Mx1 memory molecules, required by storing
redundant data. Then the reliability function for a macro-
molecular row can be redefined as follows:

 () { }() { }() single RowR t Prob no FF fails t Prob FF fail t= +

 (14)
() ()

()

11

()

1

N S k t
Row

N S k tt
N S k

R t e

C e e

λ

λλ

− − +

− − + −−
− +

= +

+ −

which gives the overall reliability function:

 [] []() () ()
M FM

MMol Row Row
FR t R t R t= = (15)

2 4 6 8 10
0

0.005

0.01

0.015

0.02

F=8, N=4
F=16, N=6

Vertical dimension

M
ac

ro
-m

ol
ec

ul
ar

 a
cc

ur
ac

y
w

ith
 n

o
co

de
s

2 4 6 8 10
0.02

0.04

0.06

0.08

0.1

0.12

F=8
F=16

Vertical dimension

M
ac

ro
-m

ol
ec

ul
ar

 a
cc

ur
ac

y
w

ith
 c

od
es

Figure 5. Macro-molecular accuracy variation without and

with codes

3.2.2 Reliability of an Ensemble of Logic Molecules
The reliability analysis of embryonic structures made entirely by
logic molecules has been previously addressed [8]. We will,
however, reconsider such an analysis as the molecular internal

945

architecture has been changed with the addition of the memory
operating mode [10]. Let us consider that the logic molecules
make up a rectangular structure of M* lines and N* columns, of
which S* are spares. Parameters M*, N* and S* are generally
different than parameters M, N and S considered in subsection
3.2.1 since they characterize completely different entities.
Furthermore, the failure rate λ considered for the elementary
memory unit (the flip-flop) may prove to be different than the
failure rate λ* used in case of a logic molecule (which typically
employs other resources than memory), in which situation flip-
flops may either be used under different operating conditions or
not be used at all.
Such a logic structure was analyzed as being based on the k-out-
of-m reliability model, that is, the proper function of the system as
a whole is ensured as long as at least k units out of a total of m are
still operating normally [8]. In our case, considering that any
detected fault inside a molecule triggers a reconfiguration strategy
that leads to the “death” of the respective molecule, this means
that no more than S* errors (or faulty molecules) can be tolerated
in a single row. Therefore the reliability of a single row becomes:

 (16) ()
*

*
* *

*
* *

() 1

N i
N

i i t t
Row N

i N S

R t C e eλ λ
−

− −

= −

= −∑
Because the logic ensemble is built of M* rows, its overall
reliability can now be estimated as:

 []
*

() ()
M

LogicEnsemble RowR t R t= (17)

3.2.3 Reliability at the Cellular Level
Any cell within the Embryonics project is made of molecules
operating either in logic mode or in any of the memory modes. A
full reliability analysis at the cellular level requires estimating the
individual reliabilities of the two component structures, macro-
molecules and logic ensemble, which are given by Equations 15
and 17, respectively. All component structures are required to
perform properly in order to ensure the normal operations of the
cell; therefore the cell can be considered as a series system in
which each subsystem (be it macro-molecule or logic ensemble)
has to function if the system as a whole is to function [3].
Therefore the cellular reliability function may be derived as the
product of the reliability functions of its component subsystems as
follows:

 ()
1

() () ()
n

Cell LogicEnsemble MMol i
i

R t R t R t
=

= ∏ (18)

where n is the number of macro-molecules present in the cell.

3.2.4 Reliability at the Organismic Level
When more faults affect the internal structure of a cell than spare
resources are available for repairing, the cell becomes faulty and
needs replacement within the organism. In this situation a
reconfiguration process that will mark and eliminate the entire
column of cells (including the faulty cell) is activated. Ongoing
cellular processes from the marked column will be taken over by
a spare column by shifting them to the right. In order to illustrate
the reconfiguration process, Figure 3 (left) presents a cellular
structure affected by faults at this (cellular) level, through the C
cell. Since any fault detected at the cellular level triggers a
column-elimination strategy, Figure 3 (right) shows the
organism’s layout after the reconfiguration. Because cell C was

faulty, this means the entire column (which includes cells C and
D) will be disabled, its role being transferred to the closest spare
column to the right, which will become active.
The above considerations justify the reliability function of an
organism as also being based on the k-out-of-m model, where the
successful operation of the organism is ensured by the proper
function of at least k columns out of a total of m. If the organism
consists of Mc lines and Nc columns (including Sc spares), its
reliability is given by the fact that, at any moment, at least Nc-Sc
columns are operational:

