
School Bus Routing using Harmony Search 
Zong Woo Geem 

Johns Hopkins University 
729 Fallsgrove Drive #6133 

Rockville, MD 20850 
+1-301-294-3893 

geem@jhu.edu 
 
 

 

 
 

ABSTRACT 
A recently-developed nature-inspired algorithm, Harmony Search, 
mimicking music improvisation, is introduced and applied to 
transportation problem (school bus routing), and compared with 
popular evolutionary algorithm (genetic algorithm). The Harmony 
Search is conceptualized using the musical process of searching 
for a perfect state of harmony. This algorithm was applied to a 
test network consisting of one bus depot, one school and ten bus 
stops with demand by commuting students. This school bus 
routing example is a multi-objective problem to minimize the 
number of operating buses and also the travel time of all buses, 
with bus capacity and time window constraints that are considered 
as penalty costs. Harmony Search could find good solution within 
the reasonable time with other advantages such as no derivative 
requirement and no initial value assumption. The presented 
routing model is expected to be applied to large-scale real 
networks in the future.  

Categories and Subject Descriptors 
J.2 [Computer Applications]: Physical Science s and Engineering 
– Engineering 

General Terms 
Algorithms, Design, Economics 

Keywords 
Harmony Search, School Bus Routing, Optimization 

1. INTRODUCTION 
Transportation researchers and professionals are sometimes coped 
with situations where optimal decisions need to be made. 
Traditionally various mathematical techniques have been used for 
supporting these optimal decisions. However, their computational 
disadvantages such as requiring derivative information, initial 
value assumption, or huge amount of computation and memory, 
made them rely on another type of methodology, that is, 
evolutionary or meta-heuristic algorithms. 

The basic ideas of existing evolutionary and meta-heuristic 
algorithms are motivated by natural phenomena.  For example, 
the evolutionary algorithms [1-3] and the genetic algorithm [4, 5] 
are inspired by biological evolutionary process; tabu search [6] 
and ant algorithm [7] from animal's behavior; and simulated 
annealing [8] from physical annealing process. 

Harmony Search (HS) algorithm was recently developed in an 
analogy with music improvisation process where musicians in an 
ensemble adjust the pitches of their instruments in order to obtain 
perfect harmony [9, 10]. The HS algorithm has been successfully 
applied to both benchmarking problems and real-world problems 
such as the traveling salesperson problem [9], Rosenbrock's 
function [10], optimal design of pipeline network [11], parameter 
calibration of hydrologic model [12], and optimal design of truss 
structures [13, 14]. Consequently, the HS algorithm provides a 
possibility of success in an optimization problem in transportation 
research field. 

2. HARMONY SEARCH ALGORITHM 
 

Adopting the idea that existing evolutionary or meta-heuristic 
algorithms are found in the paradigm of natural processes, a new 
algorithm can be conceptualized from a musical performance 
process (say, a jazz trio) involving searching for a better harmony. 
Musical performance seeks a best state (fantastic harmony) 
determined by aesthetic estimation, as the optimization process 
seeks a best state (global optimum: minimum cost; minimum 
error; maximum benefit; or maximum efficiency) determined by 
objective function evaluation. Aesthetic estimation is done by the 
set of the pitches sounded by joined instruments, as objective 
function evaluation is done by the set of the values produced by 
composed variables; the aesthetic sounds can be improved 
practice after practice, as the objective function values can be 
improved iteration by iteration. 

Figure 1 shows the structure of the Harmony Memory (HM) that 
is the core part of the HS algorithm. Consider a jazz trio 
composed of saxophone, double bass, and guitar. There exist 
certain amount of preferable pitches in each musician's memory: 
saxophonist, {Do, Fa, Mi, Sol, Re}; double bassist, {Si, Do, Si, 
Re, Sol}; and guitarist, {La, Sol, Fa, Mi, Do}. If saxophonist 
randomly plays {Sol} out of its memory {Do, Fa, Mi, Sol, Re}, 
double bassist {Si} out of {Si, Do, Si, Re, Sol}, and guitarist 
{Do} out of {La, Sol, Fa, Mi, Do}, the new harmony (Sol, Si, Do) 
becomes another harmony (musically C-7 chord). And if this new 
harmony is better than existing worst harmony in the HM, the 
new harmony is included in the HM and the worst harmony is 
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excluded from the HM. This procedure is repeated until fantastic 
harmony is found. 

