
System Identification Using Off-Optimum Data From A
Genetic Algorithm: A Source Of Training Data For an

Artificial Neural Network
Stephen Shervais

Assistant Professor, MIS
College of Business and Public Administration

Eastern Washington University
Cheney, WA, 99004

509.359.4280
sshervais@ewu.edu

Abstract. When developing an artificial neural net model of a
system, the most efficient way to obtain training and test data is
often to generate a large set of random inputs and run them
through the model. But that is not the only way to do it. We
demonstrate the use of genetic algorithm-generated data as a
source of input-output pairs for training an artificial neural
network. If the genetic algorithm and neural network are being
developed together – for example, to provide system identification
in support of a control system – this data is readily available and
performs as well as a random search of the state space.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization

General Terms
Algorithms

Keywords
Genetic algorithms, artificial neural networks

1. Introduction
A seldom-noted fact about the operation of a genetic algorithm
(GA) is that the majority of the information generated by the GA
is discarded as part of the normal operation of the evolutionary
process. In cases where it is used, the goal is usually to improve
the operation of the GA itself [12], [11]. This is understandable.
In the majority of cases, the object is to find the single best set of
inputs to a system in order to obtain an optimum output. But the
discarded data, while not particularly useful in describing the
optimum of the system, can be used to describe the response of
the system to an arbitrary input – that is, to perform system
identification.

The fitness function of a GA is, of course, one kind of model of
the system under consideration. However, in some cases the
fitness function model is not appropriate for use elsewhere,
particularly in a control environment. For example, Wu [24]
proposed using an artificial neural network (NN) as an adjunct to
a supply chain control system to compensate for the fact that
information on the system’s states might be delayed. In another
case [20], the requirement calls for a differentiable model, and the
fitness function, as written, might not be. Finally, the response
time of the fitness function might not be quick enough for the
control requirements, particularly if it is a discrete event
simulation.
One possible approach to these problems is to create an artificial
neural network (NN) and train it as a quick-reacting, differentiable
model of the system in question. To do this, we require a set of
input-output (I/O) pairs to use as training data. Usually, the most
efficient way to do this is to generate inputs at random across the
state space, and pass them through the mathematical model of the
system. This approach is both efficient, because there is no
additional processing overhead, and effective, because it satisfies
the NN requirement for inputs that span the full space of the
system. But just because it is efficient and effective does not
mean that it’s the only source of data. If, for example, the NN is
being developed in conjunction with a GA – the GA finding the
optimum state of the system the NN is modeling – then the GA-
generated data is available, essentially for free, and can also be
used to train the NN.

This paper tests two different ways of obtaining that data: from a
GA, and from a random sample of the input space. It does this in
the context of two separate, but related, questions. First, can GA-
derived data train a NN as well as can randomly generated data?
Second, can a NN controller that uses a GA-based NN system
model perform as well as a controller that uses a NN model based
on random data. In Section 2, we discuss the use of NNs in the
development and operation of control systems, with emphasis on
adaptive critic controllers. Section 3 takes up the issue of using
GA-derived data to train the NNs. In Section 4 we lay out some
simple test models, and describe the methodology. Section 5
discusses the results.

2. Neural Control Systems
An artificial neural net (NN) is a multi-layer network of non-
linear processing elements linked by weighted paths. In
operation, the values of the interlayer weights are first initialized

to random values, and the NN is trained to produce a specific
output (O) from a given input (I). The training process may be
thought of as a multi-step process generating a sequence of
improved approximate models based on exposure to a series of
I/O pairs.

The need for adaptation is one long recognized in the controls
community and is driven by our inability to precisely specify the
characteristics of the system to be controlled and the tendency for
the parameters of such systems to vary over time [1]. The use of
artificial neural nets as adaptive, optimizing controllers was
prompted by the work done by Werbos [20], [21], and Wunsch
[25], but early work on adaptive control may be tracked back to
[23] Widrow. A good survey was prepared by Werbos [22].

Prokhorov and Wunsch [14], [15], [25], have been actively
developing a family of adaptive critic NN designs based on ideas
originally suggested by Werbos. One such design is called Dual
Heuristic Programming (DHP), and its goal is to adjust the design
of a controller by estimating Bellman’s [2], [3], [4], [5] dynamic
programming J-function. In DHP, the controller is adjusted based
on predictions made by a differentiable model of the system to be
controlled. “The use of derivatives of an optimization criterion,
rather than the optimization criterion itself, is known as being the
most important information to have in order to find an optimal
solution.” ([25], pg. 104).

