
Automated Assembly as Situated Development:

Using Artificial Ontogenies to Evolve Buildable 3-D Objects

John Rieffel
DEMO Lab, Brandeis University

Waltham, MA

jrieffel@cs.brandeis.edu

Jordan Pollack
DEMO Lab, Brandeis University

Waltham, MA

pollack@cs.brandeis.edu

ABSTRACT
Artificial Ontogenies, which are inspired by biological devel-
opment, have been used to automatically generate a wide ar-
ray of novel objects, some of which have recently been man-
ufactured in the real world. The majority of these evolved
designs have been evaluated in simulation as completed ob-
jects, with no attention paid to how, or even if, they can be
realistically built. As a consequence, significant human ef-
fort is required to transfer the designs to the real world. One
way to reduce human involvement in this regard is to evolve
how to build rather than what to build, by using prescrip-
tive rather than descriptive representations. In the context
of Artificial Ontogenies, this requires what we call Situated
Development, in which an object’s development occurs in
the same environment as its final evaluation. Not only does
this produce sufficient information on how to build evolved
designs, but it also ensures that only buildable designs are
evolved. In this paper we explore the consequences of Situ-
ated Development, and demonstrate how it can be incorpo-
rated into Artificial Ontogenies in order to generate buildable
objects, which can be sequentially assembled in a realistic
3-D physics environment.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Design, Algorithms

Keywords
Artificial Ontogeny, Evolutionary Design, Assembly, Fabri-
cation

1. INTRODUCTION
Evolutionary Algorithms have been used to automatically

design a wide array of novel and interesting structures and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

robots. Few of these evolved designs, however, have been
transferred to reality. One significant obstacle in this regard
is the amount of human effort required to interpret designs
evolved in simulation and then assemble their physical coun-
terparts in the real world. This effort is often compounded
by the fact that the evolved designs only specified the ap-
pearance of the final object, and carried no information on
how (or even if) the object could be realistically assembled.
To reduce human involvement, it would be better if Evo-
lutionary Design evolved how to build rather than simply
what to build, and if it only produced designs where were
known to be buildable. Essential to this, as we discuss, are
two things: first is to use prescriptive, rather than descrip-
tive representations of designed objects, and second is to
simulate and evaluate objects as they are assembled, not
just when they are completed.

A simple form of prescriptive representation is the as-
sembly plan - a linear set of sequential instructions to an
assembly mechanism. The process by which a manufactur-
ing mechanism transforms an assembly plan into a physical
structure can bear considerable similarity to the biological
processes of development and growth. Artificial Ontogenies,
a form of Evolutionary Design inspired by such biological
mechanisms, are therefore a natural choice for exploring is-
sues of assembly and buildability 1.

In fact, Artificial Ontogenies have been used to produce
quite a few recent evolved designs [16]. However, the ma-
jority of these systems only used Artificial Ontogenies as an
intermediate step towards producing a final, descriptive rep-
resentation, and took the actual process of development for
granted - either by treating it as an instantaneous process
which could produce a final structure in toto, or by allowing
development occur in utero, that is, in some environment
that was considerably simpler than the one in which the
completed design was evaluated.

An alternative is what we call Situated Development - Ar-
tificial Ontogenies in which an object’s development occurs
in the same environment that the fully grown phenotype is
evaluated in. The best recent example of Situated Devel-
opment is Bongard’s Gene-Regulatory Networks [1], which
slowly “grew” a robotic morphology piece-by-piece in a real-
istic physics environment. Bongard used biological growth
as a model, whereas our interest is in a development pro-
cess which is more analogous to mechanical assembly. Our
conjecture is that evolving prescriptive representations in a

1Since we are using biological growth as a metaphor for
physical assembly, we use the terms development and as-
sembly interchangeably.

99

Situated Development environment should ensure that suffi-
cient assembly information is acquired, and that only build-
able designs are generated.

In this paper we briefly review some difficulties encoun-
tered in transferring evolved designs into the real world. We
then discuss buildability, and explore the consequences of
adding it as a constraint to evolutionary design. Finally we
demonstrate the use of Situated Development within Artifi-
cial Ontogenies to generate objects which are buildable in a
realistic 3-D environment, and show how Situated Develop-
ment can lead to novel and unanticipated modes of assembly.