 (19) () (1)
c

c

c

c c

N
N ii i i

Org N Column Column
i N S

R t C R R −

= −

= −∑

Since a column is fully operational if all Mc component cells are
functional, the reliability function for a column results as:

 () ()cM
Column CellR t R t= (20)

4. PUTTING IT ALL TOGETHER
At a first glance, the boundaries between bio-inspired computing
and quantum computing seem to discourage unveiling any
common ground between the two fields. Though technology may
be essentially different, they both share the same error model and
employ techniques for achieving fault tolerance from classic
computing. Moreover, the accuracy threshold ξ in the quantum
computing context and the failure rate λ in the bio-inspired
computing context are not dissimilar: while λ gives the error
probability, ξ gives the upper bound for the error probability so
as the computation is still valid. Therefore, we have:
 ()max λ ξ∼ (21)
As long as the error rate λ is below the accuracy threshold, valid
computations can be recovered from the damaging effects of
incurring errors. However, these estimations only cover the time
frame between an error occurrence and the end of the recovery
process, that is the period between data damage and data
restoration. While a reasonable accuracy can be obtained by using
error-correcting codes, the occurrence of errors becomes more
likely as the length of the computation increases [9]. Since
machines based on the Embryonics platform are intended to
operate over long periods of time (therefore involving long
computations), this primarily affects the memory structures in
Embryonics, since its logic structures already have protective
measures implemented [4].

5. FROM MULTIPLE-LEVEL SELF-
REPAIR TO MULTIPLE-LEVEL CODES
The fault tolerant quantum computation length limit can be
overcome by employing concatenated codes [9]; when viewed at
a higher resolution, each qubit is encoded by a block of qubits.
Such a hierarchical encoding appears to be particularly well
suited for the Embryonics project since its architecture offers an
intrinsic hierarchy, one level corresponding to a higher resolution
view of the next superior level. With information being encoded
at each level, Embryonics seems natively endowed for
implementing concatenated codes, the principles being presented
in Figure 6; a first idea of information coding in Embryonics for
error detection purposes was presented in [12].

946

Instead of storing binary words worth of data, fault-tolerant
macro-molecules can store binary words that would in turn
assemble to provide data for the next hierarchical level as an
encoded binary digit. At the cellular level, genetic information
may also be protected using similar Hamming codes as
implemented at the molecular level. If such is the case, and we
accept the error rate at the macro-molecular level as being ε ,

then an unrecoverable error will occur with a probability of 2ε .
A concatenated code in which each bit at the cellular level is
encoded by 7 bits at the molecular level stored by fault-tolerant
macro-molecules [9] will give the probability of an unrecoverable

error as
22 4ε ε= (assuming errors are of stochastic nature and

uncorrelated). This is where error coding and concatenation can
work together against error influences: while error coding lowers
the probability of an unrecoverable error, concatenation brings the
possibility of making it arbitrarily small by adding sufficient
levels of concatenation.

Figure 6. 2-level concatenated coding in Embryonics

In Figure 6 the following scenario is being considered: at the
molecular level, genetic information is divided and stored by
fault-tolerant macro-molecules using a (7,3) single error
correcting Hamming code [3]. Essentially, 4 bits worth of genetic
data (stored by the GENOME MEMORY in Figure 4) are encoded
into a 7-bit codeword, which makes up the elementary piece of
information at this level. The redundant check bits, stored by the
CONTROL MEMORY (CM0÷2 in Figure 4) are derived as follows
[14]:

 (22)

0 0 2

1 0 1 2

2 1 2

c u u u

c u u u

c u u u

= ⊕ ⊕

= ⊕ ⊕

= ⊕ ⊕

⎧
⎪
⎨
⎪⎩

3

3

3

2

3

where u0, u1, u2, and u3 are the 4 genetic data bits.
At the cellular level, each 7-bit code word from the molecular
level make up for a single higher-order bit of actual data, which
will be called Bit from this moment; its value can be derived, for
instance, as the parity value from Equation 23:

 (23) 0 1 2 3 0 1 2 , for 0 3i i i i i i i iU u u u u c c c i= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ÷

