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ABSTRACT

In this paper, we proposed Fittest Individual Refinement
(FIR), a crossover based local search method for Differen-
tial Evolution (DE). The FIR scheme accelerates DE by
enhancing its search capability through exploration of the
neighborhood of the best solution in successive generations.
The proposed memetic version of DE (augmented by FIR) is
expected to obtain an acceptable solution with a lower num-
ber of evaluations particularly for higher dimensional func-
tions. Using two different implementations DEfirDE and
DEfirSPX we showed that proposed FIR increases the con-
vergence velocity of DE for well known benchmark functions
as well as improves the robustness of DE against variation of
population. Experiments using multimodal landscape gen-
erator showed our proposed algorithms consistently outper-
formed their parent algorithms. A performance comparison
with reported results of well known real coded memetic al-
gorithms is also presented.

Categories and Subject Descriptors: G.1.6 [Problem
Solving, Control Methods, and Search]: Heuristic methods

General Terms: Algorithms, Experimentation, Performance.

Keywords: Differential Evolution, Local Search, Memetic
Algorithm, Function Optimization, Landscape Generator.

1. INTRODUCTION

In last few decades FEvolutionary Algorithms (EAs) have
become very popular as function optimizers, because they
are easy to implement, and exhibit fair performance for a
wide range of functions. However, continued development
in the community has established that pure Genetic Algo-
rithms (GAs) are often not good enough for fine tuning
in complex search spaces. As well as new developments
have shown that hybridization with other strategies, such as
metaheuristics or local searches, can improve the efficiency
of search [2, 3]. GAs hybridized with local refinement pro-
cedures are known as Memetic Algorithms (MAs) [10, 11].
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MAs are population based heuristic search approaches for
optimization problems closely related to GAs [9]. One MA
model that has received attention uses crossover based lo-
cal search (XLS) procedure. This is particularly attractive
for real-coding since there are real-parameter crossover op-
erators that have a self-adaptive nature in that they can
generate offspring adaptively according to the distribution
of parents without any adaptive parameter [1]. This kind of
crossover operator shows promise for building effective XLS.

Differential Evolution (DE) is an effective, efficient and ro-
bust optimization method [14] capable of handling nonlinear
and multimodal objective functions. The beauty of DE is its
simple and compact structure which uses a stochastic direct
search approach and utilizes common concepts of EAs. Fur-
thermore DE uses few, easily chosen, parameters and works
surprisingly very reliably with excellent overall results over
a wide set of benchmark and real-world problems. Exper-
imental results have shown that DE has good convergence
properties and outperforms other well known EAs [14, 13].

Despite having a relatively high convergence performance
in comparison with the other EAs for nonlinear optimiza-
tion of multi-modal functions, DE’s convergence velocity is
still low for optimizing computationally most expensive ob-
jective functions, specially at higher dimensions. In this pa-
per, DE algorithm has been hybridized with XLS strategies
in an attempt to accelerate the convergence velocity of DE
so that better solutions can be obtained with higher speed
and increased robustness. The paper is organized as follows.
In the next section we briefly focus on several MA models
with their properties and review DE. In Section 3, our pro-
posed Fittest Individual Refinement (FIR) strategy and the
memetic version of DE is presented. Section 4 reports ex-
periments with benchmark functions. Simulations using a
landscape generator are presented in Section 5. Finally Sec-
tion 6 summarizes the findings of our work and concludes.

2. XLSBASED MA AND DE
2.1 XLSBased Memetic Algorithms (MAS)

MAs are evolutionary algorithms that apply a separate
Local Search (LS) process to refine individuals, e. g. to im-
prove their fitness. MAs are motivated to provide an effec-
tive global optimization method by taking advantage of both
the exploration abilities of GA and the exploitation abilities
of LS. MAs have evolved in mainly two groups depending on
the type of LS employed, namely Local Improvement Process
(LIP) and Crossover based LS (XLS) [8]. The first category
refines the solutions of each generation by applying efficient



LIPs e.g. hill-climbers. LIPs can be applied to every mem-
ber of population or with some specific probability and with
various replacement strategies.