 
Figure 1. Structure of Harmony Memory 

 

In real optimization, each musician can be replaced with each 
decision variable, and its preferred sound pitches can be replaced 
with each variable's preferred values. Let us set that each decision 
variable represents pipe diameter between two nodes and the 
music pitches {Do, Re, Mi, Fa, Sol, La, Si} correspond to pipe 
diameters {100mm, 200mm, 300mm, 400mm, 500mm, 600mm, 
700mm}. And if first variable chooses {500mm} out of {100mm, 
400mm, 300mm, 500mm, 200mm}, second one {700mm} out of 
{700mm, 100mm, 700mm, 200mm, 500mm}, and third one 
{100mm} out of  {600mm, 500mm, 400mm, 300mm, 100mm}, 
those values (500mm, 700mm, 100mm) make another solution 
vector. And if this new vector is better than existing worst vector 
in the HM, the new vector is included in the HM and the worst 
vector is excluded from the HM. This procedure is repeated until 
certain stopping criterion is satisfied. 

According to the above algorithm concept, the steps in the 
procedure of HS for the school bus routing problem are as 
follows: 

 

Step 1. Initialize the Problem and Algorithm Parameters. 

Step 2. Initialize the Harmony Memory (HM). 

Step 3. Improvise a new harmony from the HM. 

Step 4. Update the HM. 

Step 5. Repeat Step 3 and 4 under the stopping criterion. 

 

2.1 Initialize the Parameters 
In Step 1, the optimization problem is specified as follows: 

Minimize )(xf                                                                 (1) 

Subject to Nix ii ,...,2,1, =∈X                                 (2) 

 

Where )(xf  is an objective function; x  is the set of each 

decision variable ix ; iX  is the set of possible range of values 
for each decision variable, that is, 

{ })(),...,2(),1( Kxxx iiii =X for discrete decision variables 

( ))(...)2()1( Kxxx iii <<< ; N  is the number of 

decision variables (number of music instruments); and K  is the 
number of possible values for the discrete variables (pitch range 
of each instrument). 

The HS algorithm parameters are also specified in this step: 
Harmony Memory Size (HMS) (= number of solution vectors), 
Harmony Memory Considering Rate (HMCR), Pitch Adjusting 
Rate (PAR), and Stopping Criteria (= number of improvisation). 
Here, HMCR and PAR are the parameters of HS algorithm 
explained in Step 3. 

2.2 Initialize the Harmony Memory 
In Step 2, the Harmony Memory (HM) matrix, as shown in 
Equation 3, is filled with as many randomly generated solution 
vectors as the size of the HM (i.e., HMS) and sorted by the values 
of the objective function, )(xf . 
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2.3 Improvise a New Harmony 
A new harmony vector, ),...,,( 21 Nxxx ′′′=′x  is generated by 
anyone of following three actions: HM consideration; Pitch 
adjustment; or totally random generation. For instance, the value 
of the first decision variable ( 1x′ ) for the new vector can be 

chosen from anyone of values stored in HM ( HMSxx 1
1
1 ~ ). 

Values of other variables ( ix′ ) can be chosen in the same manner. 
Here, there is a possibility that totally random value can be 
chosen using the HMCR parameter, which varies between 0 and 1 
as follows: 
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The HMCR sets the rate of choosing one value from the historical 
values stored in the HM, and (1-HMCR) sets the rate of randomly 
choosing one value from the possible range of values. 

