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ABSTRACT 
This paper proposes a novel scheme of Fuzzy Logic based 
dynamic routing in computer networks. The proposed dynamic 
routing algorithm is suited for application in Interior Gateway 
Protocols (IGP) inside an autonomous system (AS), such as a 
Local Area Networks (LAN). It is used in the protocols to find 
out a set of best possible routes, where each of the nodes 
broadcasts link status rather than broadcasting the whole 
routing table. The Self Adaptive Pareto Differential Evolution 
(SPDE) algorithm is little modified to apply it in solving 
efficient and optimal dynamic routing problem. One of the 
main features of the proposed routing scheme is that it outputs 
hierarchical quality solutions so that, if one path is blocked, 
there will be provisions of alternative paths for successful 
packet transmission in computer networks. The architecture of 
the proposed dynamic routing scheme is mainly composed of a 
controller, which makes use of a fuzzy-based decision making 
system. In a real world dynamic environment the controller 
finds out the optimal policy that determines weights on the 
parameters of routing. The total dynamic routing scheme is 
made to evolve intelligently in changing characteristics of daily 
network loads and usages. The proposed algorithm grains out 
the optimal routes for the packets to be transmitted. The paper 
also reviews the overall performance of the proposed routing 
scheme by applying it to a number of randomly generated real 
time computer networks. The fast response of our proposed 
scheme makes it suitable for real world applications like 
dynamic routing. 
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1. INTRODUCTION 
Evolutionary algorithms [2] are a kind of global 

optimization techniques that use selection and recombination as 
their primary operators to tackle optimization problems. 
Differential evolution (DE) is a branch of evolutionary 
algorithms developed by Rainer Storn and Kenneth Price for 
optimization problems over continuous domains. One of the 
recent approaches to evolutionary optimization techniques is 
the Pareto Differential Evolution (PDE) algorithm [1].The 
algorithm was designed for optimization problems with 
continuous variables and achieved very competitive results 
compared to other algorithms in the EMO literature. However, 
there was no obvious way to select the best crossover and 
mutation rates apart from running the algorithm with different 
rates, then selecting the best among them. Then another 
approach came to solve this problem, the Self-Adaptive Pareto 
Differential Evolution Algorithm (SPDE) [3], which self adapts 
the crossover and mutation rates.  

                         An optimization approach to dynamic 
routing in computer networks is described. Characteristics of 
Computer networks change in very important ways over time. 
Changes are spatial, temporal and topological. These dynamic, 
almost instantaneous, events cannot be easily dealt with in 
static time slices. The routing algorithms need to be improved 
in order to perform dynamically to take advantage of real time 
traffic information. Standard algorithms, such as Dijktra's 
algorithm respond to dynamic changes in network topology, but 
they are not guaranteed to produce physically optimal route 
specification [5]. Also they generate only one best solution, 
while the dynamic routing needs a pool of best solutions, so 
that if somehow a path becomes inactive there will be 



provisions of other optimal paths. In this paper, we have 
proposed a slightly modified SPDE technique used for efficient 
and optimal fuzzy based dynamic routing.  

       The paper is organized as follows: Section 2 presents 
routing model, Fuzzy Logic controller of dynamic routing 

scheme is proposed in section 3, essence of dynamic routing 
and proposal of application of SPDE algorithm for dynamic 
routing is described in section 4 and experimental results are 
shown in section 5. 

 

 
Figure 1. Block diagrammatic representation of total Dynamic Routing solving scheme. 

 

2. Modeling efficient routing policy 
The mostly dominant parameters in real-world computer 
networks for achieving efficient routing are: 

a. Cost of path, 
b.  Speed of path (depending on the type of channel- e.g. 

optical fiber or wireless etc.),  
c. Band width (denotes the channel capacity) of the path 

between two nodes, and  
d. Number of hops needed for a packet to reach the 

destination node from the source node.  
                         In our paper, we have defined a performance 
scale, termed as Performance Index (PI), which expresses the 
Quality of Service (QOS) of the proposed optimizing dynamic 
routing algorithm. To make the routing efficient, PI is to be 
maximized. Now PI is expressed as: 

 

 
Where C is Cost, S is Speed, B is Band width, H is number of 
hops and k1, k2, k3 are three weight factors. The weight factors 
are termed as follows: Cost index k1, Speed index k2 and 
Bandwidth index k3.    

Variation of three parameters will affect PI. Now for path 
selection by a packet between two nodes will look towards: 

    a. choosing path with minimum cost, 

    b. choosing the path with maximum speed of data 
transmission,  

    c. choosing path with maximum band width and  

    d. selecting total path with minimum number of total hops. 
That will lessen the unwanted delay spent in a node.  

From last four requirements and the expression (1) of PI, it is 
concluded that PI is to be maximized every time, when a packet 
has to select a path from all possible free paths. 

3. Proposed Fuzzy Logic controller 
3.1 Need of Fuzzy controller 
A simple example of characteristic load on real world computer 
networks round the day is presented here in the given table. 