1.1 Evolutionary Design
Using Evolutionary Algorithms to automatically generate

novel designs dates back at least as far as Karl Sims’ seminal
work on virtual creatures [17]. Since then, Evolutionary
Design has generated numerous novel and interesting objects
including LEGO structures [5], robots [14] [11] [19] , virtual
plants [18] and antennas for satellites [12].

Thanks in large part to automated manufacturing sys-
tems and rapid prototyping machines, evolved designs are
increasingly being produced in the physical world. The two
most notable examples perhaps being Pollack et al ’s evolved
robots, and Lohn et al ’s [12] evolved antenna, which is
due to be launched into space aboard a Low Earth Orbit
satellite. Despite being designed with minimal human in-
put, all of these evolved designs required significant human
effort and insight to transfer them from simulation to the
real world. Many of Funes’ LEGO structures [5], for in-
stance, had to be assembled by hand on a horizontal sur-
face, and then slowly tilted into the vertical plane. Lohn
et al ’s evolved antennas, had to be carefully hand-bent and
soldered into shape, with extra care taken to preserve the
precise measurements specified by the design. (An earlier
paper [16] provides a more comprehensive review of evolved
designs which have been built in the real world).

In most cases, the need for human involvement in transfer-
ring these designs was due to the fact that the final evolved
design was purely descriptive. Descriptive representations,
such as blueprints, specify what an object should look like,
but contain no information about how to actually build it,
just as looking at a photograph of a meal provides little
insight into how to prepare it. Consequently, human in-
volvement is required in figuring out how to assemble an
object matching the evolved description. Thus, while the
evolution of descriptive representations removes human ef-
fort from the design task, it fails to remove human effort
from the assembly task - and may in fact increase it.

While the process of determining an assembly sequence for
a given blueprint may come readily to humans, it is much
harder to solve computationally. In fact, there is an en-
tire field of engineering, Assembly Sequence Planning, which
studies this very task. The complexity of Assembly Sequence
Planning has been well analyzed, and it has been proven to
be NP-complete in the general case [10]. Computational
approaches to sequence planning for a given object usually
involve the much easier inverse problem of disassembly plan-
ning - that is, exploring all the ways of removing subcom-
ponents of a complete object one at a time [6]. Doing so,
however, makes the critical assumption that every stage of
assembly is both reversible and symmetric [6]. Anyone who
has taken apart a home appliance and then put it back to-
gether, only to be left with a solitary remaining mysterious

screw, knows that assembly and disassembly are rarely sym-
metric, reversible processes in the real world.

The closest that the field of Evolutionary Design has come
to the goal of automating both the design and the assembly
of evolved objects is Hornby’s evolved tables [7], in which
his voxel-based representations were converted automati-
cally converted into a CAD format which was then inter-
preted by a rapid-prototyping machine, which in turn printed
the object out of plastic.

This approach doesn’t entirely eliminate human involve-
ment though: human effort was necessary to create the
means by which the rapid prototyping machine could trans-
late a CAD file into a series of commands to the printer.
Moreover if the machine were tilted at a slight angle, the
same series of commands would produce a drastically dif-
ferent result, and a new CAD-to-printer translation system
would be needed. We are interested, therefore, in more dy-
namic and adaptive methods.

This raises the question: rather than rely on some brit-
tle translation between descriptive representation and as-
sembly process, why not evolve rapid prototyping machine
instructions directly? Such evolution of prescriptive repre-
sentations allows us to design the process of assembly rather
than the subject of assembly. One simple type of prescrip-
tive representation is the assembly plan. Unlike blueprints,
assembly plans provide step-by-step instructions on how to
build something. In its simplest form, an assembly plan is
a sequential, ballistic 2 , set of instructions to an assembly
mechanism, which when executed results in the construction
of an object. Hornby’s tables and robots [8] for instance,
were generated by a linear set of instructions to a LOGO-like
turtle which “drew” OpenGL voxels in 3-D space.

