
Digital Circuit Design Using Dynamic Fitness Functions
Cecília Reis

Polytechnic Institute of Porto
Porto

351-228340500
cecilia@dee.isep.ipp.pt

J. A. Tenreiro Machado
Polytechnic Institute of Porto

Porto
351-228340500

jtm@dee.isep.ipp.pt

J. Boaventura Cunha
Univ. of Trás-os-Montes Alto Douro,

Vila Real
351-259350339

jboavent@utad.pt

ABSTRACT
This paper proposes and analyses the performance of a Genetic
Algorithm using two new concepts, namely a static fitness
function including a discontinuity measure and a fractional-order
dynamic fitness function, for the synthesis of combinational logic
circuits. In both cases, experiments reveal superior results in
terms of speed and convergence to achieve a solution.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – automatic synthesis,
optimization.

General Terms
Algorithms, Design.

Keywords
Fractional calculus, Genetic algorithms and Logic circuit design.

1. INTRODUCTION
In the last decade genetic algorithms (GAs) have been applied in
the design of electronic circuits, leading to a novel area of
research called Evolutionary Electronics (EE) or Evolvable
Hardware (EH) [25]. EE considers the concept for automatic
design of electronic systems. Instead of using human conceived
models, abstractions and techniques, EE employs search
algorithms to develop good designs [18].

One decade ago Sushil and Rawlins [8] applied GAs to the
combinational circuit design problem. They combined
knowledge-based systems with the GA and defined a genetic
operator called masked crossover. This scheme leads to other
kinds of offspring that can not be achieved by classical crossover
operators.

John Koza [7] adopted genetic programming to design
combinational circuits. His goal was the design of functional
circuits through AND, OR and NOT logic gates.

Coello, Christiansen and Aguirre [2] presented a computer
program that automatically generates high-quality circuit designs.
They use five possible types of gates (AND, NOT, OR, XOR and
WIRE) with the objective of finding a functional design that

minimizes the use of gates other than WIRE (essentially a logical
no-operation).

Miller, Thompson and Fogarty [10] applied evolutionary
algorithms for the design of arithmetic circuits. The technique
deals with evolving the functionality and connectivity of a
rectangular array of logic cells, with a model of the resources
available on the Xilinx 6216 FPGA device.

Kalganova, Miller and Lipnitskaya [5] proposed a new technique
for designing multiple-valued circuits. The EH is easily adapted
to the distinct types of multiple-valued gates, associated with
operations corresponding to different types of algebra, and can
include other logical expressions. This approach is an extension
of the EH method for binary logic circuits proposed in [10].

In order to solve complex systems, Torresen [19] proposed the
method of increased complexity evolution. The idea is to evolve a
system gradually as a kind of divide-and-conquer method.
Evolution is first undertaken individually on a large number of
simple cells. The evolved functions are the basic blocks adopted
in further evolution or assembly of a larger and more complex
system.

More recently, Hollingworth, Smith and Tyrrell [4] describe the
first attempts to evolve circuits using the Virtex family of devices.
They implemented a simple 2-bit adder, where the inputs to the
circuit are the two 2-bit numbers and the expected output is the
sum of the two input values.

A major bottleneck in the evolutionary design of electronic
circuits is the problem of scale. This refers to the very fast growth
of the number of gates, used in the target circuit, as the number of
inputs of the evolved logic function increases. This results in a
huge search space that is difficult to explore even with
evolutionary techniques. Another related obstacle is the time
required to calculate the fitness value of a circuit [21]. A possible
method to solve this problem is to use building blocks rather than
simple gates [13]. Nevertheless, this technique leads to another
difficulty, which is how to define building blocks that are suitable
for evolution.

Timothy Gordon [3] suggests an approach that allows evolution to
search for good inductive bases for solving large-scale complex
problems. This scheme generates, inherently, modular and
iterative structures, that exist in many real-world circuit designs
but, at the same time, allows evolution to search innovative areas
of space.

The idea of using memory to achieve better fitness function
performances was first introduced by Sano and Kita [23-24].
Their goal was the optimization of systems with randomly
fluctuating fitness function and they developed a Genetic
Algorithm with Memory-based Fitness Evaluation (MFEGA).

Copyright is held by the author/owner(s).

GECCO’05, June 25-29, 2005, Washington, DC, USA.