Artificial neural nets are a particularly useful modeling tool for
system such as inventory control and reordering systems because
in spite of the fact that the cost equation is linear, the system
response certainly is not, and the sigmoid function in a NN
processing element can approximate a hard-limit function of the

form 





 


otherwise1

0 x if0
)x(f

 , which is exactly the situation we
encounter when a stock purchase might or might not occur,
depending on the relationship between the stock level and the
reorder point [16].

So, a NN provides a differentiable model, and a NN is trained
through the use of input/output pairs from the system to be
modeled. A key question, of course, is where do the I/O pairs that
describe this relationship come from? Requirements for the data
are that they span the expected operating region of the system,
that they provide enough samples of critical regions that the NN is
not overwhelmed by the (possibly more common) non-critical
regions, and that they be different enough to satisfy the control
engineer’s requirement for ‘persistence of excitation’ to the
controller. There are four possible ways to generate I/O pairs for
use in training a system model NN:

1. Measure the inputs and outputs of a real-world system.
This has the advantage of authenticity, but has the drawbacks that
it may not sample the entire operating space, might not provide
the necessary excitation, and – if the system has not been built –
may not exist.

2. Make a random selection of inputs and use a simulator
to generate the appropriate outputs. This will provide the span
and excitation, but it might not provide the data needed from the
critical regions.

3. Step across the input state space, using a defined
sampling strategy and a simulator to generate the appropriate
outputs. This will provide the span and excitation, but the ability

This will provide the span and excitation, but the ability to find
critical regions is dependent upon the grid size.

4. Use I/O pairs generated by a genetic algorithm process
(see next section). Such data has the advantage of being a
recyclable by-product of a GA search for an optimal system.
Another advantage of off-optimal data is that it is plentiful. A 100
population, 10,000 generation GA will produce on the order of
106 I/O pairs. In addition, if the input variables don’t change, and
the fitness function remains the same, data from any preliminary
runs is available as well. This advantage is tempered by the fact
that many of the I/O pairs will be identical from generation to
generation, and some process is needed to retrieve unique training
records. Such winnowing processes add to the computational
overhead. Another theoretical advantage, from a controls
standpoint, is the fact that a GA spends much of its time (in the
later generations, at least) in the vicinity of the system optimum.
This means the area around the optimum is better mapped than
areas well away from it. On the other hand, it means that areas
away from the optimum will be less well mapped. The
desirability of this situation will depend on the unique
circumstances of the system being controlled.

This paper limits its consideration to options 2 and 4.

3. Genetic Algorithms and Neural Net
Training.
This section describes prior work in the area. A number of
researchers, discussed below, have used GAs as sources of
training information for NNs to help solve industrial problems. It
is interesting to note that in none of these approaches do the
researchers use off-optimal data from the GA as a source of
training information for the NN.

3.1 Ishigami
Ishigami and his co-workers [9] report on a system used to control
voltage stability in electric power networks, a continuous system
with discrete control settings. There, the GA starts with a
representation of the distributed control elements available to a
power grid and works to limit the voltage fluctuations under
different demand regimes. When the GA arrives at a solution,
that information is used to generate the training set for a NN,
which is to operate the control equipment. In a similar effort, Pipe
[13] used a GA to train an Adaptive Heuristic Critic NN to learn a
maze. The GA generated suggested movements, and the AHC’s
V-function was used as the fitness function for the GA.

3.2 Ventura and Martinez
Ventura and Martinez studied the use of genetic algorithms as a
source of training data for neural control systems. While some of
their work has included discrete values, they did not use a discrete
event system as such.

Their original work [17] used a GA to develop optimal solutions
to a set of randomly generated Boolean equations, and used the
equation/solution pairs as the training set for a neural net. They
then moved on to develop pointing solutions for a gun/target
problem [18], [19]. Given the target initial coordinates and
vector, the GA found an optimal aim point to hit the target. The
coordinate, vector, and aim point data then were used to train the
NN.

3.3 Caskey and Storch
Caskey and Storch [6], [7], have worked on optimizing the
configuration of discrete event systems, specifically machine
shops. Their work is at a slightly higher level of abstraction than
most, because they included the shop type -- job, flow, or hybrid -
- as one of the input variables, and they developed a “one-shot”
optimizing tool. Their inputs are major policy elements such as
shop type, due-date assignment rules, and tardiness policies. For
each set, the GA develops an optimal scheduling rule for each
machine. They use a discrete event simulator to rank the GA
solutions. The C&S approach limits the use of the NN to that of a
rule repository. Of all the machine scheduling problems, the flow
shop comes closest to matching the inventory control problem,
and some of their results may be applicable here.