The other group employs crossover operators for local re-
finement. A crossover operator is recombination operator
that produces offspring around the parents. For this reason,
it may be considered to be a move operator for LS strat-
egy. Moreover now there are many sophisticated crossover
operators that can generate offsprings adaptively according
to the distribution of parents without any adaptive parame-
ter. So they can be employed to create offspring distributed
densely around the parents, favoring local tuning. The most
common examples of XLS based MAs in literature are Mini-
mal Generation Gap (MGG) [4] and Generalized Generation
Gap (G3) [5]. Both of them employ same parents to spawn
multiple offsprings. The idea is to induce an LS on the
neighborhood of the parents involved in crossover. In this
way, this type of crossover operators constitute an XLS [8].

2.2 Differential Evolution (DE)

DE is a stochastic search algorithm, related to Fwvolu-
tionary Computation (EC), which exploits a population of
potential solutions, individuals, to probe the search space.
New individuals are generated by combination of randomly
chosen individuals from the population. Specifically, for
each individual z5, i = 1,--- , N , where G denotes the cur-
rent generation, a new individual yé;_His generated accord-
ing to the following equation

(1)

where j,k and [ are random integers such that j, k and
le{l,--- N} and i # j # k # | and F is called scaling factor
or amplification factor. This operation is similar to what is
commonly known as mutation to EC community. In order
to achieve higher diversity the mutated individual y& 41 i
mated with % using a crossover operation to generate the
offspring or trial individual $E+1~ The genes of xiGH are in-
herited from z&, and in+1 determined by a parameter called
crossover factor (C'F) which regulates how many consecu-
tive genes of the mutated individual on average are copied to
the offspring. Finally the offspring is evaluated and replaces
its parent & in next generation if and only if its fitness is
better than that of its parent. This is the selection process.

The above scheme is not the only variant of DE which
has proven to be useful. In order to distinguish among its
variants the notation DE/a/b/c is used, where 'a’ speci-
fies the vector to be mutated which can be random or the
best vector; ‘b’ is the number of difference vectors used and
'’ denotes the crossover scheme, binomial or exponential.
Using this notation the DE-strategy described above can
be denoted as DE/rand/1/exp. Other well known variants
are DE/best/1/exp, DE/rand/2/exp and DE /best/2/exp
which can be implemented by simply replacing equation (1)
by the equation (2), (3) and (4) respectively. Also each of
them has a mate based on binomial crossover.

Yo = o5 + Fas — o)

Yor1 =26 + Fal, — 26) (2)
Yoyr = xJG + F(ak —2l) + F(28 — 22) 3)
Yoyr = T2t 4 F(.T]G —zf) + F(alh — 2) 4)

where, 2% represents the best individual in current gener-

ation and m and ne {1,--- N} and i # j # k #1 # m # n.
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3. DEWITH CROSSOVER BASED LS

As mentioned earlier in Section 2.1, XLS are applied to
search the neighborhood of the parents locally to improve
the parents. We have applied the same strategy to the neigh-
borhood of a single individual. In other words we can say we
used XLS for exploring the neighborhood of an individual
by mating it repeatedly with different individuals. A simi-
lar model of XLS has been proposed by Yang and Kao [16]
where they search the neighborhood of each individual and
they have named it Family Competition (FC).

In our proposed scheme of DE with XLS the basic DE
(DE/rand/1/exp) is extended by applying some crossover
based local search (XLS) to search the neighborhood of the
best individual. That is in our XLS procedure the best
individual z%**becomes the family father and its family is
explored. This family father and other individual(s), ran-
domly chosen from the rest of the current population, are
mated to generate offspring. And this procedure is repeated
L times. Finally, L solutions (C1,C2,---,CL) are produced
and among these offsprings and family father 2%°* the in-
dividual with the best score replaces the family father in
next generation. We call it crossover based local search for
Fittest Individual Refinement (FIR). In this paper we have
augmented DE algorithm by applying FIR in the general
template of MA and call it DEFIR. The formal algorithm
for DEFIR can be described, as follows

1. Randomly Initialize the population Pg
2. REPEAT Until Search Converged

3. Pei1 = {¢}

4 REPEAT for each individual IePg
5 REPRODUCE I' from I

6. Pay1 = Poy1\J Best(I,T)

7 ENDREPEAT

8. Pg4+1 = FIR(Pa+1)

9. ENDREPEAT

The only structural difference between basic DE and DE-
FIR algorithm is application of FIR in each generation for
refining the best individual. Now for implementing FIR, cur-
rently we propose two schemes: DEfirDE and DEfirSPX.

