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Abstract. When developing an artificial neural net model of a 
system, the most efficient way to obtain training and test data is 
often to generate a large set of random inputs and run them 
through the model.   But that is not the only way to do it.  We 
demonstrate the use of genetic algorithm-generated data as a 
source of input-output pairs for training an artificial neural 
network.  If the genetic algorithm and neural network are being 
developed together – for example, to provide system identification 
in support of a control system – this data is readily available and 
performs as well as a random search of the state space.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization

General Terms
Algorithms
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1. Introduction
A seldom-noted fact about the operation of a genetic algorithm 
(GA) is that the majority of the information generated by the GA 
is discarded as part of the normal operation of the evolutionary 
process.  In cases where it is used, the goal is usually to improve 
the operation of the GA itself [12], [11].  This is understandable.  
In the majority of cases, the object is to find the single best set of 
inputs to a system in order to obtain an optimum output.  But the 
discarded data, while not particularly useful in describing the 
optimum of the system, can be used to describe the response of 
the system to an arbitrary input – that is, to perform system 
identification.

The fitness function of a GA is, of course, one kind of model of 
the system under consideration.  However, in some cases the 
fitness function model is not appropriate  for use elsewhere, 
particularly in a control environment.  For example, Wu [24] 
proposed using an artificial neural network (NN) as an adjunct to 
a supply chain control system to compensate for the fact that 
information on the system’s states might be delayed.  In another 
case [20], the requirement calls for a differentiable model, and the 
fitness function, as written, might not be.  Finally, the response 
time of the fitness function might not be quick enough for the 
control requirements, particularly if it is a discrete event 
simulation. 
One possible approach to these problems is to create an artificial 
neural network (NN) and train it as a quick-reacting, differentiable 
model of the system in question.  To do this, we require a set of 
input-output (I/O) pairs to use as training data.  Usually, the most 
efficient way to do this is to generate inputs at random across the 
state space, and pass them through the mathematical model of the 
system.  This approach is both efficient, because there is no 
additional processing overhead, and effective, because it satisfies 
the NN requirement for inputs that span the full space of the 
system.  But just because it is efficient and effective does not 
mean that it’s the only source of data.  If, for example, the NN is 
being developed in conjunction with a GA – the GA finding the 
optimum state of the system the NN is modeling – then the GA-
generated data is available, essentially for free, and can also be 
used to train the NN.

This paper tests two different ways of obtaining that data: from a 
GA, and from a random sample of the input space.  It does this in 
the context of two separate, but related, questions.  First, can GA-
derived data train a NN as well as can randomly generated data?  
Second, can a NN controller that uses a GA-based NN system 
model perform as well as a controller that uses a NN model based 
on random data.  In Section 2, we discuss the use of NNs in the 
development and operation of control systems, with emphasis on 
adaptive critic controllers.  Section 3 takes up the issue of using 
GA-derived data to train the NNs.  In Section 4 we lay out some 
simple test models, and describe the methodology.  Section 5 
discusses the results.

2. Neural Control Systems
An artificial neural net (NN) is a multi-layer network of non-
linear processing elements linked by weighted paths.  In 
operation, the values of the interlayer weights are first initialized 



to random values, and the NN is trained to produce a specific 
output (O) from a given input (I). The training process may be 
thought of as a multi-step process generating a sequence of 
improved approximate models based on exposure to a series of 
I/O pairs.  

The need for adaptation is one long recognized in the controls 
community and is driven by our inability to precisely specify the 
characteristics of the system to be controlled and the tendency for 
the parameters of such systems to vary over time [1].  The use of 
artificial neural nets as adaptive, optimizing controllers was 
prompted by the work done by Werbos [20], [21], and Wunsch 
[25], but early work on adaptive control may be tracked back to 
[23] Widrow.  A good survey was prepared by Werbos [22].  

Prokhorov and Wunsch [14], [15], [25], have been actively 
developing a family of adaptive critic NN designs based on ideas 
originally suggested by Werbos.  One such design is called Dual 
Heuristic Programming (DHP), and its goal is to adjust the design 
of a controller by estimating Bellman’s [2], [3], [4], [5] dynamic 
programming J-function.  In DHP, the controller is adjusted based 
on predictions made by a differentiable model of the system to be 
controlled.  “The use of derivatives of an optimization criterion, 
rather than the optimization criterion itself, is known as being the 
most important information to have in order to find an optimal 
solution.” ([25], pg. 104).    