3.4 Lin and Jou
Lin and Jou [10] have applied fuzzy-neuro-genetic adaptive critic
techniques to training a controller for chaotic systems. In their
approach, the GA generates a set of candidate Action Nets by
encoding sets of weights. Then the system runs for some short
time period, during which the update signal from the Critic Net is
used as the fitness function, or the chaotic system makes an
unacceptable departure from the desired track. This means that
Action Nets that run for longer times without failure have greater
fitness. They report success in applying this technique to control
of two benchmark chaotic systems, the Henon map and the
logistic map.

4. Methodology
As discussed in Section 2, a training data set for a NN must span
the region of interest, provide significant coverage of critical
areas, and maintain persistence of excitation. One of the objects
of this research was determining which of two possible
approaches to the problem – random or genetic algorithm –
provided a training set that would create the best NN system
model.

4.1 The Simulation
The fitness function for these experiments was a discrete event
inventory control and transportation simulation that had been
developed to work with a GA in the design of adaptive critic
controllers [16]. At each timestep the simulation generated 36
state variables describing stock on hand and in transit, 18 control
inputs (the variables being optimized by the GA) specifying the
operating policies (reorder point RP, order up-to point UT, and
transport capacity procured Tcap (collectively designated u(t)). In
addition, there were 4 exogenous, non-stationary, stochastic inputs
QD(t) representing retail demand. All of these were indexed for
the specific node n, stock k, transport arc a or transport mode m
involved. The stochastic demand variables remove stock
quantities from the demand nodes. When a stock level at a node is
reduced to or below the reorder point policy value for that stock at
that node RP(n,k,t), an order is placed for resupply from the next
node up the supply chain. The order quantity is determined by the
order-up-to quantity policy value UT(n,k,t). When the order is
filled, it is shipped subject to the available capacity of the
intervening transit arcs as determined by the transit capacity
policy values Tcap(a,m,t).

The function to be minimized is total cost CT, which consists of
the linear combination of initial (Co) and final (Cx) costs, plus the
incremental costs (holding cost, Ch; purchase cost, Cq; transport

cost, Ct; and stockout penalties, Cp) at each timestep (t), summed
over N nodes, K stocks, and the planning time horizon T:

  .CxCp+Ct+Cq+ChC=C
T

0=t
(t)(t)(t)(t)

K

0k

N

0n
0T  



Within each of these cost elements, there were a number of step
functions, that made the cost functions discontinuous. For
example:

 
X =

Qu Q Xe if Q Qr ,

otherwise, 0,
nk (t)

nk nk(t) nk (t) nk(t) < nk(t) 





determines the size of the resupply order for stock n at node k and
time t, where the Q terms refer to the GA-adjusted rules for
reordering, and the Xe term refers to stock enroute.

The demand schedule for the GA optimization process, QD(t), was
Poisson distribution-derived, with stationary mean and variance,
and covered a period of 90 days. The demand schedule for the
controller training process was identical, but three different test
schedules were used, each one was 360 days long – there was a
new set of stationary stochastic data (Baseline), a set with a step
in demand, followed by a stationary process at the new mean
(Stepped Demand), and a schedule with constantly increasing
demand across the 360 days (Increasing Demand)

4.2 The Genetic Algorithm.
The GA implemented for the present work used a chromosome
with three genes for each node – initial stock level, reorder point,
and order-up-to point. It also had one gene for each transport arc
and mode – transport available.

In this GA, the top half of the population reproduces
stochastically (roulette wheel selection), with reproduction
probability based on sigma scaling [8]. Crossover is a version of
uniform crossover. The probability of crossover was set at 0.80,
and the mutation rate was set at 0.01. Business constraints
necessary to the operation of the simulation are handled by
repairing the chromosome as it is being created.