1.2 Situated Development
We would like to suggest that producing representations

which can describe buildable objects, that is, objects pro-
ducible by an actual physical assembly process, requires that
objects be subject to physics over the entire course of their
assembly. When this occurs in the context of an Artificial
Ontogeny, we call this process Situated Development.

In his PhD thesis, which produced some of the first real
world objects based on evolved designs [5], Funes lists build-
ability as a necessary property of evolved structures. In his
words, buildability means that “results should be convert-
ible from a simulation to a real object”. We would like to
elaborate on that definition, in the context of automated
assembly and Artificial Ontogenies. In that sense, to be
buildable, an object should be able to be produced by a
situated, sequential, and stable process. We describe those
terms as follows:

• Situatedness: Development never occurs in complete
isolation. While developmental environments (e.g. a
mammalian womb or chip manufacturing clean room)
may serve to attenuate harsh external environmental
factors, they are always subject to the stochastic na-
ture of physics and chemistry. In the extreme case,
an object is built in the exact same environment in
which it is evaluated when complete. In such fully sit-
uated development, each stage of assembly is subject
to the same physics and environment as the final ob-

2That is to say, without any ability to test intermediate
results, or alter their behavior mid-assembly

100

ject. One of the few examples of situated growth in
evolutionary design is Bongard’s work [1], which uses
a Gene-Regulatory Network-based Artificial Ontogeny
to grow agents starting from a single structural unit.

• Sequentiality : Unlike voxel-based designs, which can
simply appear in toto, the assembly of physical ob-
jects is always, on some level, of a sequential nature.
Even the most hierarchical and parallel construction
technique cannot ignore the issue of precedence. For
instance, placement of later structural components is
predicated on the prior placement of some supporting
structure. Hornby’s tables [8], for instance, were spec-
ified by a linear set of instructions to a “turtle” which
drew OpenGL voxels.

• Stability : Since every stage of assembly is subject to
physics, components can interact and interfere with
one another when they are placed. Issues of balance,
torque, and material strength therefore come into play.
Often, mechanisms such as scaffolding must be uti-
lized to ensure that fragile components of the system
remain stable and stationary. Our recent work [15],
for instance, explored how assembly plans could reli-
ably build stable structures in a stochastic assembly
environment.

When combined, Situatedness, Sequentiality, and Stabil-
ity lead to the primary difficulty in imposing buildability as
a constraint: sensitivity to error. Since the result of every
action in a sequential assembly is predicated on the result of
the previous action, any error in the early stages of assembly
can have a compounding effect upon the subsequent stages.

Recent research has begun to explore how simulating as-
sembly can affect Evolutionary Design. In particular, in
earlier work of ours [15, 16] we used a two-dimensional de-
velopment environment, with a“tetris”-like physics to evolve
assembly plans capable of building a predefined goal arch.
Their evolved assembly plans were able to reliably build
the goal arch despite a stochastic noise model, which could
knock over structural elements. The key to the assembly
plans’ robustness was the use of what they called ontogenic
scaffolding - the placement of intermediate structural ele-
ments that were removed once the structure was completed.

While a useful proof of concept, our earlier work relied
upon an extremely simple discrete grid-based environment.
For instance, once a structural element was placed it re-
mained “glued” in place, and couldn’t be perturbed or knocked
over by later actions of the assembly. In this work, we are in-
terested in a richer and more realistic simulation of assembly,
in which a continuous environment allows for complex inter-
actions between structural elements (involving mass, torque,
momentum, etc), which play a larger role in development.

2. A FRAMEWORK FOR EVOLVING
BUILDABLE 3-D OBJECTS

Our Situated Development environment is based upon
the Open Dynamics Engine (ODE) 3 the widely used open-
source physics engine, which provides high-performance sim-
ulations of 3D rigid body dynamics.