Artificial neural nets are a particularly useful modeling tool for 
system such as inventory control and reordering systems because 
in spite of the fact that the cost equation is linear, the system 
response certainly is not, and the sigmoid function in a NN 
processing element can approximate a hard-limit function of the 
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 , which is exactly the situation we 
encounter when a stock purchase might or might not occur, 
depending on the relationship between the stock level and the 
reorder point [16].

So, a NN provides a differentiable model, and a NN is trained 
through the use of input/output pairs from the system to be 
modeled.  A key question, of course, is where do the I/O pairs that 
describe this relationship come from?  Requirements for the data 
are that they span the expected operating region of the system, 
that they provide enough samples of critical regions that the NN is 
not overwhelmed by the (possibly more common) non-critical 
regions, and that they be different enough to satisfy the control 
engineer’s requirement for ‘persistence of excitation’ to the 
controller.  There are four possible ways to generate I/O pairs for 
use in training a system model NN:

1. Measure the inputs and outputs of a real-world system.  
This has the advantage of authenticity, but has the drawbacks that 
it may not sample the entire operating space, might not provide 
the necessary excitation, and – if the system has not been built –
may not exist.

2. Make a random selection of inputs and use a simulator 
to generate the appropriate outputs.  This will provide the span 
and excitation, but it might not provide the data needed from the 
critical regions.

3. Step across the input state space, using a defined 
sampling strategy and a simulator to generate the appropriate 
outputs.  This will provide the span and excitation, but the ability 

This will provide the span and excitation, but the ability to find 
critical regions is dependent upon the grid size.

4. Use I/O pairs generated by a genetic algorithm process 
(see next section).  Such data has the advantage of being a 
recyclable by-product of a GA search for an optimal system.  
Another advantage of off-optimal data is that it is plentiful.  A 100 
population, 10,000 generation GA will produce on the order of 
106 I/O pairs.  In addition, if the input variables don’t change, and 
the fitness function remains the same, data from any preliminary 
runs is available as well.  This advantage is tempered by the fact 
that many of the I/O pairs will be identical from generation to 
generation, and some process is needed to retrieve unique training 
records.  Such winnowing processes add to the computational 
overhead.  Another theoretical advantage, from a controls 
standpoint, is the fact that a GA spends much of its time (in the 
later generations, at least) in the vicinity of the system optimum.  
This means the area around the optimum is better mapped than 
areas well away from it.  On the other hand, it means that areas 
away from the optimum will be less well mapped.  The 
desirability of this situation will depend on the unique 
circumstances of the system being controlled.

This paper limits its consideration to options 2 and 4.

3. Genetic Algorithms and Neural Net 
Training.
This section describes prior work in the area. A number of 
researchers, discussed below, have used GAs as sources of 
training information for NNs to help solve industrial problems.  It 
is interesting to note that in none of these approaches do the 
researchers use off-optimal data from the GA as a source of 
training information for the NN.

3.1 Ishigami
Ishigami and his co-workers [9] report on a system used to control 
voltage stability in electric power networks, a continuous system 
with discrete control settings.  There, the GA starts with a 
representation of the distributed control elements available to a 
power grid and works to limit the voltage fluctuations under 
different demand regimes.  When the GA arrives at a solution, 
that information is used to generate the training set for a NN, 
which is to operate the control equipment.  In a similar effort, Pipe 
[13] used a GA to train an Adaptive Heuristic Critic NN to learn a 
maze.  The GA generated suggested movements, and the AHC’s 
V-function was used as the fitness function for the GA.

3.2 Ventura and Martinez
Ventura and Martinez studied the use of genetic algorithms as a 
source of training data for neural control systems.  While some of 
their work has included discrete values, they did not use a discrete 
event system as such.

Their original work [17] used a GA to develop optimal solutions 
to a set of randomly generated Boolean equations, and used the 
equation/solution pairs as the training set for a neural net.  They 
then moved on to develop pointing solutions for a gun/target 
problem [18], [19].  Given the target initial coordinates and 
vector, the GA found an optimal aim point to hit the target.  The 
coordinate, vector, and aim point data then were used to train the 
NN. 