4.3 The Training Data
The two data sets were created as follows:

Genetic Algorithm: A 90-day run on the simulator was used to
create the I/O pairs. This provided an embarrassment of riches. If
the GA was run for 1000 generations with a population of 100,
this could result in some nine million data pairs, or about 1.75GB
of data, far too much data for a realistic training regime. The
procedure used was to save the simulation outputs only once
every 97 generations. This produced files that were about 65 to
70MB and contained 290,000 to 360,000 records. Record
numbers changed from run to run, because during a given
generation the GA would only run policy sets it hadn’t looked at
previously, and the number of new policy sets depended on the
survival rates of earlier solutions.

Random: The GA code was used, but the population was
initialized every generation with random individuals. The number
of generations was reduced, but all data outputs were kept. The

generations was reduced, but all data outputs were kept. The data
runs were still 90 days long.

4.4 The Tests
Each system model NN was trained using one of these data sets.
Training parameters were: learning coefficient 0.98, training
epoch size 16, with one training session involving ten looks at the
full data set. At the end of the training the NN was tested on the
holdout data. One hundred reinitializations were performed, and
weights were saved from the best of these. The result was one set
of weights, which represented the best NN of the 100. Two sets
of tests were run. The first was a simple test of how well the NN
modeled the system. The second designed controllers using the
NN model and the the adaptive critic technique, and tested how
well the controller performed.

System Model Test
Although simple, the system identification test was extremely
difficult for the NN. This is because, while a sigmoid can
approximate a step function, it is not a step function, and thus has
a built-in error. This is the price paid for a differentiable function.
The test was based on thirty NN models trained using GA-derived
data and thirty NN models trained randomly-generated data. Both
sets of models were then tested on both GA-derived and
randomly-generated data sets.

Controller Test
DHP controllers were created using weights from each technique
and tested in each of the demand scenarios.
We made ran ten runs (1,000 controllers total) using a system
model NN that had been trained on randomly generated data, and
a standard controller-selection heuristic was run to select one test
controller (out of 100 per run), and the results compared with a
similarly-selected 10-run set of GA-driven controllers.

5. Results and Discussion
Results are shown in Tables 1 and 2. The GA-based NN models
and the random-based NN models produced accuracies within
2.5% of each other (Table 1), and this difference was evaluated as
non-significant, using a two-tailed, two-sample t-Test (n=30).

Table 1. Impact of System Model Training Data System
Model Quality. Comparison of system models trained on data
developed by GA, and models trained on randomly generated
data. Significance of the differences was measured with a two-
sample, two-tailed t-test (n=30). There was no significant
difference

Source of test data
Source of
training data

GA Rand

GA

Random

t-Test
p-value

0.422

0.423

0.65
(non-sig)

0.344

0.344

0.97
(non-sig)

For the DHP controllers, the scores (in this case the ability to
minimize costs, Table 2.) are also close or identical – within 1%
when totals for the different tests are averaged. None of the
differences were significant.

Table 2. Impact of System Model Training Data on Total
Cost Score. Comparison of selected controllers using system
model NNs trained on data developed by GA, and random
processes. Within each category, we compared the scores of GA-
derived controllers with that of the random data-derived
controllers. Significance of the differences was measured with a
two-sample, two-tailed t-test. For example, controllers trained
using GA-derived data in a stationary environment had an average
arbitrary score of 458. Controllers trained using a random-data
system scored 457, and this difference was non-significant at the
0.29 level (n=10)

6. Conclusions
The selection of a data source for training an artificial neural net
as a system model is a matter of convenience and computational
efficiency. Generation of random data is always computationally
easier, and should be the default technique. However, if the
project at hand involves developing a genetic algorithm, the
availability of the GA data would argue for using that as the basis
for the system model training.
.

7. References
[1] Barto, A., Sutton, R., and Anderson, C.: Neuronlike Adaptive

Elements That Can Solve Difficult Learning Control
Problems, IEEE Transactions On Systems, Man, And
Cybernetics, Vol. SMC-13, No. 5, (1983) 834-846.

[2] Bellman, R., and Dreyfus, S.: Applied Dynamic
Programming. Princeton, Princeton University Press (1962).

[3] Bellman, R., Esogbue, A., and Nabeshima, I.: Mathematical
Aspects of Scheduling and Applications. New York,
Pergamon Press (1982).

[4] Bellman, R., Glickberg, I., and Gross, O.: Some Aspects of
the Mathematical Theory of Control Processes, R-313.
Santa Monica, RAND Corporation (1958).

[5] Bellman, R.: Dynamic Programming. Princeton, Princeton
University Press (1957).

[6] Caskey, K. R.: Genetic Algorithms and Neural Networks
Applied to Manufacturing Scheduling. Doctoral Dissertation,
Seattle, University of Washington (1993).

