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ABSTRACT 
This paper proposes and analyses the performance of a Genetic 
Algorithm using two new concepts, namely a static fitness 
function including a discontinuity measure and a fractional-order 
dynamic fitness function, for the synthesis of combinational logic 
circuits. In both cases, experiments reveal superior results in 
terms of speed and convergence to achieve a solution. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – automatic synthesis, 
optimization. 

General Terms 
Algorithms, Design. 

Keywords 
Fractional calculus, Genetic algorithms and Logic circuit design. 

1. INTRODUCTION 
In the last decade genetic algorithms (GAs) have been applied in 
the design of electronic circuits, leading to a novel area of 
research called Evolutionary Electronics (EE) or Evolvable 
Hardware (EH) [25]. EE considers the concept for automatic 
design of electronic systems. Instead of using human conceived 
models, abstractions and techniques, EE employs search 
algorithms to develop good designs [18]. 

One decade ago Sushil and Rawlins [8] applied GAs to the 
combinational circuit design problem. They combined 
knowledge-based systems with the GA and defined a genetic 
operator called masked crossover. This scheme leads to other 
kinds of offspring that can not be achieved by classical crossover 
operators. 

John Koza [7] adopted genetic programming to design 
combinational circuits. His goal was the design of functional 
circuits through AND, OR and NOT logic gates. 

Coello, Christiansen and Aguirre [2] presented a computer 
program that automatically generates high-quality circuit designs. 
They use five possible types of gates (AND, NOT, OR, XOR and 
WIRE) with the objective of finding a functional design that 

minimizes the use of gates other than WIRE (essentially a logical 
no-operation). 

Miller, Thompson and Fogarty [10] applied evolutionary 
algorithms for the design of arithmetic circuits. The technique 
deals with evolving the functionality and connectivity of a 
rectangular array of logic cells, with a model of the resources 
available on the Xilinx 6216 FPGA device. 

Kalganova, Miller and Lipnitskaya [5] proposed a new technique 
for designing multiple-valued circuits. The EH is easily adapted 
to the distinct types of multiple-valued gates, associated with 
operations corresponding to different types of algebra, and can 
include other logical expressions. This approach is an extension 
of the EH method for binary logic circuits proposed in [10]. 

In order to solve complex systems, Torresen [19] proposed the 
method of increased complexity evolution. The idea is to evolve a 
system gradually as a kind of divide-and-conquer method. 
Evolution is first undertaken individually on a large number of 
simple cells. The evolved functions are the basic blocks adopted 
in further evolution or assembly of a larger and more complex 
system. 

More recently, Hollingworth, Smith and Tyrrell [4] describe the 
first attempts to evolve circuits using the Virtex family of devices. 
They implemented a simple 2-bit adder, where the inputs to the 
circuit are the two 2-bit numbers and the expected output is the 
sum of the two input values. 

A major bottleneck in the evolutionary design of electronic 
circuits is the problem of scale. This refers to the very fast growth 
of the number of gates, used in the target circuit, as the number of 
inputs of the evolved logic function increases. This results in a 
huge search space that is difficult to explore even with 
evolutionary techniques. Another related obstacle is the time 
required to calculate the fitness value of a circuit [21]. A possible 
method to solve this problem is to use building blocks rather than 
simple gates [13]. Nevertheless, this technique leads to another 
difficulty, which is how to define building blocks that are suitable 
for evolution. 

Timothy Gordon [3] suggests an approach that allows evolution to 
search for good inductive bases for solving large-scale complex 
problems. This scheme generates, inherently, modular and 
iterative structures, that exist in many real-world circuit designs 
but, at the same time, allows evolution to search innovative areas 
of space. 

The idea of using memory to achieve better fitness function 
performances was first introduced by Sano and Kita [23-24]. 
Their goal was the optimization of systems with randomly 
fluctuating fitness function and they developed a Genetic 
Algorithm with Memory-based Fitness Evaluation (MFEGA). 

 

Copyright is held by the author/owner(s). 

GECCO’05, June 25-29, 2005, Washington, DC, USA. 

ACM 1-59593-010-8/05/0006. 



The key ideas of the MFEGA are based on storing the sampled 
fitness values into memory as a search history, introducing a 
simple stochastic model of fitness values to be able to estimate 
fitness values of points of interest using the history for selection 
operation of the GA. 