Assembly is performed by a LOGO-like turtle, acting as
a print head, capable of movement in the X-Z plane, and of

3
www.ode.org

Table 2: Parameterized Assembly Instructions
Instruction Parameters
(M)ove +2, +1, -1, -2
(Rotate +90, -90, +180
(P)ut Brick (a)head, to (r)ight, to (left), (b)ehind
(P)ut Scaffolding (a)head, to (r)ight, to (left), (b)ehind
(T)ake Brick (none)

depositing 2x1x1 bricks in the environment. When strung
into a sequence, commands to the turtle (move, rotate, put
brick, take brick) form an assembly plan. Commands which
would cause the turtle to move outside the target area, or
place a brick where a brick already exists, are ignored. The
speed of an ODE simulation is heavily influenced by the
number of objects being simulated. Consequently, the max-
imum number of objects placed by any assembly plan was
limited to 25.

Since our recent work demonstrated the ability of sim-
ilar systems to “discover” scaffolding implicitly during the
course of evolution [15, 16], we chose to allow for the explicit
placement of scaffolding. The turtle is capable of placing two
kinds of bricks: permanent ones (shown as black in the ani-
mation frames), and temporary ones(shown in gray), which
are removed once the assembly is completed. This aspect is
based on a feature of modern rapid prototyping machines,
such as a current model made by Stratasys 4, which can
lay thin water-soluble support structures that are dissolved
once manufacture is complete.

Our simulated assembly falls into three stages (Table 1).
In the first, the turtle interprets the assembly plan, moving
and placing bricks as directed. In this stage, each brick is
a separate component in the environment, subject to grav-
ity and interactions (such as collisions) with other objects.
Once assembly is complete and the structure is stable, the
scaffolding is removed and adjacent bricks are glued together
(but not to the floor). Finally, once the scaffolding is gone,
the final structure is allowed to come to a rest before being
evaluated.

2.1 Experiments
The goal of our experiments was to explore the effects of

Situated Development on Evolutionary Design. The geno-
types of our Evolutionary Algorithm were assembly plans,
consisting of a sequential set of parameterized instructions
to the situated development system described above in Sec-
tion 2. Table 2 lists the instructions used.

Note that the instructions above only allow for ballistic
assembly - that is, there are no commands which test in-
termediate results (such as probing for the existence of a
brick at a particular location), nor any ability to branch or
otherwise alter behavior predicated on such a test. While
intermediate tests may ultimately be necessary for the as-
sembly of more complex structures, they have associated
costs, in terms of sensors needed to make tests, in terms
of complexity of genetic representation (e.g. trees instead
of linear sequences), and also in terms of the larger genetic
search space caused by an increased number of alleles.

The metaphor of development blurs the traditional GA’s
notion of phenotype. Instead of appearing in toto, the phe-
notype emerges over the course of development. (Viswanathan

4
www.stratasys.com

101

Assembly Glue Bricks,Melt Scaffolding Settle

Table 1: Assembly has three stages. In the first (Frames 1 and 2), both permanent bricks (shown in black)
and temporary bricks (grey) are placed. In the second, adjacent permanent bricks are glued together, and
scaffolding is removed (Frame 3). Finally, the remaining structure settles (Frames 4 and 5).

Figure 1: Illustration of Fitness Functions. The
structure itself is black, and they gray region is
considered “shaded”. In the first fitness function,
which measures the “coverage” by summing maxi-
mum column heights, both the black and grey areas
of the figure are counted. The second fitness func-
tion, “shading”, only measures the gray area.

refers to this as an ontogenic trajectory [20])In this work,
since our assembly plans are ballistic, and no feedback is pro-
vided over the course of assembly, we only treat the final,
stable structure as the phenotype, and use this for fitness
measurements.

We ran two sets of experiments with related fitness func-
tions. In each case the resulting 3-D structure was “down-
sampled” into a 2-D bitmap by sampling the central 10β ×

10β region (where β is the width of a brick) in the X-Z plane,
at a resolution of α = 0.2β.

As Figure 1 illustrates, the first fitness function measures
the “fill” of the sample region by calculating the sum of the
maximum height along each column of the bitmap, regard-
less of whether a square is occupied by a brick or empty.
The maximum possible value was therefore 2500α2.