In DEfirDE scheme, the offspring is generated in the same
way offspring generated in DE/rand/1/exp. In each gen-
eration G for the best individual 2% we select three indi-
viduals z7,, z¥ and z, such that j,kand ! {1,--- , N} and
best # j # k #1. Then a mutated individual y&,is gen-
erated using equation (1). Finally the offspring C' is gen-
erated by crossover operation between mutated individual
y2;+1 and the best individual m?f“. This procedure is re-
peated L times and then selection is performed.

On the other hand DEfirSPX scheme generates the off-
spring using simplezx crossover (SPX) operation [12]. To
review, SPX operator uses multi-parent, p parental vectors,
for recombination as follows

1. Choose p parents =& , i =1,--- ,p according to the
generational model used (G denotes the generation)
and calculate their center of mass O

1<
0=-> g (5)
pz’:l



2. Generate random numbers 7;
.
ri:uH—la(Z:la“‘ apil)

where u is a uniform random number ¢ [0, 1]

3. Calculate y; and C;

o

where ¢ is expansion rate, a control parameter of SPX.

0,
ri—1(yi—1 — yi + Ci—1),

(=1,
(i=1)
(’i:2,"',p)

(7)
(8)

¥))

4. Generate an offspring C'

C=yp+Cp 9)

In DEfirSPX scheme we select the best individual and other
(p — 1) random individuals from current generation. Then
SPX is applied on these p parents to generate offspring. Se-
lection is performed after repeating this procedure L times.

The justification for the design of DEFIR is as follows.
The basic strategy of EAs is many points, few neighbors, i.e.
they work by searching the single neighborhood of multiple
individuals in parallel over successive generations of popula-
tions. On the other hand the XLS based MAs work with few
points, many neighbors strategy, i.e. they work by searching
on a greater neighborhood of one individual in successive
generations. DE applies a more directive search in a greedy
way. Augmenting this FIR process in the structure of DE we
make the search more directive or greedier in a sense. With
the progress of the search by exploring the neighborhood of
the best individual we hope to find the global optimal at a
higher speed. This is similar to few points, many neighbors
strategy but a greedier one. Hence analogously it can be
called best point neighborhood strategy.

4. EXPERIMENTS

In our experiments, we investigate the performance of
the proposed DEfirDE and DEfirSPX algorithms comparing
with DE/rand/1/exp (DE) and DE /best/1/exp (DE(best))
algorithms. As mentioned in Section 3 DEfirDE and DEfir-
SPX algorithms are implemented by augmenting FIR with
DE/rand/1/exp. A brief performance comparison is also
performed by comparing the proposed algorithms with some
reported results of other Real Coded Genetic Algorithms
(RCGAs) and Real Coded Memetic Algorithms (RCMAs).

4.1 Test Suite

We use 5 test functions commonly used in the literature,
which includes Sphere model (fspn), Ackley function (fack),
Griewank’s function (fgrw), Generalized Rastrigin’s func-
tion (fras) and Generalilzed Rosenbrock’s function (fros).
All benchmarks chosen are minimization problems. The def-
initions of the functions are as follows

n
Fopn(@) = ai,
=1

— 100 < z; < 100; fspn = fspn(0,---,0) =0
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1 n
20 1) —20 -0.2,|— 2
+ exp(1) exp - E x?

=1

— exp (% Z cos(27rx¢)>
=1

— 32,768 < z; < 32.768; fack = fack(0,---,0)=0

fer(x):Z * —HCOS—‘+1
o 4000 o Vi
*600<ng600, férw:fer(O,“',O):O
fRas(Z) = 10n + Z 22— 10 cos(2mx;)
=1
—5102 <2 <5102 fhae = fras(0, - ,0) =0
n—1
fros(@) =Y (100(zi41 — x7)* + (1 — 24)°)
=1
_50§$1§5O, f}*?os:fROS(17"'71):O

fspn and fros are unimodal functions on the other hand
fack, farw and frqs are multimodal functions. f* denotes
the global minimum for the function.