 

Table 1. A sample of daily network load characteristics in 
real world networks. 

Duration Time Load type 

D1 5-8 am Low 

D2 8-10am Medium 

D3 10am to 8 
pm 

High 

D4 8pm to 5 am Medium 

 

In a whole day, the various durations with typical characteristic 
of network load, described earlier in Table 1, as durations D1, 
D2, D3 and D4 are not discrete in time with crisp boundaries. 
Rather they are Fuzzy in nature. Since the real time computer 
network is always unpredictable and busty in nature, the high 
load in network for data transmission is not bounded to occur 
for example in duration D3. There can be high data transactions 
at any time in a day, but with a varying probability. Therefore 
the choice of Fuzzy system in this paper is justified to offer a 
solution for real world application for dynamic routing, which 
is set to work efficiently at any demand of computer network at 
any time of the day. 



3.2 Choice of weight factors 
The values of the weight factors k1, k2 and k3 cannot be constant 
due to varying nature of network load and varying demand of 
channel capacity as well as speed. Therefore during different 
duration in a day, different weight factors have to be dominant. 
For an example, let at midnight, there is mainly use of internet 
for surfing, email etc. that are done from homes, whose 
emergency with respect to bandwidth and speed is not so high. 
At that time, the weight on speed and bandwidth may be 
lessened. This can be achieved by assigning smaller values of 
k2 and k3. But at that time, there is still a possibility of high 
network usage that will demand higher values of k2 and k3. 
These all intelligent decision making can be achieved by a well 
designed fuzzy controller, which will decide the values to be 
assigned to weights k1, k2 and k3. One very important aspect of 
the controller is that, a change in these network usage policies 
will not cause a big deal of problem. Only the Fuzzy temporal 
rules are needed to be changed in the fuzzy controller adopted, 
rather than changing the whole structure of the controller. This 
imposes a great deal of flexibility in the system which makes it 
suitable for dynamic real world application. 

3.3 Construction of Fuzzy controller 
Three Fuzzy controllers are designed whose outputs are k1, k2 
and k3, each within a range [0, 1]. Inputs of each controller are:  

a) Time mode T (with respect to business hour). This 
means that the HIGH value of membership lies in the 
business hour in a day. Range of T is [0, 24], i.e. the 24 
hours span from 00-00 midnight to 00-00 midnight next 
day.   

b)  Emergency degree E, with a range [0, 1]. This denotes 
the strength of importance of immediate data 
transmission. 

In the Figure 2, the proposed Fuzzy Logic Controller is shown 
with its output and inputs. 

 

 
Figure 2. Inputs and outputs of proposed Fuzzy Logic 
Controller. 

 

The variations of Cost Index k1, Speed Index k2 and Band width 
Index k3 with Time mode input T and Emergency degree input 
E are shown in the given Figures 3, 4 and 5, for the defined 
Fuzzy temporal rules. If the temporal rules change, the 
characteristics of the plots will also change. 

 

 
Figure 3. Variation of Cost Index k1 with Time mode input 
and Emergency Degree input. 

 

 
Figure 4. Variation of Speed Index k2 with Time mode 
input and Emergency Degree input. 

 

 
Figure 5. Variation of Band width Index k3 with Time mode 
input and Emergency Degree input. 

 



4. Proposal of algorithm for Dynamic 
Routing 
4.1 Essence of Dynamic Routing 
Dynamic routing performs the same function as static routing 
except it is more robust. Static routing allows routing tables in 
specific routers to be set up in a static manner, so network 
routes for packets are set. But if one or more router on the route 
goes down or some link become inactive, the destination may 
become unreachable. In these situations dynamic routing 
provides multiple best paths in a hierarchical manner in routing 
tables of routers, so that the best of physically realizable paths 
are followed. 

4.2 SPDE algorithm: little modified to 
application to solve dynamic routing problem 
The solution for the optimal path that packets should follow, 
can’t be a single one for dynamic routing, rather is a set of 
optimum paths. Very interestingly the Pareto Differential 
Evolution algorithm (PDE) just not results one solution, but a 
set of solutions. This is the essence of using Pareto differential 
algorithm for the application of Dynamic Routing here in this 
paper. The Self Adaptive Pareto Differential Evolution 
Algorithm (SPDE) is modified slightly to suit it for construction 
of dynamic routing algorithm. Here we propose an efficiently 
optimizing dynamic routing algorithm. A generic version of the 
adopted algorithm is as follows: 

 

     1.  Create a random initial population of potential 
solutions. If any solution has got an unattainable 
value, it is discarded and a new possible solution 
is generated randomly again. Here unattainable 
value means that in the solution, if there are two 
consecutive nodes with no possible direct path 
between them. 

            2. (a) Evaluate the individuals in the population by 
calculating their corresponding          
Performance Index (PI). 