Bearing these ideas in mind, and looking for better performance 
GAs, this paper proposes a GA for the design of combinational 
logic circuits using fractional-order dynamic fitness functions. 

The area of Fractional Calculus (FC) deals with the operators of 
integration and differentiation to an arbitrary (including 
noninteger) order and is as old as the theory of classical 
differential calculus [11, 14]. The theory of FC is a well-adapted 
tool to the modelling of many physical phenomena, allowing the 
description to take into account some peculiarities that classical 
integer-order models simply neglect. Nevertheless, the application 
of FC has been scarce until recently, but the advances on the 
theory of chaos motivated a renewed interest in this field. In the 
last two decades we can mention research on 
viscoelasticity/damping, chaos/fractals, biology, signal 
processing, system identification, diffusion and wave propagation, 
electromagnetism and automatic control [1, 6, 9, 15, 17, 20, 22]. 

The article is organized as follows. Section 2 describes the 
adopted GA as well as the fractional-order dynamic fitness 
functions. Section 3 presents the simulation results and finally, 
section 4 outlines the main conclusions and addresses 
perspectives towards future developments. 

2. THE GENETIC ALGORITHM  
In this section, we present the GA developed in the study, in 
terms of the circuit encoding as a chromosome, the genetic 
operators and the static and dynamic fitness functions. 

2.1 Problem Definition 
We are using GAs to design combinational logic circuits. A truth 
table specifies the circuits and the goal is to implement a 
functional circuit with the least possible complexity. Two sets of 
logic gates have been defined, as shown in Table 1, being Gset a 
the simplest one (i.e., a RISC-like set) and Gset b a more complex 
gate set (i.e., a CISC-like set). Logic gate named WIRE means a 
logical no-operation. 

Table 1 

Gate Set Logic gates 

Gset a {AND,XOR,WIRE} 
Gset b {AND,OR,XOR,NOT,WIRE} 

 
For each gate set the GA searches the solution space, based on a 
simulated evolution aiming the survival of the fittest strategy. In 
general, the best individuals of any population tend to reproduce 
and survive, thus improving successive generations. However, 
inferior individuals can, by chance, survive and reproduce. In our 
case, the individuals are digital circuits, which can evolve until 
the solution is reached (in terms of functionality and complexity). 

 

2.2 Circuit Encoding 
In the GA scheme the circuits are encoded as a rectangular matrix 
A (row × column = r × c) of logic cells as represented in figure 1. 

Three genes represent each cell: <input1><input2><gate type>, 
where input1 and input2 are one of the circuit inputs, if they are in 
the first column, or one of the previous outputs, if they are in 
other columns. The gate type is one of the elements adopted in the 
gate set. As many triplets of this kind as the matrix size demands 
form the chromosome. For example, the chromosome that 
represents a 3 × 3 matrix is depicted in figure 1. 
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Figure  1. A 3 × 3 matrix A representing a circuit with input X 
and output Y. 
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Figure 2. Chromosome for the 3 × 3 matrix of figure 1. 

2.3 The Genetic Operators 
The initial population of circuits (strings) has a random 
generation. The search is then carried out among this population. 
The three different operators used are reproduction, crossover and 
mutation, as described in the sequel. 
In what concern the reproduction operator, the successive 
generations of new strings are reproduced based on their fitness 
function. In this case, it is used a tournament selection to select 
the strings from the old population, up to the new population. 
For the crossover operator, the strings in the new population are 
grouped together into pairs at random. Single point crossover is 
then performed among pairs. In order to maintain the crossover 
integrity, the crossover point must be between cells. 
The mutation operator changes the characteristics of a given cell 
in the matrix. Therefore, it modifies the gate type and the two 
inputs, meaning that a completely new cell can appear in the 
chromosome. Moreover, it is applied an elitist algorithm and, 
consequently, the best solutions are always kept for the next 
generation. 
To run the GA we have to define the number of individuals to 
create the initial population P. This population is always the same 
size across the generations, until reach the solution. 



The crossover rate CR represents the percentage of the population 
P that repro-duces in each generation. Likewise, the mutation rate 
MR is the percentage of the population P that can mutate in each 
generation. 