Next, each component of the new harmony vector, 
),...,,( 21 Nxxx ′′′=′x  is examined whether it should be pitch-

adjusted. This procedure uses the PAR parameter that sets the rate 
of adjustment for the pitch from the HM as follows: 
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The pitch adjusting process is performed only after a value is 
chosen from the HM. The value (1-PAR) sets the rate of doing 
nothing. If the pitch adjustment decision for ix′  is Yes and ix′  is 

assumed to be )(kxi  (the kth element in iX ), the pitch-

adjusted value of )(kxi  is 

 

)( mkxx ii +←′  for discrete decision variables                   (6) 

 

Where m  is the neighboring index, 
...},2,1,1,2{..., −−∈m . 

The HMCR and PAR parameters introduced in the Harmony 
Search help the algorithm find globally and locally improved 
solution, respectively. 

2.4 Update the Harmony Memory 
If the new harmony vector, ),...,,( 21 Nxxx ′′′=′x  is better than 
the worst harmony in the HM, judged in terms of the objective 
function value, the new harmony is included in the HM and the 
existing worst harmony is excluded from the HM. The HM is then 
sorted by the objective function value. 

2.5 Repeat Step 3 and 4 
Step 3 and 4 are repeated until the termination criterion (for 
example, the number of maximum improvisation) is satisfied. 

3. SCHOOL BUS ROUTING PROBLEM 
In order to demonstrate the searching ability of the Harmony 
Search, the HS is applied to a school bus routing problem 
(SBRP). The SBRP is a practical optimization problem that is 
closely related to many people's daily lives.  From a school's 
perspective, the SBRP aims to supply students with an efficient 
and equitable transportation service [15].  Many approaches [15-
17] have been developed to solve the SBRP.  This problem falls 
into a large class of problems called vehicle routing problems 
(VRPs), in which a set of vehicles provides pickup, delivery or 
simply a service to customers dispersed in an area. 

The intractability of the SBRP depends on how the problem is 
formulated and how many constraints are incorporated.  
Generally, the wider the problem scope is, the harder the problem 
becomes, especially to the exact methods such as the branch and 
bound method (B&B).  Because an exact method may take a very 
long time to obtain the optimal solution, people have turned to 
evolutionary or meta-heuristic algorithms such as genetic 
algorithms (GA) that do not necessarily find the optimal solution, 
but tend to find good solutions within a reasonable amount of 
time [18].  The VRPs that the evolutionary or meta-heuristic 
algorithms had success in applying include transit routing 
problem and pickup and delivery problem.   

Pattnaik et al. [19] proposed an optimization model of minimizing 
overall cost (both the operator's and user's) while determining a 
route configuration with a set of urban bus transit routes and 
associated frequencies using GA.  In their approach, a set of 
candidate routes is first generated, and then GA is employed to 
find the optimal one.  Chien et al. [20] introduced a GA model to 
the optimization of bus route and the corresponding headway 
while minimizing total cost, subject to geography, capacity, and 
budget constraints.  Their results were validated by comparing 
with those obtained from exhaustive search algorithms.  Jung and 
Haghani [21] used GA to solve a multi-vehicle pickup and 
delivery problem with time window. They formulated the 
problem as a mixed-integer linear program, with an objective 
function to minimize the total cost, consisting of the fixed cost of 
the vehicles, routing cost, and customer inconvenient cost. The 
proposed GA scheme can solve a pickup and delivery problem 
within an extremely short time compared with the B&B method. 

4. PROBLEM FORMULATION 
 
School bus routing in this study is a simple multi-objective 
problem to minimize the number of operating buses and the travel 
time of all buses, with two major constraints (bus capacity and 
time window). The study network to be optimized consists of one 
bus depot, one school, and ten bus stops as shown in Figure 2. 
Each stop is demanded by certain amount of commuting students, 
and travel time is specified between two stops. 
 