ACM 1-59593-010-8/05/0006.

The key ideas of the MFEGA are based on storing the sampled
fitness values into memory as a search history, introducing a
simple stochastic model of fitness values to be able to estimate
fitness values of points of interest using the history for selection
operation of the GA.

Bearing these ideas in mind, and looking for better performance
GAs, this paper proposes a GA for the design of combinational
logic circuits using fractional-order dynamic fitness functions.

The area of Fractional Calculus (FC) deals with the operators of
integration and differentiation to an arbitrary (including
noninteger) order and is as old as the theory of classical
differential calculus [11, 14]. The theory of FC is a well-adapted
tool to the modelling of many physical phenomena, allowing the
description to take into account some peculiarities that classical
integer-order models simply neglect. Nevertheless, the application
of FC has been scarce until recently, but the advances on the
theory of chaos motivated a renewed interest in this field. In the
last two decades we can mention research on
viscoelasticity/damping, chaos/fractals, biology, signal
processing, system identification, diffusion and wave propagation,
electromagnetism and automatic control [1, 6, 9, 15, 17, 20, 22].

The article is organized as follows. Section 2 describes the
adopted GA as well as the fractional-order dynamic fitness
functions. Section 3 presents the simulation results and finally,
section 4 outlines the main conclusions and addresses
perspectives towards future developments.

2. THE GENETIC ALGORITHM
In this section, we present the GA developed in the study, in
terms of the circuit encoding as a chromosome, the genetic
operators and the static and dynamic fitness functions.

2.1 Problem Definition
We are using GAs to design combinational logic circuits. A truth
table specifies the circuits and the goal is to implement a
functional circuit with the least possible complexity. Two sets of
logic gates have been defined, as shown in Table 1, being Gset a
the simplest one (i.e., a RISC-like set) and Gset b a more complex
gate set (i.e., a CISC-like set). Logic gate named WIRE means a
logical no-operation.

Table 1

Gate Set Logic gates

Gset a {AND,XOR,WIRE}
Gset b {AND,OR,XOR,NOT,WIRE}

For each gate set the GA searches the solution space, based on a
simulated evolution aiming the survival of the fittest strategy. In
general, the best individuals of any population tend to reproduce
and survive, thus improving successive generations. However,
inferior individuals can, by chance, survive and reproduce. In our
case, the individuals are digital circuits, which can evolve until
the solution is reached (in terms of functionality and complexity).

2.2 Circuit Encoding
In the GA scheme the circuits are encoded as a rectangular matrix
A (row × column = r × c) of logic cells as represented in figure 1.

Three genes represent each cell: <input1><input2><gate type>,
where input1 and input2 are one of the circuit inputs, if they are in
the first column, or one of the previous outputs, if they are in
other columns. The gate type is one of the elements adopted in the
gate set. As many triplets of this kind as the matrix size demands
form the chromosome. For example, the chromosome that
represents a 3 × 3 matrix is depicted in figure 1.

X

Y

a11

a21

a31

a12

a22

a32

a13

a23

a33

Inputs Outputs

Figure 1. A 3 × 3 matrix A representing a circuit with input X
and output Y.

0 1 2 … 24 25 26 Genes

Input Input Gate … Input Input Gate

a11 a33 matrix
element

Figure 2. Chromosome for the 3 × 3 matrix of figure 1.

2.3 The Genetic Operators
The initial population of circuits (strings) has a random
generation. The search is then carried out among this population.
The three different operators used are reproduction, crossover and
mutation, as described in the sequel.
In what concern the reproduction operator, the successive
generations of new strings are reproduced based on their fitness
function. In this case, it is used a tournament selection to select
the strings from the old population, up to the new population.
For the crossover operator, the strings in the new population are
grouped together into pairs at random. Single point crossover is
then performed among pairs. In order to maintain the crossover
integrity, the crossover point must be between cells.
The mutation operator changes the characteristics of a given cell
in the matrix. Therefore, it modifies the gate type and the two
inputs, meaning that a completely new cell can appear in the
chromosome. Moreover, it is applied an elitist algorithm and,
consequently, the best solutions are always kept for the next
generation.
To run the GA we have to define the number of individuals to
create the initial population P. This population is always the same
size across the generations, until reach the solution.

The crossover rate CR represents the percentage of the population
P that repro-duces in each generation. Likewise, the mutation rate
MR is the percentage of the population P that can mutate in each
generation.