2.4 The Static and Dynamic Fitness Functions 
The goal of this study is to find new ways of evaluating the 
individuals of the population in order to achieve better 
performance GAs. 

In this paper we propose two concepts for the fitness functions, 
namely the static fitness function Fs and the dynamic fitness 
function Fd. 

The calculation of Fs in (1) has two parts, f1 and f2, where f1 
measures the functionality and the error discontinuity and f2 
measures the simplicity. In a first phase, we compare the output Y 
produced by the GA-generated circuit with the required values 
YR, according with the truth table, on a bit-per-bit basis. By other 
words, f11 is incremented by one for each correct bit of the output 
until f11 reaches the maximum value f10, that occurs, when we 
have a functional circuit. After this, f11 is decremented by 
δ ∈ [0, 1] for each YR – Y error discontinuity, where 
discontinuity means passing from YR – Y = 0 to YR – Y = 1, or 
vice-versa when comparing two consecutive levels of the truth 
table. Once the circuit is functional, in a second phase, the GA 
tries to generate circuits with the least number of gates. This 
means that the resulting circuit must have as much genes <gate 
type> ≡ <wire> as possible. Therefore, the index f2, that measures 
the simplicity (the number of null operations), is increased by one 
(zero) for each wire (gate) of the generated circuit, yielding: 

f10 = 2ni × no (1a) 

f11 = f11 + 1 if {bit i of Y} = {bit i of YR} , i = 1, …, f10 (1b) 

f1 = f11 – δ if errori ≠ errori-1, i = 1, …, f10 (1c) 

f2 = f2 + 1 if gate type = wire (1d) 
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where ni and no represent the number of inputs and outputs of the 
circuit. 

The dynamic fitness function Fd concept arises from an analogy 
between Gas and control systems. In the GA case, the goal is to 
control the population through the fitness function. In this line of 
thought, the static fitness function corresponds to a kind of 
proportional algorithm while a dynamic one may be implemented 
by: 

d s sF F K D Fα= + ⎡ ⎤⎣ ⎦  (2) 

where −1 ≤ α ≤ 1 is the differential (integral) fractional-order for 
positive (negative) values of α and K is the ‘gain’ of the 
dynamical term. 

The generalization of the concept of derivative Dα[f(x)] to 
noninteger values of α goes back to the beginning of the theory of 
differential calculus. In fact, Leibniz, in his correspondence with 
Bernoulli, L’Hôpital and Wallis, had several notes about its 
calculation for α = 1/2 [11, 14]. Nevertheless, the adoption of the 

FC in control algorithms has recent studies using the frequency 
and discrete-time domains [6, 9, 15, 17]. 

The mathematical definition of a derivative of fractional order α 
has been the subject of several different approaches. For example, 
Eq. (3) and Eq. (4), represent the Laplace (for zero initial 
conditions) and the Grünwald-Letnikov definitions of the 
fractional derivative of order α of the signal x(t): 
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where Γ is the gamma function and h is the time increment. This 
formulation [17] inspired a discrete-time calculation algorithm, 
based on the approximation of the time increment h through the 
sampling period T and an r-term truncated series yielding the 
equation: 
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3. EXPERIMENTS AND RESULTS 
Reliable execution and analysis of a GA usually requires a large 
number of simulations to provide a reasonable assurance that the 
stochastic effects are properly considered [12]. Therefore, in this 
study are developed n = 1000 simulations for each case under 
analysis. 

The experiments consist on running the GA to generate a typical 
combinational logic circuit, namely a 2-to-1 multiplexer (M2-1) 
and a 4-bit parity checker (PC4), using the fitness schemes 
described previously. The circuits are generated with the gate sets 
presented in Table 1 for CR = 95%, MR = 20% and P = 100. 

Having a superior GA performance means achieving solutions 
with a smaller number N of generations and a smaller standard 
deviation in order to reduce the stochastic nature of the algorithm. 

3.1 Using the Static Fitness Function 
In this sub-section we analyze the GA improvement when 
adopting a static fitness function including the discontinuity 
measure δ error. 