 
Figure 2. Study Network of School Bus Routing 

 



4.1 Decision Variables 
 

ix  = decision variable having served bus k  for demand node i ,  

         DNi∈ , VSk ∈  

x  = vector of decision variables DNixi ∈,  

)(xnbus  = number of operating buses 

k
ijlk  = 

⎩
⎨
⎧

otherwise0
nodeandnodetravelsbusif1 jik

, 

             DNEDjSTDNiVSk ∈∈∈ ,,  

kvcp  = 
⎩
⎨
⎧

otherwise0
 busin iolation capacity v bus1 k

, VSk ∈  

kvtm  = 
⎩
⎨
⎧

otherwise0
 busin   violation windowtime1 k

, VSk ∈  

 

4.2 Parameters 
 

fc  = fixed cost per school bus 

rc  = routing cost per moving time 

ijsp  = shortest path between node i and node j  

1pc  = penalty cost for bus capacity violation 

2pc  = penalty cost for time window violation 

)(VSnset  = number of elements in set VS  

k
iDM  = number of boarding students in node i by bus k , 

                DNi∈ , VSk ∈  
kBC  = bus capacity of bus k ,   VSk ∈  

bt  = boarding time per student 
kTW  = time window of bus k ,   VSk ∈  

 

4.3 Sets 
 

DN  = demand nodes (= bus stops) 

ST  = starting node (= bus depot) 

ED  = ending node (= school) 

STDN  = union set of starting node and demand nodes 
( DNST ∪ ) 

DNED  = union set of demand nodes and ending node 
( EDDN ∪ ) 

VS  = vehicle set 

 

4.4 Formulation 
 
Minimize 

 

∑∑

∑ ∑ ∑
×+×+

×+×=
∈ ∈

k

k

k

k

k STDNi DNEDj

k
ijij

vtmpcvcppc

lksprcnbusfcf

21

)()( xx
 

     (7) 
 
subject to 
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By assigning a discrete decision variable ix to each bus stop 

(demand node) i  to denote the specific bus k )( VSk∈  that 
serves the stop, the objective function of the problem is to 
minimize both the number of operating buses and the moving 
time of the buses as first and second terms in Equation 7. The 
third and fourth terms represent penalty costs for the violation of 
bus capacity and time window, respectively. Where the fixed cost 
per school bus fc  is assumed as $100,000/bus; routing cost per 

moving time rc  is $105/min; shortest path between node i and 

node j , ijsp (in minutes), is calculated by Floyd and Warshall's 

algorithm; connection status between node i and node j for bus 

k , k
ijlk , has 1 when ix ( STDNi∈ ) and jx ( DNEDj∈ ) 

have bus k ; penalty cost for bus capacity violation 1pc is 

$100,000; and penalty cost for time window violation 2pc is 
$100,000 for the computation. 

Equation 8 is the maximum operating bus number constraint. The 
number of operating buses is less than or equal to the number of 
candidate buses (= 4 buses). Equation 9 shows that the number of 
boarding students in a bus is less than or equal to the bus capacity 



(= 45 students for each bus). Equation 10 shows that the travel 
time of a bus is less than or equal to the time window (= 32 
minutes for each bus). Travel (in-vehicle) time in this work 
consists of moving time and boarding time, where each student's 
barding time bt  is 6 seconds. 

5. COMPUTATIONAL RESULTS 
In order to apply the HS algorithm to the school bus routing 
problem, parameters of HS algorithm are specified such as the 
number of musical instruments (= 10 of demand nodes), pitch 
range of each instrument (= {bus 1, bus 2, bus 3, bus 4}), 
Harmony Memory Size (HMS) (= 10 ~ 100), Harmony Memory 
Considering Rate (HMCR) (= 0.3 ~ 0.95), and stopping criteria (= 
1000 improvisation). Next, harmonies (solution vectors) are 
randomly generated from the possible range as many as HMS and 
sorted by objective function value. 