3.3 Caskey and Storch
Caskey and Storch [6], [7], have worked on optimizing the 
configuration of discrete event systems, specifically machine 
shops.  Their work is at a slightly higher level of abstraction than 
most, because they included the shop type -- job, flow, or hybrid -
- as one of the input variables, and they developed a “one-shot” 
optimizing tool.  Their inputs are major policy elements such as 
shop type, due-date assignment rules, and tardiness policies.  For 
each set, the GA develops an optimal scheduling rule for each 
machine.  They use a discrete event simulator to rank the GA 
solutions. The C&S approach limits the use of the NN to that of a 
rule repository.  Of all the machine scheduling problems, the flow 
shop comes closest to matching the inventory control problem, 
and some of their results may be applicable here.

3.4 Lin and Jou
Lin and Jou [10] have applied fuzzy-neuro-genetic adaptive critic 
techniques to training a controller for chaotic systems.  In their 
approach, the GA generates a set of candidate Action Nets by 
encoding sets of weights.  Then the system runs for some short 
time period, during which the update signal from the Critic Net is 
used as the fitness function, or the chaotic system makes an 
unacceptable departure from the desired track.  This means that 
Action Nets that run for longer times without failure have greater 
fitness.  They report success in applying this technique to control 
of two benchmark chaotic systems, the Henon map and the 
logistic map.

4. Methodology
As discussed in Section 2, a training data set for a NN must span 
the region of interest, provide significant coverage of critical 
areas, and maintain persistence of excitation.  One of the objects 
of this research was determining which of two possible 
approaches to the problem – random or genetic algorithm –
provided a training set that would create the best NN system 
model.  

4.1 The Simulation
The fitness function for these experiments was a discrete event 
inventory control and transportation simulation that had been 
developed to work with a GA in the design of adaptive critic 
controllers [16].  At each timestep the simulation generated 36 
state variables describing stock on hand and in transit, 18 control 
inputs (the variables being optimized by the GA) specifying the 
operating policies (reorder point RP, order up-to point UT, and 
transport capacity procured Tcap (collectively designated u(t)). In 
addition, there were 4 exogenous, non-stationary, stochastic inputs 
QD(t) representing retail demand.  All of these were indexed for 
the specific node n, stock k, transport arc a or transport mode m
involved. The stochastic demand variables remove stock 
quantities from the demand nodes. When a stock level at a node is 
reduced to or below the reorder point policy value for that stock at 
that node RP(n,k,t), an order is placed for resupply from the next 
node up the supply chain. The order quantity is determined by the 
order-up-to quantity policy value UT(n,k,t). When the order is 
filled, it is shipped subject to the available capacity of the 
intervening transit arcs as determined by the transit capacity 
policy values Tcap(a,m,t).

The function to be minimized is total cost CT, which consists of 
the linear combination of initial (Co) and final (Cx) costs, plus the 
incremental costs (holding cost, Ch; purchase cost, Cq; transport 

cost, Ct; and stockout penalties, Cp) at each timestep (t), summed 
over N nodes, K stocks, and the planning time horizon T:
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Within each of these cost elements, there were a number of step 
functions, that made the cost functions discontinuous. For 
example:
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determines the size of the resupply order for stock n at node k and 
time t, where the Q terms refer to the GA-adjusted rules for 
reordering, and the Xe term refers to stock enroute.

The demand schedule for the GA optimization process, QD(t), was 
Poisson distribution-derived, with stationary mean and variance, 
and covered a period of 90 days.  The demand schedule for the 
controller training process was identical, but three different test 
schedules were used, each one was 360 days long – there was a 
new set of stationary stochastic data (Baseline), a set with a step 
in demand, followed by a stationary process at the new mean 
(Stepped Demand), and a schedule with constantly increasing 
demand across the 360 days (Increasing Demand)

4.2 The Genetic Algorithm.
The GA implemented for the present work used a chromosome 
with three genes for each node – initial stock level, reorder point, 
and order-up-to point.  It also had one gene for each transport arc 
and mode – transport available.  