The second fitness function operates similarly, but only
measures the total open volume beneath a structure, thereby
encouraging structures which both maximize height and max-
imize the number of empty spaces beneath the structure.
Specifically, every region (x,z) of the bitmap which is empty
and underneath a filled region, was considered shaded area.
The optimal value for this fitness function is 2000α2:the top
row of the target area is 10 squares (5 bricks) wide and 9
squares high (which requires at least 5 bricks to reach, since
every brick must take up 2 squares) high. This second fit-
ness function is similar to those used for Funes’ LEGO trees
[5]. Figure 1 illustrates this both of these fitness functions.

In each case, one of the fitness function above was cou-
pled with assembly plan length, and accumulated mass, as
deterrents to bloat [4], as objectives for Multi-Objective
Optimization (MOO) [3].

• Length Of Assembly Plan (minimizing)

• Mass of Objects in Environment (minimizing)

• Shaded Area or Sum of Heights (maximizing)

In each experiment, the initial population was created
with 30 random genotypes, each with a length between 8
and 40 instructions. After each generation was evaluated,
the N non-dominated individuals (i.e. pareto front) were
selected as parents, and N new individuals generated us-
ing two-point crossover (60%) and mutation (2% per locus).
In order to limit population sizes, duplicate genotypes were
rejected, and duplicate objective values were limited using
crowding [13], with a limit of 3 individuals per bin.

2.2 Results
Tables 3 and 4 contain several representative results of

our experiments. More detailed and colorful images, as well
as full animations of assembly, are available on the author’s
web page.

Table 3 shows representative structures and fitness val-
ues generated by the “fill” fitness function, both before and
after scaffolding has been removed. Evolved structures fill
the target area well, but tend to have a large number of ex-
traneous structural appendages (consider the “foot” on the
right hand side of the bottom-most figure). Since the struc-
tures are rewarded for the amount of the target area that
they fill, regardless of whether the space is occupied or not,
there is little incentive to remove extraneous bricks or to use
temporary scaffolding bricks.

Table 4 similarly shows representative structures gen-
erated by the “shadow” fitness function. Unlike the earlier
structures generated by the “fill” fitness function, structures
are only rewarded for empty volume, and so there is consid-
erably more incentive to remove extraneous bricks and to use
temporary scaffolding elements. These structures therefore
tend to be sparser and more “open” in the middle.

Figure 2 contains frames captured from the assembly of
the tree in the top row of Table 4. After building the cen-
tral trunk, the assembly plan lays both scaffolding and per-
manent bricks for the rightmost branch, and then repeats
the process on the left hand side. The scaffolding for the
branches not only ensure that the branch bricks remain
in place, but also keeps the structure stable as subsequent
bricks are placed. Once all of the permanent bricks are glued
together, and the scaffolding is removed, the tree is balanced
and remains stable.

Figure 3 shows the assembly of the arch in the third row
of Table 4. The assembly of the arch relies on a single central
column of scaffolding, as opposed to the multiple columns
required in the other arches shown. This single central col-

102

umn is largely effective because it widens to two brick widths
along the top, and is therefore able to support two bricks
above it. The lower leftwards “spur” on the central scaffold-
ing column plays two important roles: first, by being hori-
zontal it allows the column to be nine bricks high, leaving
room for a tenth row of permanent bricks at the maximum
allowable height (the two upper inwards spurs on the legs of
the structure serve a similar function.) Secondly, it counter-
weights the upper horizontal scaffolding bricks, which allow
the column to support two permanent bricks.

3. DISCUSSION
As suggested by the sample of structures in Tables 3

and 4, the majority of evolved assembly plans tend to build
arches, even though a “T” shape of equivalent height would
shade more area. We conjecture that the relative lack of
tree shapes is due to the fact that they are less stable than
arches when perturbed. Consider the tree-shape in the first
row of Table 4: any addition or removal of a brick along
the top edge would unbalance the structure, and cause it to
topple once scaffolding was removed. The arch in the bot-
tom row, by contrast, would remain stable with any added
bricks along the top surface, and would probably remain
stable if any of the middle bricks of the top surface were re-
moved (the two sides would fall together and meet, produc-
ing a structure which shades only slightly less area). Since
they are more stable in the face of genotypic perturbation
, arches therefore represent a larger and more robust (al-
though slightly less optimal) evolutionary target than Ts.