2.4 The Static and Dynamic Fitness Functions
The goal of this study is to find new ways of evaluating the
individuals of the population in order to achieve better
performance GAs.

In this paper we propose two concepts for the fitness functions,
namely the static fitness function Fs and the dynamic fitness
function Fd.

The calculation of Fs in (1) has two parts, f1 and f2, where f1
measures the functionality and the error discontinuity and f2
measures the simplicity. In a first phase, we compare the output Y
produced by the GA-generated circuit with the required values
YR, according with the truth table, on a bit-per-bit basis. By other
words, f11 is incremented by one for each correct bit of the output
until f11 reaches the maximum value f10, that occurs, when we
have a functional circuit. After this, f11 is decremented by
δ ∈ [0, 1] for each YR – Y error discontinuity, where
discontinuity means passing from YR – Y = 0 to YR – Y = 1, or
vice-versa when comparing two consecutive levels of the truth
table. Once the circuit is functional, in a second phase, the GA
tries to generate circuits with the least number of gates. This
means that the resulting circuit must have as much genes <gate
type> ≡ <wire> as possible. Therefore, the index f2, that measures
the simplicity (the number of null operations), is increased by one
(zero) for each wire (gate) of the generated circuit, yielding:

f10 = 2ni × no (1a)

f11 = f11 + 1 if {bit i of Y} = {bit i of YR} , i = 1, …, f10 (1b)

f1 = f11 – δ if errori ≠ errori-1, i = 1, …, f10 (1c)

f2 = f2 + 1 if gate type = wire (1d)

1 10

1 2 10

,
,

s
s

s

f F f
F

f f F f
<⎧

= ⎨ + ≥⎩
 (1e)

where ni and no represent the number of inputs and outputs of the
circuit.

The dynamic fitness function Fd concept arises from an analogy
between Gas and control systems. In the GA case, the goal is to
control the population through the fitness function. In this line of
thought, the static fitness function corresponds to a kind of
proportional algorithm while a dynamic one may be implemented
by:

d s sF F K D Fα= + ⎡ ⎤⎣ ⎦ (2)

where −1 ≤ α ≤ 1 is the differential (integral) fractional-order for
positive (negative) values of α and K is the ‘gain’ of the
dynamical term.

The generalization of the concept of derivative Dα[f(x)] to
noninteger values of α goes back to the beginning of the theory of
differential calculus. In fact, Leibniz, in his correspondence with
Bernoulli, L’Hôpital and Wallis, had several notes about its
calculation for α = 1/2 [11, 14]. Nevertheless, the adoption of the

FC in control algorithms has recent studies using the frequency
and discrete-time domains [6, 9, 15, 17].

The mathematical definition of a derivative of fractional order α
has been the subject of several different approaches. For example,
Eq. (3) and Eq. (4), represent the Laplace (for zero initial
conditions) and the Grünwald-Letnikov definitions of the
fractional derivative of order α of the signal x(t):

() { ()}1D x t L s X sα α−⎡ ⎤ =⎣ ⎦ (3)

() () ()
() ()

0
0

1 11lim
! 1

k

k
h

D x t x t kh
k kh

α
α

α
α

∞

=
→

− Γ +
⎡ ⎤ = −⎣ ⎦ Γ − +∑ (4)

where Γ is the gamma function and h is the time increment. This
formulation [17] inspired a discrete-time calculation algorithm,
based on the approximation of the time increment h through the
sampling period T and an r-term truncated series yielding the
equation:

() () ()
() ()

0

1 11
! 1

kr

k

D x t x t kT
k kT

α
α

α
α

=

− Γ +
⎡ ⎤ ≈ −⎣ ⎦ Γ − +∑ (5)

3. EXPERIMENTS AND RESULTS
Reliable execution and analysis of a GA usually requires a large
number of simulations to provide a reasonable assurance that the
stochastic effects are properly considered [12]. Therefore, in this
study are developed n = 1000 simulations for each case under
analysis.

The experiments consist on running the GA to generate a typical
combinational logic circuit, namely a 2-to-1 multiplexer (M2-1)
and a 4-bit parity checker (PC4), using the fitness schemes
described previously. The circuits are generated with the gate sets
presented in Table 1 for CR = 95%, MR = 20% and P = 100.