4.2 Experimental Setup

In our first set of experiments we investigated the perfor-
mance of DE, DE(best), DEfirDE, DEfirSPX for the bench-
mark functions mentioned above. Targeting high dimen-
sional optimization, dimensions of the search spaces were
chosen as 50, 100 and 200. In order to make the performance
comparison fairer we used the same sets of initial random
populations for evaluating all algorithms. Each experiment
was repeated 30 times. Maximum number of evaluations
allowed for each algorithm was 500,000. For DEs we chose
most commonly used parameter setting and did not tune
to best parameter values for each problem. The value of
F was set to 0.5 and C'F was chosen 0.8. Based on some
preliminary experiments, for FIR algorithms, L = 25 when
population size P < 200 otherwise L = 50, was chosen. The
performance of DE variants is highly dependent on the cho-
sen population size. Therefore to investigate the sensitiv-
ity of the proposed algorithms to the change of population
size we experimented with three different population sizes
P =N, P=5N and P = 10N, where N is the dimension
of the problem. For simplex crossover operation number of
parents p = 3 was chosen.

We evaluated the algorithms by calculating average (AVG)
and standard deviation (SD) of their attained minimum fit-
ness value within the maximum number of allowed evalua-
tions. If the fitness value was less than 107° range of actual
optimum point, we assume solution is detected. The ex-
periments were performed on a computer with 1700 MHz
Intel Pentium processor and 512 MB of RAM in JBuilder X
environment.



The second set of experiments was conducted to compare
proposed algorithms with some other real coded GAs and
MAs proposed in the literature. Comparison was performed
with some of the results reported by Lozano et al. in their
work [8]. The performance of DE, DE(best), DEfirDE, DE-
firSPX were compared with CHC algorithm, Generalized
Generation Gap(G3 — 1), hybrid steady-state RCMA (SW-
100), Family Competition (FC) and RCMA with crossover
Hill Climbing (RCMA-XHC). For these experiments the setup

of parameters were as follows, N = 25, P =60, L = 15, F = 0.

CF = 0.8 and number of maximum evaluations 100, 000.

4.3 Results

Results of our first set of experiments are reported in Ta-
ble 1. For each function the results are arranged as AVG
+ SD (Number of Convergence). In all figures, the graphs
represent the mean of the best evaluation in 30 runs. Be-
cause of limited space, only some representative graphs for
different functions are presented.

As shown in Table 1, for (fsph, fack, farw and fras) func-
tions DEfirDE and DEfirSPX succeeded to reach the op-
timal value in all trials for some cases in which DE and/or
DE(best) failed in all trails or at least in some trials. Even in
cases, where DE or DE(best) could reach the optimal value
in all trails they took higher number of evaluations compared
to that needed for DEfirDE or/and DEfirSPX. This can be
verified looking at the graphs of Figure 1, 5, 6, 7 and 8. And
if we look at cases where none of the four schemes could
hit the global optimal, we find that the proposed DEfirDE
and DEfirSPX scheme attained AVGs which are significantly
better than that achieved by their parent algorithms (Figure
2, 3,4, 9 and 10). For example in Rosenbrock function none
of the above schemes were able to reach the optimal within
the maximum number of evaluations. But in all experiments
DEfirDE and/or DEfirSPX were able to reach the minimum
fitness values. Another observation from Table 1 is, with
the increase of dimension, the performance difference be-
tween proposed schemes and their parent schemes becomes
more significant. And this testifies our claim that the pro-
posed FIR schemes will speedup DE for higher dimensional
function optimization.

If we look at the graphs of Figure 1 to 10, then it is found
that in every case DEfirSPX started with the steepest con-
vergence curve but in some cases, with the progress of the
search it becomes flattened. This is because at the beginning
of the search SPX performs local searching using individu-
als randomly scattered in the search space and becomes very
successful in generating offspring with high fitness, but at
later generations it generates individuals densely around the
populations which slows down the effect of local search. On
the other hand DEfirDE strategy, makes use of the operators
of DE, starts slowly compared to DEfirSPX but continue to
improve the fitness to the end of the search and in later
generations approaches to DEfirSPX steadily (Fig 2, 3, 4, 9
and 10). Though for both multimodal (fGrw, fRas, fAck)
and unimodal (fsph, fres) functions DEfirDE and DEfir-
SPX exhibited superior performance, results show that they
were more effective to multimodal functions compared to
unimodal one.