[7] Caskey, K., and Storch, R.: Heterogeneous Dispatching
Rules in Job and Flow Shops, Production Planning &
Control, Vol. 7, No. 4, (1996) 351-368.

[8] Hrycej, T.: Neurocontrol. New York, John Wiley & Sons
(1997).

Controller
Performance

When Tested On
Training Data

Controller
Performance

When Tested On
Real World Data

GA Rand t-Test GA Rand t-Test
Baseline

Stepped
Demand

Increasing
Demand

458

422

389

457

421

389

0.29

0.12

0.15

542

448

502

542

446

502

0.39

0.18

0.68

[9] Ishigami, A., et al.: Structural Control Based on Genetic
Algorithm and Neural Network for Electric Power Systems,
Proceedings of the IEEE Applications of Artificial Neural
Nets to Power Systems Conference, (1993). 169-174.

[10] Lin, C., and Jou, C.: Controlling chaos by GA-based
reinforcement learning neural network, IEEE Transactions
on Neural Networks, Vol. 10, No. 4, (1999) 846-859.

[11] Mühlenbein, H., Paaß, G.: From recombination of genes to
the estimation of distributions. In Lecture Notes in Computer
Science 1411: Parallel Problem Solving From Nature IV,
Springer-Verlag, Berlin-Heidelberg, New York (1996) 178-
187.

[12] Pelikan M., Goldberg D.E., Lobo, F.: A Survey to
Optimization by Building and Using Probabilistic Models.
Computational Optimization and Applications 21(1), (2002).
5–20. [13] Pipe, A., Jin, Y., and Winfield, A. A: Hybrid Adaptive
Heuristic Critic Architecture for Learning in Large Static
Search Spaces. Proceedings of the IEEE International
Symposium on Intelligent Control. (1994) 237-242.

[14] Prokhorov, D., and Wunsch, D.: Advanced Adaptive Critic
Designs, Proceedings of the World Congress on Neural
Networks, (1996) 83-87.

[15] Prokhorov, D., Santiago, R., and Wunsch, D.: Adaptive
Critic Designs: A Case Study For Neurocontrol, Neural
Networks, Vol. 8, No. 9, (1995) 1367-1372.

[16] Shervais, S., Shannon, T., and Lendaris, G.: Intelligent
Supply Chain Management Using Adaptive Critic Learning,
IEEE Transactions on Systems, Man, and Cybernetics – Part
A, Vol 33, No 2, (2003) 215-244.

[17] Ventura, D., and Martinez, T.: A General
Evolutionary/Neural Hybrid Approach To Learning
Optimization Problems, Proceedings of the World Congress
on Neural Networks, (1996) 1091-1095.

[18] Ventura, D., and Martinez, T.: Robust Training Using
Training Set Evolution, Proceedings of the International
Congress on Neural Networks, (1996b) 524-528.

[19] Ventura, D., and Martinez, T.: Using Evolutionary
Computation To Generate Training Set Data For Neural
Networks, Proceedings of the International Congress on
Neural Networks and Genetic Algorithms, (1995) 468-471.

[20] Werbos, P.: Advanced forecasting methods for global crisis
warning and models of intelligence, General Systems
Yearbook, (1977) 25-38.

[21] Werbos, P.: Neurocontrol and related techniques, in Maren,
A., Harston, C., and Pap, R., Eds., Handbook of Neural
Computing Applications. Academic Press, Inc., New York,
(1990) 345-380.

[22] Werbos, P.: Neurocontrol and Supervised Learning: An
Overview and Evaluation, in White, D., and Sofge, D., Eds.,
Handbook of Intelligent Control. New York, Van Nostrand
Rheinhold (1992).

[23] Widrow, B., Gupta, N., and Maitra, S.: Punish/Reward:
learning with a critic in adaptive threshold systems, IEEE
Transactions in Systems, Man, and Cybernetics, Vol. SMC-
3, No. 5, September, (1973) 455-465.

[24] Wu, C. : Intelligent use of delayed information in the supply
chain by artificial neural network, Proceedings of the 1999
Conference on Systems, Man, and Cybernetics, Vol. II,
(1999) 66-70.

[25] Wunsch, D., and Prokhorov, D.: Advanced Adaptive Critic
Designs, Computational Intelligence: A Dynamic System
Perspective, IEEE Press, (1995) 98-107.