Having a superior GA performance means achieving solutions
with a smaller number N of generations and a smaller standard
deviation in order to reduce the stochastic nature of the algorithm.

3.1 Using the Static Fitness Function
In this sub-section we analyze the GA improvement when
adopting a static fitness function including the discontinuity
measure δ error.

Figures 3 and 4 show the average number of generations to
achieve the solution AV(N) and the corresponding standard
deviation SD(N) versus the discontinuity factor δ = {0, 0.25, 0.5,
0.75, 1}, using Gset a and Gset b, for the M2-1 and the PC4
circuits, respectively.

The results reveal that, as it was expected from previous studies
[16], the RISC-like set Gset a presents better performance than
the CISC-like gate set Gset b for all values of δ. On the other
hand, analysing the influence of δ we conclude that the GA
response is best mostly in the region around δ = 0.5 for the two
circuits and for the two gate sets.

3.2 Using the Dynamic Fitness Function
In this sub-section, we analyze the GA performance when we
adopt a dynamic scheme for the fitness function.

Gset a

35

40

45

50

0.00 0.25 0.50 0.75 1.00

δ

AV
(N

)

Gset a

50

70

90

110

130

0.00 0.25 0.50 0.75 1.00
δ

SD
(N

)

Gset b

115

125

135

145

155

0.00 0.25 0.50 0.75 1.00

δ

AV
(N

)

Gset b

250

300

350

400

0.00 0.25 0.50 0.75 1.00
δ

SD
(N

)

Figure 3. M2-1 average number of generations to achieve a

solution AV(N) and standard deviation SD(N) for δ = {0, 0.25,
0.5, 0.75, 1} with Gsets a and b

Gset a

11

12

13

14

0.00 0.25 0.50 0.75 1.00
δ

AV
(N

)

Gset a

5

6

7

8

9

0.00 0.25 0.50 0.75 1.00
δ

SD
(N

)

Gset b

31

33

35

37

39

41

0.00 0.25 0.50 0.75 1.00
δ

AV
(N

)

Gset b
30

34

38

42

46

50

54

58

0.00 0.25 0.50 0.75 1.00
δ

SD
(N

)

Figure 4. PC4 average number of generations to achieve a

solution AV(N) and standard deviation SD(N) for δ = {0, 0.25,
0.5, 0.75, 1} with Gsets a and b

40

45

50

55

60

65

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

AV
(N

)

α = −1

α = −0.5

α = 0

α = −0.25α = −0.75

M2-1

45

70

95

120

145

170

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

SD
(N

)

α = −1

α = −0.5

α = 0

α =−0.25

α = −0.75

M2-1

40

45

50

55

60

65

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

AV
(N

)

µ = 1

µ= 0.5

µ = 0.25µ = 0.75

M2-1

µ = 0

45

70

95

120

145

170

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

SD
(N

)

α = 1
α = 0.5 α = 0

α = 0.25
α = 0.75

M2-1

Figure 5. M2-1 average number of generations to achieve a

solution AV(N) and standard deviation SD(N) for the integral
and the differential schemes with Gset a

75

85

95

105

115

125

135

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

AV
(N

)

α = −1 α = −0.5

α = 0

α = −0.25

α = −0.75

M2-1

90

115

140

165

190

215

240

265

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

SD
(N

)

α = −1

α = −0.5

α = 0

α = −0.25

α = −0.75

M2-1

75

85

95

105

115

125

135

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

AV
(N

)

α = 1

α = 0.5

α = 0

α = 0.25

α = 0.75

M2-1

90

115

140

165

190

215

240

265

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

SD
(N

)

α = 1

α = 0.5

α = 0

α = 0.25

α = 0.75

M2-1

Figure 6. M2-1 average number of generations to achieve a

solution AV(N) and standard deviation SD(N) for the integral
and the differential schemes with Gset b

9.0

9.5

10.0

10.5

11.0

11.5

12.0

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

AV
(N

)

α = −1

α = −0.5

α = 0

α = −0.25

α = −0.75

PC4

6

7

8

9

10

11

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

SD
(N

)

α = −1

α = −0.5

α = 0

α = −0.25

α = −0.75

PC4

9.5

10.0

10.5

11.0

11.5

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

AV
(N

) α = 1

α = 0.5

α = 0

α = 0.25
α = 0.75

PC4

6

7

8

9

10

11

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

SD
(N

)