In Step 3, a new harmony is generated from the HM.  For instance, 
the bus of the first demand node in the new vector can be chosen 
any bus out of the stored buses (for example, {bus3, bus1, bus 2, 
bus 2, bus 3, bus 1, bus 4, bus 2, bus 4, bus 2}) of the first 
demand node in HM.  The buses of other demand nodes can be 
chosen in the same manner. On the other hand, in smaller 
possibility (1-HMCR), a bus can be chosen from all the possible 
range {bus 1, bus 2, bus 3, bus 4}. 

The new harmony x′  is put in the objective function to obtain 
total cost which consists of fixed bus cost, bus moving cost, and  
two penalty costs. If bus k violates equation 9, the variable for 

bus capacity violation, kvcp , becomes 1, and penalty cost for the 

capacity violation is added. If bus k violates equation 10, the 

variable for time window violation, kvtm , becomes 1, and 
penalty cost for the time window violation is added. 

In Step 4, if the cost of the new harmony is better than the worst 
cost of any harmony in the HM, the new harmony is included in 
the HM, and the existing worst cost harmony is excluded from the 
HM. After that, the HM is sorted. 

Finally, in Step 5, the computation is terminated when the 
stopping criteria is satisfied. If not, Step 3 and 4 are repeated. 

The HS is computed for the school bus routing problem and its 
results are examined by comparing with those of popular 
evolutionary technique, genetic algorithm (GA). In order to fairly 
compare HS with GA, the number of objective function 
evaluations and the number of computational runs are same in 
both algorithms: in HS (Table 1), the number of function 
evaluations is 1,000 (= number of improvisation) and the number 
of runs is 20 with various HMS (10 ~ 100) and HMCR (0.3 ~ 
0.95) which parameter values are frequently used in previous HS 
applications; and in GA (Table 2), the number of evaluation is 
1,000 (= population size × number of generations) and the number 
of runs is 20 with various population size (PS, 10 ~ 100), and 
mutation rate (MR, 0.01 ~ 0.1), recommended by Koumousis and 
Georgiou [22]. 

From the results presented in Table 1 and 2, both algorithms could 
find the best solution ($307,980) that is the optimal solution of the 
study network, demonstrated by an exact algorithm. The average 

routing costs and computing times are $399,870 and 6.6 seconds 
in HS, and $409,597 and 6.7 seconds in GA on Pentium II 233 
MHz. 

 

Table 1. Computational Results of Harmony Search 

HMCR 
HMS 

0.3 0.5 0.7 0.9 0.95 

10 410185 410290 407665 410185 410500 

20 410185 410185 410185 307980 307980 

40 410185 410395 410185 410185 410185 

100 410185 410185 410185 410185 410185 

 

Table 2. Computational Results of Genetic Algorithm 

MR 
PS 

0.01 0.03 0.05 0.07 0.1 

10 410395 509240 410185 410185 407350 

20 307980 410185 406930 410185 410185 

40 410290 410185 410185 410185 406930 

100 410395 410290 410185 410185 410290 

 

Table 3 shows the route, number of commuting students, and 
travel time of each bus in optimal solution ($307,980) and near-
optimal solution ($410,185). "Do Nothing" in 5th row of the table 
means that the bus is not operated while satisfying all the 
constraints. 

 

Table 3. Results of School Bus Routing Problem 

Routing 

Cost ($) 

Bus 

# 
Routes 

# of 

Students 

Travel 

Time 

(min) 

1 Depot → 8 → 9 → 10 → 
School 45 31.5 

2 Depot → 4 → 5 → 6 → School 45 28.5 

3 Depot → 1 → 2→ 3 → 7 → 
School 40 29.0 

307,980 

4 Do Nothing - - 

1 Depot → 2→ 6 → School 35 25.5 

2 Depot → 1 → 3 → 7→ School 25 27.5 

3 Depot→ 5 → 9 → 10 → School 45 27.5 
410,185 

4 Depot → 4→ 8→ School 25 29.5 

 



6. CONCLUSIONS 
A newly developed algorithm, Harmony Search is modeled for 
solving the school bus routing problem, and the results of HS 
computation are compared with those of genetic algorithm. HS 
mimics musician's behaviors in music improvisation process. 
Musician's behaviors such as memory considering, pitch adjusting, 
and random choosing are effectively translated as local and global 
solution search schemes. 