Figures 3 and 4 show the average number of generations to 
achieve the solution AV(N) and the corresponding standard 
deviation SD(N) versus the discontinuity factor δ = {0, 0.25, 0.5, 
0.75, 1}, using Gset a and Gset b, for the M2-1 and the PC4 
circuits, respectively. 

The results reveal that, as it was expected from previous studies 
[16], the RISC-like set Gset a presents better performance than 
the CISC-like gate set Gset b for all values of δ. On the other 
hand, analysing the influence of δ we conclude that the GA 
response is best mostly in the region around δ = 0.5 for the two 
circuits and for the two gate sets. 

3.2 Using the Dynamic Fitness Function 
In this sub-section, we analyze the GA performance when we 
adopt a dynamic scheme for the fitness function. 
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Figure  3. M2-1 average number of generations to achieve a 

solution AV(N) and standard deviation SD(N) for δ = {0, 0.25, 
0.5, 0.75, 1} with Gsets a and b 
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Figure  4. PC4 average number of generations to achieve a 

solution AV(N) and standard deviation SD(N) for δ = {0, 0.25, 
0.5, 0.75, 1} with Gsets a and b 
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Figure  5. M2-1 average number of generations to achieve a 

solution AV(N) and standard deviation SD(N) for the integral 
and the differential schemes with Gset a 
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Figure  6. M2-1 average number of generations to achieve a 

solution AV(N) and standard deviation SD(N) for the integral 
and the differential schemes with Gset b 
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Figure  7. PC4 average number of generations to achieve a 

solution AV(N) and standard deviation SD(N) for the integral 
and the differential schemes with Gset a 
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Figure  8. PC4 average number of generations to achieve a 

solution AV(N) and standard deviation SD(N) for the integral 
and the differential schemes with Gset b 



The simulations investigate an integral scheme (α = {−1, −0.75, 
−0.5, −0.25, 0}) and a differential scheme (α = {0, 0.25, 0.5, 0.75, 
1}) in Fd for gains 10−3 ≤ K ≤102. The implementation of the 
integral/differential fractional order operator adopts Eq. (5) with a 
series truncation r = 50 terms. 
 
Figures 5 to 8 show the average number of generations to achieve 
a solution AV(N) and the standard deviation SD(N) for the integral 
and the differential schemes, for the M2-1 and the PC4 circuits, 
using Gset a and Gset b. 
 

Tables 2 and 3 present the pair of parameters (α, K) for each best 
solution obtained in terms of average number of generations 
AV(N) and in terms of standard deviation SD(N), respectively, for 
the integral and the differential schemes of Fd. 
 

Table 2. The (α, K) parameters for each best solution obtained 
in terms of AV(N) 

Circuit Gset a Gset b 
(α, K) = (0.25, 1) (α, K) = (0.5, 0.1) M2-1 
(α, K) = (0.25, 10) (α, K) = (−0.75, 0.01) 
(α, K) = (0.5, 0.1) (α, K) = (0.25, 100) PC4 
(α, K) = (0.5, 1) (α, K) = (−0.25, 0.1) 

 

Table 3. The (α, K) parameters for each best solution obtained 
in terms of SD(N) 

Circui
t Gset a Gset b 

(α, K) = (0.25, 100) (α, K) = (0.5, 0.1) M2-1 
(α, K) = (−0.25, 1) (α, K) = (−0.75, 0.01) 
(α, K) = (0.75, 0.1) (α, K) = (0.25, 100) PC4 
(α, K) = (−0.25, 0.01) (α, K) = (−0.25, 0.001) 

 
In general, we conclude that the Fd concept produces better 
results particularly for the differential scheme. Moreover, once 
again, the RISC-like gate set is superior to the CISC-like gate set 
and the best results occur for fractional order α. 

4. CONCLUSIONS 
This paper presented a technique for improving the GA 
performance. In what concerns with the classical static fitness 
function we conclude that it is possible to get superior results by 
measuring the error discontinuity. On the other hand, the new 
concept of fractional-order dynamic fitness function, 
demonstrates to be an important method that outperforms the 
traditional static fitness function approach. In both cases, the 
tuning of the ‘optimal’ parameters δ or (α, K) was established by 
trial and error. Therefore, future research will address the problem 
of having a more systematic design method. 

These conclusions encourage further studies that explore deeper 
the two proposed concepts. 
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