α = 1

α = 0.5

α = 0

α = 0.25

α = 0.75

PC4

Figure 7. PC4 average number of generations to achieve a

solution AV(N) and standard deviation SD(N) for the integral
and the differential schemes with Gset a

30

35

40

45

50

55

60

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

AV
(N

)

α = −1

α = −0.5

α = 0

α = −0.25

α = −0.75

PC4

25

30

35

40

45

50

55

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

SD
(N

)

α = −1

α = −0.5

α = 0
α = −0.25

α = −0.75PC4

30.0

32.5

35.0

37.5

40.0

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

AV
(N

)

α = 1

α = 0.5

α = 0

α = 0.25

α = 0.75

PC4

10

20

30

40

50

60

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

SD
(N

)

α = 1

α = 0.5
α = 0

α = 0.25

α = 0.75

PC4

Figure 8. PC4 average number of generations to achieve a

solution AV(N) and standard deviation SD(N) for the integral
and the differential schemes with Gset b

The simulations investigate an integral scheme (α = {−1, −0.75,
−0.5, −0.25, 0}) and a differential scheme (α = {0, 0.25, 0.5, 0.75,
1}) in Fd for gains 10−3 ≤ K ≤102. The implementation of the
integral/differential fractional order operator adopts Eq. (5) with a
series truncation r = 50 terms.

Figures 5 to 8 show the average number of generations to achieve
a solution AV(N) and the standard deviation SD(N) for the integral
and the differential schemes, for the M2-1 and the PC4 circuits,
using Gset a and Gset b.

Tables 2 and 3 present the pair of parameters (α, K) for each best
solution obtained in terms of average number of generations
AV(N) and in terms of standard deviation SD(N), respectively, for
the integral and the differential schemes of Fd.

Table 2. The (α, K) parameters for each best solution obtained
in terms of AV(N)

Circuit Gset a Gset b
(α, K) = (0.25, 1) (α, K) = (0.5, 0.1) M2-1
(α, K) = (0.25, 10) (α, K) = (−0.75, 0.01)
(α, K) = (0.5, 0.1) (α, K) = (0.25, 100) PC4
(α, K) = (0.5, 1) (α, K) = (−0.25, 0.1)

Table 3. The (α, K) parameters for each best solution obtained
in terms of SD(N)

Circui
t Gset a Gset b

(α, K) = (0.25, 100) (α, K) = (0.5, 0.1) M2-1
(α, K) = (−0.25, 1) (α, K) = (−0.75, 0.01)
(α, K) = (0.75, 0.1) (α, K) = (0.25, 100) PC4
(α, K) = (−0.25, 0.01) (α, K) = (−0.25, 0.001)

In general, we conclude that the Fd concept produces better
results particularly for the differential scheme. Moreover, once
again, the RISC-like gate set is superior to the CISC-like gate set
and the best results occur for fractional order α.

4. CONCLUSIONS
This paper presented a technique for improving the GA
performance. In what concerns with the classical static fitness
function we conclude that it is possible to get superior results by
measuring the error discontinuity. On the other hand, the new
concept of fractional-order dynamic fitness function,
demonstrates to be an important method that outperforms the
traditional static fitness function approach. In both cases, the
tuning of the ‘optimal’ parameters δ or (α, K) was established by
trial and error. Therefore, future research will address the problem
of having a more systematic design method.

These conclusions encourage further studies that explore deeper
the two proposed concepts.

5. REFERENCES
[1] Chen, Y. Q. and Moore, K. L., Discretization schemes for

fractional-order differentiators and integrators. IEEE Trans.
On Circuits and Systems, vol. 49, pp 363-367, March 2002.

[2] Coello, C. A., Christiansen, A. D. and Aguirre, A. H. Using
Genetic Algorithms to Design Combinational Logic Circuits.
Intelligent Engineering through Artificial Neural Networks.
vol. 6, 1996, pp. 391-396.

[3] Gordon, T. G. and Bentley, P., Towards Development in
Evolvable Hardware. In Proceedings of the 2002
NASA/DOD Conference on Evolvable Hardware, 2002. pp.
241-250.