Storn and Price suggested a larger population size (be-
tween 5N to 10N) for DE [14], although later many others
found DE’s performance good even with a smaller popula-
tion. To check the sensitivity of the proposed schemes to the
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Table 1: AVG + SD (Number of Convergence) of final results for fsyn, fack, fGrws fRres and fros

Func | N P DE DE(best) DEfirDE DEfirSPX
N 00 (30) 309.74+481.05 (0) 00 (30) 0-£0 (30)
50 | 5N 0-£0 (30) 0-£0 (30) 0-£0 (30) 00 (30)
10N 0.0535+0.0520 (0) 0.0027+0.0013 (0) 0.0026+0.0023 (0) 1.0E-4+4.75E-5 (0)
N | T.58E-6L3.755-6 (28) | 0.0046%£0.0247 (28) 0£0 (30) 00 (30)
fspn | 100 | 5N 59.926+16.574 (0) 30.242+5.93 (0) 11.731£5.0574 (0) 1.2614+0.4581 (0)
10N 2496.824246.55 (0) 1729.40+£172.28 (0) 358.574+108.12 (0) 104.986+£22.549 (0)
N 50.005+16.376 (0) 26.581+7.4714 (0) 17.678+9.483 (0) 0.8568+0.2563 (0)
200 | 5N 5.45E442605.73 (0) 4.84E4+1891.24 (0) 9056.0+1840.45 (0) 2782.32+335.69 (0)
10N 1.82E5+6785.18 (0) 1.74E5+6119.01 (0) 44090.5+6122.35 (0) 9850.45+1729.9 (0)
N 0 0 (30) 0.2621 * 0.5524 (1) 0+ 0 (30) 0+ 0 (30)
50 | 5N | 9.36E-6 £3.67E-6 (0) | 6.85E-6 + 6.06E-6 (0) | 2.28E-5 + 1.45E-5 (0) | 3.0E-6 + 1.07E-6 (0)
10N | 0.0104 +0.0015 (0) 0.0067 + 0.0015 (0) 0.0060 & 0.0015 (0) | 0.0019 + 4.32E-4 (0)
N | 1.02E-6 £1.6E7 (24) | 95E7 £ L.IE7 (20) | 1.2B-6 £ 6.07E-7 (22) 0 £0 (30)
face | 100 | 5N 1.6761+0.0819 (0) 1.2202+0.0965 (0) 0.5340+0.1101 (0) 0.3695+0.0734 (0)
10N | 7.7335+0.1584 (0) 6.7251+0.1373 (0) 3.75154+0.2773 (0) 3.4528+0.1797 (0)
N 0.5208+0.0870 (0) 0.4322 £0.0427 (0) 0.3123+0.0426 (0) 0.1589+0.0207 (0)
200 | 5N 15.917+0.1209 (0) 15.464+0.1205 (0) 9.2373+0.4785 (0) 6.6861+0.3286 (0)
10N 19.253+0.0698 (0) 19.138+0.0772 (0) 14.309+0.3706 (0) 9.411440.4581 (0)
N 0L0 (30 0.1651 * 0.2133 (0) 0 < 0 (30) 0 < 0 (30)
50 | 5N | 9.95E-7 + 4.3E-7 (29) 0+ 0 (30) 0+ 0 (30) 0+ 0 (30)
10N | 0.0053 + 0.010 (0) 0.0012 + 0.0028 (0) | 4.96E-4 + 6.68E-4 (0) | 5.27E-4 + 0.0013 (0)