The same single error correcting, Hamming coding, from the
molecular level (see Equation 22) can now be applied to the 4
Bits U0÷3 in order to generate the redundant check Bits C0÷2:

 (24)

0 0 2

1 0 1

2 1 2

C U U U

C U U U

C U U U

= ⊕ ⊕

= ⊕ ⊕

= ⊕ ⊕

⎧
⎪
⎨
⎪
⎩

At this point, a structure that encodes genetic information in a
hierarchical manner by using concatenated codes has been
established. At the molecular level, the basic units (the memory
molecules) are assembled to build a fault tolerant macro-molecule
(FTMM), which is shown in Figure 7 (more details are given in
[10]). The FTMM computes the value of the corresponding Bit by
implementing Equation 23, while the ECL keeps the code word
accurate by implementing Equation 22.

Figure 7. The first level in concatenated coding is the FTMM

(Fault-Tolerant Macro-Molecule)
At the cellular level a similar structure is assembled (see Figure
8), with the basic units being the FTMMs. Each FTMM computes
a Bit, with 7 such Bits making up a (7,3) Hamming code. The
correction mechanism at the cellular level is identical to that
present at the molecular level [10]: whenever a single error affects
a 7-Bit word, the error is located and the corresponding value
inverted.
The check Bits provide vital information for recovering a code
word from a single error at the cellular level. Their value is
computed directly from the Bits that carry genetic information
(U0÷3) and do not come from actual data from the molecular level.
Therefore, there seems to be no real need for further encoding the
check Bits. However, if the advantages of concatenated codes are
to be preserved, the check Bits also require coding; if this process
implies the derivation of a new value (the code) from several
values known in advance (source data), in this case a reverse
process is required: the value of the encoded data is known in
advance at the cellular level (that is, the value of the check Bit)
and the values from the molecular level (source data) need to be
computed.
As it is implemented, the code word resulting from Equation 24 is
also able to recover from an error affecting a single Bit. An
unrecoverable situation occurs when a double error affects a code
word at the cellular level. However, this can only happen if two
sub-blocks fail simultaneously, which, in turn, means that each of
the two (7,3) Hamming code words from the molecular level have
to experience a double error. Because each Bit is encoded as
suggested by Equation 23 (shown in Figure 7), such a
concatenated code offers superior protection.
Considering Equation 14 and substituting with 7 the length of a
code word implemented by a macro-molecule with single fault-
tolerance, its reliability becomes:

947

 ()7 6
_ () 7 1t t

bit wordR t e e e tλ λ λ− −= + − − (25)

Because the length of the code word and the fault-tolerance are
similar at the cellular level, the reliability of the code word at this
level is:

7 7 6
_ _ _ _() () 7 1 () ()Bit word bit word bit word bit wordR t R t R t R t= + −⎡ ⎤⎣ ⎦ (26)

A direct comparison between Equations 25 and 26, which define
the reliability function for the basic information unit at each level,
confirms the superior protection offered by a second level of
concatenated coding.

Figure 8. The second level in concatenated coding is made-up

by Hamming-coded Bits

6. CONCLUSIONS
This paper identified a common problem in both bio-inspired and
quantum computing: attaining superior dependability in
environments inducing frequent faults. We have shown that the
accuracy threshold estimation (inspired from quantum computing)
can be linked to the reliability analysis of bio-inspired computing,
both techniques producing similar qualitative results. Because
applications targetted by both quantum computing and bio-
inspired computing (also Embryonics) share the same high
dependability requirements, the accuracy threshold estimation is
relevant for both fields. Therefore, concatenated coding also
represents a possible solution for Embryonics. Its hierarchical
architecture is structurally similar to that of concatenated coding,
thus facilitating the implementation presented in the paper.
Future work will focus on providing quantitative results by
employing simulated fault injection. An automated reliability
assessment could be used to validate a system architecture with
respect to the environmental conditions intended to operate in.

7. REFERENCES
[1] Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C. Basic

Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Transactions on Dependable and Secure
Computing, 1, 1 (Jan-Mar 2004), 11-33.

[2] Van de Goor, A.J. Testing Semiconductor Memories. Theory
and Practice. John Wiley and Sons, 1991.

[3] Lala, P.K. Fault Tolerance and Fault Testable Hardware
Design. Prentice Hall, 1985.