3.1 Meta Assembly
Figures 4 and 5 show an interesting phenomenon which

arises as a consequence of situated development.
In Figure 4, although the initial structure(Frame 1) is

not particularly fit (with a fitness value of 10%), after the
assembly phase, once scaffolding is removed and the remain-
ing structure is glued together, the larger section is no longer
stable, and topples sideways (Frames 2 and 3), ultimately
coming to a rest balanced on the smaller section (Frame 4).
This resulting “T” shape is much more fit (a fitness of 49%),
and is produced more efficiently this way than by using scaf-
folding to prop the cross-piece of the “T” into place.

Figure 5 shows a similar result. In this case, the original
structure has a fitness of 22%. Once the permanent bricks
are glued and scaffolding is removed, the larger structure on
the left tips to the side, knocking over the smaller structures
in the process. Once it comes to a rest, the smaller struc-
tures help prop it into this cantilevered shape with a fitness
of 52%.

These are both examples of meta assembly : capable only
of placing bricks one at a time, and so lacking any formal
ability for modular assembly of larger components, the as-
sembly plans, evolved in the context of Situated Assembly,
have nonetheless “discovered” how to construct two separate
modules, and then join them in the final phase of assembly.
We conjecture that in each case the process used in creating
the final structure is more efficient than a purely sequential
process evolved in a simpler environment without gravity or
momentum. It is interesting to observe that complex en-
vironments, rather than simply complicating and inhibiting
sequential assembly, can instead lead to such novel mecha-
nisms.

4. CONCLUSION AND FUTURE WORK
We have demonstrated a means by which Evolutionary

Design can more easily be transferred from simulation to
reality. Our process is contingent on two things: first, the
evolution of how to build rather than simply what to build,
and secondly the simulation of an object’s entire assembly.
In the context of Artificial Ontogenies, this occurs when
prescriptive representations, such as assembly plans, are de-
veloped in a situated development environment.

The situated development environment used in this work
was significantly more rich and complex than earlier related
work. Interactions due to gravity, momentum, and colli-
sions between bodies all complicate the process of assembly.
Nonetheless, evolved assembly plans, executed in a sequen-
tial manner in this environment were able to build an array
of interesting objects. In fact, rather than inhibiting sequen-
tial assembly, such a complex environment allows for evolu-
tion to discover mechanisms such as meta assembly, which
can produce structures in a more efficient and interesting
manner than might be expected.

In this paper, we’ve been more interested in how prescrip-
tive representations are interpreted - that is, via Situated
Development, and have focused less on how they are gen-
erated. The sequential ballistic assembly plans we use are
simple to understand and to interpret, but are not partic-
ularly evolvable. For instance, the closer a mutation is to
the beginning of the assembly plan, the larger its effect on
the result is likely to be (imagine inserting a simple “turn
right” instruction at the beginning of any of the evolved as-
sembly plans above, as opposed to inserting it near the end).
Nor are linear encodings ideal for generating symmetrical or
modular shapes. Therefore, although linear assembly plans
are a suitable final representation, they may not be the best
intermediate representation.

One way to improve upon this is to use some form of gen-
erative representation, such as the L-systems. Both Hornby
[8] and Toussaint [18] have demonstrated the advantages of
L-systems in Evolutionary Design tasks. Using such systems
as intermediate representations which then generate linear
assembly plans would mitigate the mutational brittleness
that simple linear encodings exhibit.

Tying the evolution of prescriptive representations to real-
world automated manufacture can lead to the full automa-
tion of both simulated design and physical assembly. Several
hurdles remain, of course, particularly in bridging the “re-
ality gap” [9] between simulation and reality. Two obvious
approaches exist: the first is to take a cue from Watson et
al ’s work on Embodied Evolution [21], and remove the no-
tion of simulation entirely - by fully embedding both design
and assembly in the real world. The costs of this, in terms
of material and time, can be prohibitive however. The al-
ternative is to allow evolution to modify and fine-tune our
simulation environment to better reflect a physical assem-
bly system. Bongard and Lipson’s recent work in adaptive
simulation [2], which uses a genetic algorithm to co-evolve
a robotic controller and the parameters of an ODE-based
simulation to compensate for unanticipated morphological
changes in the robot, offers the best approach.