N 0 %0 (30) 0 %0 (30) 0 %0 (30) 0 £ 0 (30)
farw | 100 | 5N 1.1316 + 0.0124 (0) 1.0530 + 0.0100 (0) 0.7725 £ 0.1008 (0) 0.5433 £+ 0.1331 (0)
10N 20.037 £+ 0.9614 (0) 13.068 + 0.8876 (0) 3.7439 £ 0.7651 (0) 2.2186 + 0.3010 (0)
N | 0.7687 £ 0.0768 (0) | 0.5707 £ 0.0651 (0) 0.5084 £ 0.1419 (0) 0.1631 £ 0.0314 (0)
200 | 5N | 490.29 + 21.225 (0) | 441.97 + 15.877 (0) 78.692 + 11.766 (0) 28.245 + 4.605 (0)
10N | 1657.93 £+ 47.142 (0) 1572.51 + 53.611 (0) 368.90 + 41.116 (0) 85.176 + 12.824 (0)
N 0L0 (30 0.61256 £ 1.1988(3) 0 < 0 (30) 0+ 0 (30)
50 | 5N 0+ 0 (30) 0+ 0 (30) 0+ 0 (30) 0+ 0 (30)
10N 0+ 0 (30) 0+ 0 (30) 0+ 0 (30) 0+ 0 (30)
N 0L 0(30) 0 £ 0(30) 0 %0 (30) 0 £ 0 (30)
Fras | 100 | 5N | 2.6384 + 07977 (0) | 0.7585 + 0.2524 (0) 0.1534 + 0.1240 (0) 0.0094 + 0.0068 (0)
10N 234.588+ 13.662 (0) 198.079 + 18.947 (0) 17.133 £ 7.958 (0) 27.0537 £ 20.889 (0)
N 0.4245 £+ 0.2905 (0) 0.2255 £+ 0.1051 (0) 0.1453 £+ 0.2771 (0) 0.0024 £+ 0.0011 (0)
200 | 5N 1878.61+ 60.298 (0) 1761.55 + 43.3824 (0) 352.93 + 46.11 (0) 369.88 + 136.87 (0)
10N 5471.35+ 239.67 (0) 5094.97 + 182.77 (0) 1193.83+ 145.477 (0) 859.03+ 99.76 (0)
N 79.8921 £ 102.611 (0) | 3.69E5 + 5.011E5 (0) 72.0242 + 47.1958 (0) 65.8951 + 37.8933 (0)
50 | 5N | 52.4066 %+ 19.9109 (0) | 54.5985 £ 25.6652 (0) 53.1894 + 26.1913 (0) 45.8367 + 10.2518 (0)
10N | 90.0213 + 33.8734 (0) 58.1931 £ 9.4289 (0) 66.9674 £+ 23.7196 (0) 52.0033 +13.6881 (0)
N 120.917 + 41.8753 (0) 178.465 £ 60.938 (0) 107.5604 £ 28.2529 (0) 99.1086 + 18.5735 (0)
Fros | 100 | 5N | 1231216+ 3081.44 (0) | 7463.633 + 2631.92 (0) | 2923.108 + 1521.085 (0) | 732.85 + 142.22 (0)
10N | 3.165E6 + 6.052E5 (0) | 1.798E6 + 3.304E5 (0) | 2.822E5 + 3.012E5 (0) | 16621.32 + 6400.43 (0)
N 9370.17 £ 3671.11 (0) | 6725.48 £ 1915.38 (0) 5302.79 £ 2363.74 (0) 996.69 £ 128.483 (0)
200 | 5N 4.22E8 + 3.04ET7 (0) 3.54E8 + 3.54E7 (0) 2.39E7 + 6.379E6 (0) 1.19E6+ 4.10E5 (0)
10N 3.29E9 + 2.12E8 (0) 3.12E9 + 1.65E8 (0) 3.48E8 +1.75E8 (0) 1.21E7 + 4.73E6 (0)