          (b) i.   From the population of marked solutions, 
select at random 3 individuals. Among 
the three, the solution that gives the 
maximum value of Performance Index PI 
is selected as the parent a1. This is done 
because the property of the solution that 
is mostly optimum (maximum PI), 
should be inherited in the children when 
crossover is performed. Other two 
solutions are marked as supporting 
parent a2 and a3. 

                ii. Select at random a variable j in the range [1, 
3]. 

                iii. Crossover rate (xc): Solutions that are more 
optimal should have been given more 
importance in crossover for the sake of 
inheritance of better properties. To make 
this effect the normalized crossover rate 
is chosen as the corresponding values of 

the PI of each solution. Let the crossover 
rate be: 

 

 
                                       

Here r1 is a random variable in the range 
[0, 1]. If the crossover rate is not [0, 1], 
repair the crossover rate according to the 
repair rule. 

                 iv. Mutation rate (xm): The individual with 
lesser crossover rate has a greater need of 
mutation, hence more mutation rate. 
Therefore here we have chosen the 
mutation rate as {1 – crossover rate}. 
Now let the mutation rate be: 

 

 
                    

                 Here r2 is a random variable in the range [0, 
1]. If the mutation rate is not [0, 1], 
repair the mutation rate according to the 
repair rule. 

                 v. Crossover:  

                              For each variable i (value 1 or 2 or 3), 
with some random probability (0, 1) > 
xc

child or if i = j: 

                     do   

                             Crossover between that ai and the 
individual (between a1, a2 and a3) with 
maximum value of PI. 

 

                  In this process of crossover, 2 children will be 
generated: child1 and child2. Now in the 
solution pool, there will always be the main 
parent a1 of the last crossover. And from a2, 
a3, child1 and child2 we select two 
individuals with greater values of PI in the 
solution pool. 

                  vi. Mutation:   

                               For each variable i (value 1 or 2 or 3), 
with some random probability (0,1) > 
xm

child or if i = j, 

                       do   

                              Mutation of that individual ai.   

                  In this process of mutation, some mutated 
individuals will be generated. . Now in the 
solution pool, the mutated individuals, which 
have greater values of PI than a2 and a3. If 



there is no such then no mutated individual is 
added to the pool. 

3. Go to step 1, until the size of the solution pool i.e. the set of 
best solutions reaches a minimum value defined at the start. 
This value of the number of best solutions is dependent on the 
requirement of best possible routes, which is based on 
reliability and performance of the routers involved in the 
network. 

5. Experimental results 
In the experimental work, for establishing the efficiency of our 
proposed algorithm, some real world sample networks are 
chosen. One sample taken is shown in the following diagram, 
with 14 routers at 14 nodes; Node 1 is the starting node, while 
node 14 is the final destination node: 

 

 
Figure 6. One sample network chosen for experiment. 

 

In the approach of testing the proposed algorithm, the 
Emergency value (E) is taken as 0.6 and the Time Mode (T) is 
taken 10-00 am. So the values of the weight factors k1, k2 and 
k3 are obtained from the fuzzy controllers according to E and T. 
Every possible direct path between two nodes is randomly 
assigned cost value, speed value and band width value each of 
which is [0, 1]. For the network shown in figure 6, the dynamic 
routing problem is solved using SPDE algorithm.  

         Finally the pool of solutions (size of the pool was selected 
to be 8) proposed by our algorithm for the optimized routed 

path is (path is represented by expressing the nodes to be 
visited in order): 

 

 
Figure 7. Resultant pool of best solutions. 

 

A significantly good point of outcome is that it took only 6 
iterations to generate pool of solutions within expected quality 
level of maximum PI index value; whereas the standard 
Dijktra’s Shortest Path First Algorithm took 13 iterations to 
produce the best solution [1-11-5-6-9-14]. 

 

 
Figure 8. Three best routes (higher PI) found for the 
sample network chosen. 

 



 
Figure 9. Bar plot of PI value of the best individual in the solution pool vs. iteration value.   

 

Fig. 9 clearly shows that the best possible individual in the 
solution pool (having the maximum possible PI value of 
0.524318) is obtained very quickly in just 6th iteration, by 
applying the SPDE based dynamic routing algorithm. The 
maximum value of 0.524318 remains the PI value of the best 
solution in the solution pool in the next iterations. 

6. Conclusion and future work 
In this paper, the Self Adaptive Pareto Differential 
Evolutionary algorithm (SPDE) is modified to for using it in 
dynamic routing of real world networks. The proposed fuzzy 
controller very efficiently supports the dynamic routing in 
unpredictable nature of computer networks. We have tested our 
proposed algorithm on various sizes of networks and set of 
good solutions are obtained in small time, which makes it 
suitable for a real time online applications. The dynamic 
routing algorithm, being online, is a flexible one for the case 
where there is addition or deletion of nodes in the network. 

              For future work, we intend to form a real time 
decision maker on dynamic routing which incorporates SPDE 
and machine intelligence with classifier system. We also intend 
to add more networking and routing parameters, specific for 
different type of communications, for e.g. AD HOC networks, 
satellite communication etc. 
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