[4] Mange, D. and Tomassini, M. eds. Bio-Inspired Computing
Machines: Towards Novel Computational Architectures.

Presses Polytechniques et Universitaires Romandes,
Lausanne, Switzerland, 1998.

[5] Mange, D., Sipper, M., Stauffer, A., Tempesti, G. Toward
Robust Integrated Circuits: The Embryonics Approach. In
Proc. IEEE, vol. 88, No. 4, April 2000, pp. 516-541.

[6] Neumann, J. Von. Probabilistic Logic and the Synthesis of
Reliable Organisms from Unreliable Components. In C.E.
Shannon, J. McCarthy (eds.) Automata Studies, Annals of
Mathematical Studies 34, Princeton University Press, 1956,
43-98.

[7] Nielsen, M.A., Chuang, I.L. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[8] Ortega, C., Tyrrell, A. Reliability Analysis in Self-Repairing
Embryonic Systems. Proc. 1st NASA/DoD Workshop on
Evolvable Hardware, Pasadena CA, 1999, 120-128.

[9] Preskill, J. Fault Tolerant Quantum Computation. In H.K.
Lo, S. Popescu and T.P. Spiller, eds. Introduction to
Quantum Computation, World Scientific Publishing Co.,
1998.

[10] Prodan, L., Udrescu, M., Vladutiu, M. Self-Repairing
Embryonic Memory Arrays. Proc. IEEE NASA/DoD
Conference on Evolvable Hardware, Seattle WA, 2004, 130-
137.

[11] Prodan, L., Tempesti, G., Mange, D., and Stauffer, A.
Embryonics: Electronic Stem Cells. Proc. Artificial Life VIII,
The MIT Press, Cambridge MA, 2003, 101-105.

[12] Prodan, L., Tempesti, G., Mange, D., and Stauffer, A.
Embryonics: Artificial Cells Driven by Artificial DNA.
Proc. 4th International Conference on Evolvable Systems
(ICES2001), Tokyo, Japan, LNCS vol. 2210, Springer,
Berlin, 2001, 100-111.

[13] Prodan, L., Tempesti, G., Mange, D., and Stauffer, A.
Biology Meets Electronics: The Path to a Bio-Inspired
FPGA. In Proc. 3rd International Conference on Evolvable
Systems (ICES2000), Edinburgh, Scotland, LNCS 1801,
Springer, Berlin, 2000, 187-196.

[14] Rao, T.R.N., Fujiwara, E. Error-Control Coding for
Computer Systems. Prentice-Hall, 1989.

[15] Spector, L. Automatic Quantum Computer Programming: A
Genetic Programming Approach. Kluwer Academic
Publishers, Boston MA, 2004.

[16] Udrescu, M., Prodan, L., Vladutiu, M. Using HDLs for
describing quantum circuits: a framework for efficient
quantum algorithm simulation. Proc. 1st ACM Conference
on Computing Frontiers, Ischia, Italy, 2004, 96-110.

[17] Udrescu, M., Prodan, L., Vladutiu, M.. A New Perspective in
Simulating Quantum Circuits. Proc. GECCO, Chicago IL,
July 2003, 283-290.

[18] Tempesti, G. A Self-Repairing Multiplexer-Based FPGA
Inspired by Biological Processes. Ph.D. Thesis No. 1827,
Logic Systems Laboratory, The Swiss Federal Institute of
Technology, Lausanne, 1998.

[19] Zalka, C. Threshold Estimate for Fault Tolerant Quantum
Computation. arXiv:quant-ph/9612028, v2, 28 Jul. 1997.

948

	1. INTRODUCTION
	2. Dependability in Quantum Computing
	3. EMBRYONICS
	3.1 Estimating the Computation Accuracy Threshold
	3.2 Reliability Analysis of a Complete Cell
	3.2.1 Reliability of a Macro-Molecule
	3.2.2 Reliability of an Ensemble of Logic Molecules
	3.2.3 Reliability at the Cellular Level
	3.2.4 Reliability at the Organismic Level

	4. PUTTING IT ALL TOGETHER
	5. FROM MULTIPLE-LEVEL SELF-REPAIR TO MULTIPLE-LEVEL CODES
	6. CONCLUSIONS
	7. REFERENCES