[4] Hollingworth, G. S., Smith, S. L. and Tyrrell, A. M. The
Intrinsic Evolution of Virtex Devices Through Internet
Reconfigurable Logic. In Proceedings of the Third
International Conference on Evolvable Systems. Vol. 1801,
2000, pp. 72-79.

[5] Kalganova, T., Miller, J. F. and Lipnitskaya, N. Multiple
Valued Combinational Circuits Synthesized using Evolvable
Hardware. In Proceedings of the 7th Workshop on Post-
Binary Ultra Large Scale Integration Systems, 1998.

[6] Koh, C. G. and Kelly, J. M. Application of fractional
derivatives to seismic analysis of base-isolated models.
Earthquake Engineering and Structural Dynamics, vol.19,
pp.229-241, 1990.

[7] Koza, J. R., Genetic Programming. On the Programming of
Computers by means of Natural Selection, MIT Press, 1992.

[8] Louis, S.J. and Rawlins, G. J. Designer Genetic Algorithms:
Genetic Algorithms in Structure Design. In Proceedings. of
the Fourth Int. Conference on Genetic Algorithms, 1991.

[9] Méhauté, A. L.. Fractal Geometries: Theory and
Applications. Penton Press, London, 1991.

[10] Miller, J. F., Thompson, P. and Fogarty, T. Algorithms and
Evolution Strategies in Engineering and Computer Science:
Recent Advancements and Industrial Applications. Chapter
6, 1997, Wiley.

[11] Miller, K. S. and Ross, B. An Introduction to the Fractional
Calculus and Fractional Differential Equations. John Wiley
& Sons, New York, 1993.

[12] Morrison, R. W. Dispersion-Based Population Initialization.
In Proceedings of the Genetic and Evolutionary
Computation Conference – GECCO 2003, pp 1210-1221.

[13] Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T.,
Iwata, M., Higuchi, T. Hardware Evolution at Function
Level. In Proceedings of The 4th International Conference
on Parallel Problem Solving from Nature, Berlin, Germany,
September 22-26, 1996.

[14] Oldham, K. B. and Spanier, J. The Fractional Calculus:
Theory and Application of Differentiation and Integration to
Arbitrary Order. Academic Press, New York, 1974.

[15] Oustaloup, A. La Dérivation Non Entier: Théorie, Synthèse
et Applications. Editions Hermes, 1995.

[16] Reis, Cecília, Tenreiro Machado, J. A. and Boaventura
Cunha, J. Evolutionary Design of Combinational Logic
Circuits, Journal of Advanced Computational Intelligence

and Intelligent Informatics, Fuji Technology Press, Vol. 8,
No. 5, pp. 507-513, Sep. 2004.

[17] Tenreiro Machado, J. A. Analysis and Design of Fractional-
Order Digital Control Systems. SAMS Journal Systems
Analysis, Modelling, Simulation, vol. 27: 107-122, 1997.

[18] Thompson, A. and Layzell, P. Analysis of unconventional
evolved electronics. Communications of the ACM, vol. 42,
1999, pp. 71-79.

[19] Torresen, J. A Divide-and-Conquer Approach to Evolvable
Hardware. In Proceedings of the Second International
Conference on Evolvable Hardware. Vol. 1478, 1998, pp.
57-65.

[20] Torvik, P. J. and Bagley, R. L. On the Appearance of the
Fractional Derivative in the Behaviour of real materials.
ASME Journal of Applied Mechanics, vol. 51, pp. 294-298,
June 1984.

[21] Vassilev, V. K. and Miller, J. F. Scalability Problems of
Digital Circuit Evolution. In Proceedings. of the Second
NASA/DOD Workshop on Evolvable Hardware, 2000, pp.
55-64.

[22] Westerlund, S. Dead Matter Has Memory! Causal
Consulting. Sweden: Kalmar, 2002.

[23] Y. Sano and H. Kita. Optimization of Noisy Fitness
Functions by means of Genetic Algorithms using History of
Search. In Proceedings of PPSN VI, pp. 571-581, 2000.

[24] Y. Sano and H. Kita. Optimization of Noisy Fitness
Functions by means of Genetic Algorithms using History of
Search with test of Estimation. In Proceedings of CEC, 2002.

[25] Zebulum, R. S., Pacheco, M. A. and Vellasco, M. M.
Evolutionary Electronics: Automatic Design of Electronic
Circuits and Systems by Genetic Algorithms, CRC Press,
2001.