Table 2: Comparison with other RCMA models
Algorithm Griewank | Rastrigin | Rosenbrock
CHC 6.5E-003 | 1.6E4001 | 1.9E4-001
G3-1 5.1E-001 | 7.4E4001 | 2.8E4-001
SW-100 2.7E-002 | 7.6E4-000 | 1.0E4-001
FC 3.5E-004 | 5.5E4000 | 2.3E4-001
RCMA-XHC | 1.3E-002 | 1.4E+4000 | 2.2E+000
DE 5.1E-003 | 1.5E-007 3.4E+002
DE(best) 8.4E-002 | 6.0E-001 3.0E4-004
DEfirDE 2.1E-003 | 1.8E-015 2.9E+4-002
DEfirSPX 7.6E-005 | 3.9E-012 6.1E+001
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Figure 7: Rastrigin Function N = 50 P = 250
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Figure 9: Rosenbrock Function N = 100 P = 500
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Figure 10: Rosenbrock Function N = 100 P = 1000

variation of population size we experimented with three dif-
ferent population sizes (P=N, P=5N and P=10N) for each
dimension and function and the results are reported in Table
1. In our study we found that for high dimensional optimiza-
tion if the maximum number of evaluation is fixed then the
choice of population size may be crucial for the performance
of DE and DE(best). For example in most cases when we
found convergence for all 30 trails with a smaller population
size (say P=N), we failed to reach even a single convergence
with much high population size (say P = 10N). In our study
we found that DE works better with a population size near
to dimension of the problem (in our case P=N), but in some
cases performance of DE(best) is better with a medium sized
population (in our case P=5N). Since DEfirDE and DEfir-
SPX is just an augmentation of basic DE with XLS, it is
expected that their sensitivity to the variation of popula-
tion will be more or less similar to basic DE and the results
of Table 1 show that. However we found the performance of
DEfirDE and DEfirSPX less susceptible to population vari-
ation compared to that of DE or DE(best) (Table 1). So it
can be stated that use of FIR has increased the robustness
of DE against the variation of population size.

Table 2 compares the result of our second set of experi-
ments with results reported in [8]. Here the values are the
average (over 30 runs) of the best fitness function found at
the end of each run. In case of Griewank and Rastrigin func-
tion the proposed DEfirDE and DEfirSPX was better than
other algorithms. In case of Rosenbrock function other RC-
MASs’ performances were better than that of all DE based
algorithms, but the results of DEfirDE and DEfirSPX are
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comparable to that of other RCMAs. One further point
about this second sets of experiments, the performances of
DEfirDE and DEfirSPX were better than that of DE and
DE(best) for all test functions just like in the other set of
experiments.

5. EXPERIMENT WITH LANDSCAPE GEN-
ERATOR

According to No Free Lunch (NFL) theorems [15] no algo-
rithm is superior to others when their average performance
over all possible problems is considered. Therefore any gen-
eral comment made about the performance of any algorithm
based on results of experiments with a couple of test prob-
lems is similar to general conclusion made about a very large
data set depending on a few samples; and such conclusion
is often incomplete and misleading. In fact, algorithms op-
erate on landscapes, not on problems, so the information
about how a algorithm interacts with landscapes and the
relationship between its performance and properties of land-
scapes will be more useful to predict its performance on
other problems. Therefore it is more useful to use landscape
generators, which do not take into account any specific prob-
lem rather landscapes on which an algorithm will conduct
searching, as the ground for algorithms evaluation and test-
ing. Another advantage of using landscape generators is that
they can remove the opportunity to hand-tune algorithms
to a specific problem and, by allowing a large number of
problem instances to be randomly generated, the predictive
power of the simulation results can be also increased [7].

Therefore we compared our proposed algorithms with their
parent algorithms evaluating them using a Continuous Mul-
timodal Landscape Generator [6]. The original landscape
generator was for binary spaces, proposed in [7]. The idea
is to randomly choose P N-bit individuals as peaks in the
search space and each of these peaks have equal fitness value
1.0. Then the fitness of a string is decided by its Hamming
distance to the closest peak. The continuous multimodal
landscape generator is a logical extension of it for continuous
space. The original model creates P peaks on N dimensions
uniformly distributed through the interval [0.0,1.0]. Indi-
viduals are evaluated using the following fitness function:
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i.e. all the variables are restricted to the interval [0.0, 1.0]
with a logistic transformation included as sigmoid. We have
adapted the fitness function in our experiments excluding
the sigmoid function as follows

{

We have chosen the peaks in a wider interval [-50, 50] and
allow the variables to range in this interval. So the fitness
value is decided by the distance between the individual to be
evaluated and the closest peak. The purpose of the search
is to minimize the fitness value and the minimum value is
zero. In our experiment we employed this multimodality
generator to investigate the effects of number of peaks (PP)
and problem dimension (N) on the performance of four al-
gorithms, DE, DE(best), DEfirDE and DEfirSPX. We stud-
ied four scenarios (N = 100,P = 100), (N = 100, = 200),
(N =200,P =100) and (N = 200,P = 200). For each set-
ting of N and P, 20 random problems were generated on each
of which each algorithm was run once. Like other experi-
ments, all algorithms were evaluated using same random ini-
tial population. The parameter settings were P = N, L = 25
and the rest of the parameters were just as before. Each al-
gorithm was allowed to evolve for maximum 500,000 times.