In this GA, the top half of the population reproduces 
stochastically (roulette wheel selection), with reproduction 
probability based on sigma scaling [8]. Crossover is a version of 
uniform crossover.  The probability of crossover was set at 0.80, 
and the mutation rate was set at 0.01.  Business constraints 
necessary to the operation of the simulation are handled by 
repairing the chromosome as it is being created.

4.3 The Training Data
The two data sets were created as follows:

Genetic Algorithm:  A 90-day run on the simulator was used to 
create the I/O pairs.  This provided an embarrassment of riches.  If 
the GA was run for 1000 generations with a population of 100, 
this could result in some nine million data pairs, or about 1.75GB 
of data, far too much data for a realistic training regime.  The 
procedure used was to save the simulation outputs only once 
every 97 generations.  This produced files that were about 65 to 
70MB and contained 290,000 to 360,000 records.  Record 
numbers changed from run to run, because during a given 
generation the GA would only run policy sets it hadn’t looked at 
previously, and the number of new policy sets depended on the 
survival rates of earlier solutions.  

Random:  The GA code was used, but the population was 
initialized every generation with random individuals.  The number 
of generations was reduced, but all data outputs were kept.  The 



generations was reduced, but all data outputs were kept.  The data 
runs were still 90 days long.

4.4 The Tests
Each system model NN was trained using one of these data sets.  
Training parameters were: learning coefficient 0.98, training 
epoch size 16, with one training session involving ten looks at the 
full data set. At the end of the training the NN was tested on the 
holdout data.  One hundred reinitializations were performed, and 
weights were saved from the best of these.  The result was one set 
of weights, which represented the best NN of the 100.  Two sets 
of tests were run.  The first was a simple test of how well the NN 
modeled the system.  The second designed controllers using the 
NN model and the the adaptive critic technique, and tested how 
well the controller performed.

System Model Test
Although simple, the system identification test was extremely 
difficult for the NN.  This is because, while a sigmoid can 
approximate a step function, it is not a step function, and thus has 
a built-in error.  This is the price paid for a differentiable function.
The test was based on thirty NN models trained using GA-derived 
data and thirty NN models trained randomly-generated data.  Both 
sets of models were then tested on both GA-derived and 
randomly-generated data sets.

Controller Test
DHP controllers were created using weights from each technique 
and tested in each of the demand scenarios.
We made ran ten runs (1,000 controllers total) using a system 
model NN that had been trained on randomly generated data, and 
a standard controller-selection heuristic was run to select one test 
controller (out of 100 per run), and the results compared with a 
similarly-selected 10-run set of GA-driven controllers.  

5.  Results and Discussion
Results are shown in Tables 1 and 2. The GA-based NN models 
and the random-based NN models produced accuracies within 
2.5% of each other (Table 1), and this difference was evaluated as 
non-significant, using a two-tailed, two-sample t-Test (n=30).  

Table 1.  Impact of System Model Training Data System 
Model Quality. Comparison of system models trained on data 
developed by GA, and models trained on randomly generated 
data.  Significance of the differences was measured with a two-
sample, two-tailed t-test (n=30).  There was no significant 
difference

Source of test data
Source of 
training data

GA Rand

GA

Random

t-Test 
p-value

0.422

0.423

0.65
(non-sig)

0.344

0.344

0.97
(non-sig)

For the DHP controllers, the scores (in this case the ability to 
minimize costs, Table 2.) are also close or identical – within 1% 
when totals for the different tests are averaged.  None of the 
differences were significant.

Table 2.  Impact of System Model Training Data on Total 
Cost Score. Comparison of selected controllers using system 
model NNs trained on data developed by GA, and random 
processes.  Within each category, we compared the scores of GA-
derived controllers with that of the random data-derived 
controllers.  Significance of the differences was measured with a 
two-sample, two-tailed t-test.  For example, controllers trained 
using GA-derived data in a stationary environment had an average 
arbitrary score of 458.  Controllers trained using a random-data 
system scored 457, and this difference was non-significant at the 
0.29 level (n=10)

6.  Conclusions
The selection of a data source for training an artificial neural net 
as a system model is a matter of convenience and computational 
efficiency.  Generation of random data is always computationally 
easier, and should be the default technique.  However, if the 
project at hand involves developing a genetic algorithm,  the 
availability of the GA data would argue for using that as the basis 
for the system model training.
.
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