Ultimately, our work aims to autonomously generate robotic
designs which can then be automatically assembled by an
autonomous manufacturing system, all without any human
involvement. Imagine, for instance, being able to send 100
identical rover-manufacturing plants to Mars, each of them

103

Figure 2: Frames from the assembly of the tree in Table 4.

Figure 3: Assembly of the arch in the fourth column of Table 4, evolved with the “shadow” fitness function.

Figure 4: Meta Assembly : an interesting consequence of Situated Development. Once the assembly is
complete (Frame 1), scaffolding is removed and remaining bricks glued together (Frame 2), the larger section
topples onto the smaller section, balancing there to form a T. This resulting shape has significantly higher
fitness (49%) than the original structure (10%)(Frame 1)

Figure 5: Another Example of Meta Assembly. The original structure has a fitness of only 22%. Once
scaffolding is removed and remaining bricks glued, the leftmost portion tumbles rightward, and the smaller
segments below are knocked sideways, ultimately serving to prop up the larger shape. This final structure
has a fitness of 52%)

104

landing in a different environment - some in craters, some in
sandy deserts, etc. And yet each one, once it has surveyed
its landing site, could then co-adapt its rover designs and its
manufacturing process to local conditions, in order to create
mobile rovers closely adapted to its specific environment.

5. REFERENCES
[1] J. Bongard and R. Pfeifer. Morpho-functional

Machines: The New Species (Designing Embodied
Intelligence), chapter Evolving complete agents using
artificial ontogeny, pages 237–258. Springer-Verlag,
Berlin, 2003.

[2] J. C. Bongard and H. Lipson. Once More Unto the
Breach: Automated Tuning of Robot Simulation using
an Inverse Evolutionary Algorithm. In Proceedings of
the Ninth Int. Conference on Artificial Life (ALIFE
IX), pages 57–62, 2004.

[3] C. A. C. Coello. An updated survey of evolutionary
multiobjective optimization techniques: State of the
art and future trends. In P. J. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, and
A. Zalzala, editors, Proceedings of the Congress on
Evolutionary Computation, volume 1, pages 3–13,
Mayflower Hotel, Washington D.C., USA, 6-9 1999.
IEEE Press.

[4] E. D. De Jong, R. A. Watson, and J. B. Pollack.
Reducing bloat and promoting diversity using
multi-objective methods. In L. Spector, E. Goodman,
A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen,
M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke,
editors, Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-2001, pages 11–18,
San Francisco, CA, 2001. Morgan Kaufmann
Publishers.

[5] P. Funes. Evolution of Complexity in Real-World
Domains. PhD thesis, Brandeis University, Dept. of
Computer Science, Boston, MA, USA, 2001.

[6] M. Goldwasser, , J. Latombe, and R. Motwani.
Complexity measures for assembly sequences. In Proc.
IEEE Int. Conf. on Robotics and Automation, pages
1581–1587, Minneapolis, MN, Apr. 1996.

[7] G. S. Hornby. Generative Representations for
Evolutionary Design Automation. PhD thesis,
Brandeis University, Dept. of Computer Science,
Boston, MA, USA, Feb. 2003.

[8] G. S. Hornby and J. B. Pollack. The advantages of
generative grammatical encodings for physical design.
In Proceedings of the 2001 Congress on Evolutionary
Computation CEC2001, pages 600–607, COEX, World
Trade Center, 159 Samseong-dong, Gangnam-gu,
Seoul, Korea, 27-30 2001. IEEE Press.

[9] N. Jakobi, P. Husbands, and I. Harvey. Noise and the
reality gap: The use of simulation in evolutionary
robotics. In Proc. of the Third European Conference
on Artificial Life (ECAL’95), pages 704–720,
Granada, Spain, 1995.