As expected, all of the algorithms interacted with time,
problem dimension and problem difficulty. However their
relative performance for each set of (N, P) was more or less
consistent. Because of space, results of two experiments are
shown in Figure 11 and 12. Although performance of all the
algorithms faded with time, starting with a steeper curve
DEfirDE and DEfirSPX attain better fitness compared to
DE and DEbest. The most notable impact on the perfor-
mance of the algorithm was the dimensionality of the prob-
lem. With increasing number of peaks the performance of
all algorithms deteriorated except for DEfirDE which was
slightly improved. Moreover the overall performance of DE-
firDE was better than DEfirSPX, which is just opposite what
observed in other experiments. The possible reason for sub-
standard performance of DEfirSPX is use of crossover oper-
ation for local search. Earlier, it has been hypothesized that
crossover may hurt GA performance on problems with mul-
tiple peaks [8]. However, the results of these experiments
were helpful to establish our claim about use of FIR strat-
egy for improving the performance of DE at least for highly
multimodal problems.
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6. DISCUSSIONSAND CONCLUSIONS

It is well known that DE is a greedy search heuristics
with remarkable numerical optimization capability. But the
convergence rate of DE for expensive and high dimensional
objective functions is not high enough for real world situa-
tions. Therefore in an attempt to speed up DE we proposed
a memetic version of DE using crossover based local search
(XLS). In our proposed XLS which we call FIR, the search
space around the best individual is greedily explored in each
generation. To the best of our knowledge for the first time
this type of XLS is being applied to any EA especially to
DE.

As DE applies deterministic selection and lacks mutation
operator it tries to estimate the features of the search space
iteratively based on the distribution of its individuals. There
are EAs available in literature which exhibit very good per-
formance without mutation like MGG. The reason behind
their success is the use of XLLS whose performance depends
largely on the capability of the crossover operator used. Mo-
tivated by their methodology we proposed the FIR strat-
egy for DE algorithm. For our FIR two implementations
were proposed DEfirDE and DEfirSPX where the first uses
DE like recombination and the later uses simplex crossover
(SPX) for searching the neighborhood of the best solution.
In our experiments comparing with two well known variants
of DE we found both of the schemes speed up DE for a set
of well known test functions specially for higher dimensions.
Between DEfirDE and DEfirSPX the overall performance
of later was much better. This is expected because SPX,
a much sophisticated crossover operator that works well on
functions having multimodality and/or epsitasis [12], will
search the neighborhood of best solution more effectively
than recombination process of DE. Therefore our DEfirSPX
scheme was more successful to accelerate the search and im-
prove performance. Experimenting with various population
sizes we also found that use of FIR also increases the robust-
ness of DE against the variation of population size. In real
world problems often a trade off has to be made between
algorithm’s convergence rate and robustness. Consequently
the proposed versions of DE can be used for a higher conver-
gence rate without sacrificing the search precision or search
robustness in real world problems. Comparison with other
RCMA'’s also proves the proposed schemes worthy.

Experimenting with random problems, yielded by a multi-
modal landscape generator, we verified the superiority of the
proposed schemes over their parent algorithms. We found
that in highly multimodal environment performance of DE-
firDE was better than DEfirSPX. This is because of the
adverse effect of increasing multimodality on the simplex
crossover operator which is used for local search. Neverthe-
less our experiments showed that both FIR schemes accel-
erate the basic DE algorithm in highly multimodal environ-
ments.

Though in the current work we only experimented with
two variants of DE, we expect that it will also able to accel-
erate all other variants of DE in a similar way. Some future
experiment will try to verify this anticipation as well as judge
the potency of FIR scheme for other EAs. Implementation
of FIR with other elegant crossover operations like UNDX,
some theoretical analysis of the FIR and exploring FIR on
real life problems are also to be tried.
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