[10] L. E. Kavraki, J.-C. Latombe, and R. H. Wilson. On
the complexity of assembly partitioning. Information
Processing Letters, 48(5):229–235, 1993.

[11] M. Komosiński and S. Ulatowski. Framsticks: Towards
a simulation of a nature-like world, creatures and
evolution. In D. Floreano, J.-D. Nicoud, and

F. Mondada, editors, Proceedings of the 5th European
Conference on Advances in Artificial Life (ECAL-99),
volume 1674 of LNAI, pages 261–265, Berlin,
Sept. 13–17 1999. Springer.

[12] J. D. Lohn, G. S. Hornby, and D. S. Linden. An
Evolved Antenna for Deployment on NASA’s Space
Technology 5 Mission. In U.-M. O’Reilly, R. L. Riolo,
T. Yu, and B. Worzel, editors, Genetic Programming
Theory and Practice II. Kluwer, in press.

[13] S. W. Mahfoud. Niching methods for genetic
algorithms. PhD thesis, University of Illinois at
Urbana-Champaign, Urbana, IL, USA, 1995.

[14] J. B. Pollack, H. Lipson, G. Hornby, and P. Funes.
Three generations of automatically designed robots.
Artifial Life, 7(3):215–223, 2001.

[15] J. Rieffel and J. Pollack. The Emergence of Ontogenic
Scaffolding in a Stochastic Development Environment.
In K. D. et al., editor, Genetic and Evolutionary
Computation–GECCO 2004. Proceedings of the
Genetic and Evolutionary Computation Conference.
Part I, pages 804–815, Seattle, Washington, USA,
June 2004. Springer-Verlag, Lecture Notes in
Computer Science Vol. 3102.

[16] J. Rieffel and J. B. Pollack. Artificial ontogenies for
real world design and assembly. In M. B. et al., editor,
Ninth International Conference on the Simulation and
Synthesis of Living Systems (ALIFE9) Workshop:
Self-Organization and Development in Artificial and
Natural Systems (SODANS), pages 37–41. MIT Press,
2004.

[17] K. Sims. Evolving virtual creatures. In Proceedings of
the 21st annual conference on Computer graphics and
interactive techniques, pages 15–22. ACM Press, 1994.

[18] M. Toussaint. Demonstrating the evolution of complex
genetic representations: An evolution of artificial
plants. In Proceedings of the 2003 Genetic and
Evolutionary Computation Conference (GECCO
2003). Springer-Verlag, New York, 2003.

[19] J. Ventrella. Explorations in the emergence of
morphology and locomotion behavior in animated
characters. In R. A. Brooks and P. Maes, editors,
Proceedings of the 4th International Workshop on the
Synthesis and Simulation of Living Systems
ArtificialLifeIV , pages 436–441, Cambridge, MA,
USA, July 1994. MIT Press.

[20] S. Viswanathan and J. B. Pollack. Towards an
evolutionary-developmental approach for real-world
substrates. In M. B. et al., editor, Ninth International
Conference on the Simulation and Synthesis of Living
Systems (ALIFE9), pages 45–41. MIT Press, 2004.

[21] R. A. Watson, S. G. Ficici, and J. B. Pollack.
Embodied evolution: Embodying an evolutionary
algorithm in a population of robots. In P. J. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, and
A. Zalzala, editors, Proceedings of the Congress on
Evolutionary Computation, volume 1, pages 335–342,
Mayflower Hotel, Washington D.C., USA, 6-9 1999.
IEEE Press.

105

Table 3: Structures generated with the “filled” fit-
ness function. The images on the left show the struc-
tures before the scaffolding (grey bricks) has been
removed, and the images on the right show the final
stable structure with the scaffolding removed.

Fill With Scaffolding Final

89%

93%

95%

Table 4: Structures Evolved for “shadow” fitness.
The left-hand images show the structure before scaf-
folding (grey) is removed, and the right-hand images
show the final, stable structure.

Fill With Scaffolding Final

84%

80%

90%

95%

106