The proposed HS model for the school bus routing problem is to 
minimize the multi-objective function, consisting of the number 
of operating buses, the travel time of all buses, and penalty costs 
related with bus capacity and time window violations. HS could 
find the optimal solution or near-optimal solutions within 
reasonable time with advantages including no derivative 
information requirement, no initial value assumption, no huge 
memory requirement, and alternative solutions. 

From the above-mentioned advantages, the HS algorithm appears 
to be successfully applied to optimization problems in 
transportation engineering field. Especially, the presented school 
bus routing model is expected to be applied to large-scale real 
networks interfaced with other data-supporting packages such as 
geographical information system in the future. 

 

7. REFERENCES 
[1] Fogel, L. J., Owens, A. J. and Walsh. M. J. Artificial 

Intelligence Though Simulated Evolution. John Wiley, 
Chichester, UK, 1966. 

[2] De Jong, K. Analysis of the Behavior of a Class of Genetic 
Adaptive Systems. Ph.D. Thesis, University of Michigan, 
Ann Arbor, 1975. 

[3] Koza, J. R. Genetic Programming: A Paradigm for 
Genetically Breeding Populations of Computer Programs to 
Solve Problems. Report No. STA-CS-90-1314, Stanford 
University, 1990. 

[4] Holland, J. H. Adaptation in Natural and Artificial Systems. 
University of Michigan Press, Ann Arbor, 1975. 

[5] Goldberg, D. E. Genetic Algorithms in Search Optimization 
and Machine Learning. Addison Wesley, MA, 1989. 

[6] Glover, F. Heuristic for Integer Programming using 
Surrogate Constraints. Decision Sciences, 8, 1 (1977), 156-
166. 

[7] Dorigo, M., Maniezzo, V., and Colorni, A. The Ant System: 
Optimization by a Colony of Cooperating Agents. IEEE 
Transactions on Systems, Man, and Cybernetics-Part B, 26, 
1 (1996), 29-41. 

[8] Kirkpatrick, S., Gelatt, C., and Vecchi, M. Optimization by 
Simulated Annealing. Science, 220, 4598 (1983), 671-680. 

[9] Geem, Z. W., Kim, J. H., and Loganathan, G. V. A New 
Heuristic Optimization Algorithm: Harmony Search. 
Simulation, 76, 2 (2001), 60-68. 

[10] Geem, Z. W., and Tseng, C. –L. New Methodology, 
Harmony Search and its Robustness. In Late-Breaking 
Papers of Genetic and Evolutionary Computation 
Conference (GECCO ‘02) (New York City, USA, July 9-13, 
2002), 174-178. 

[11] Geem, Z. W., Kim, J. H., and Loganathan. G. V. Harmony 
Search Optimization: Application to Pipe Network Design. 
International Journal of Modelling and Simulation, 22, 2 
(2002), 125-133. 

[12] Kim, J. H., Geem, Z. W., and Kim, E. S. Parameter 
Estimation of the Nonlinear Muskingum Model using 
Harmony Search. Journal of the American Water Resources 
Association, 37, 5 (2001), 1131-1138. 

[13] Kang, S. L, and Geem, Z. W. A New Structural Optimization 
Method Based on the Harmony Search Algorithm. 
Computers and Structures, 82, 9-10 (2004), 781-798. 

[14] Kang, S. L, and Geem, Z. W. A New Structural Optimization 
Method for Structures with Discrete Sizing Variables. In 
Proceedings of 2004 Conference of the Structural 
Engineering Institute of ASCE (STRUCTURES 2004) 
(Nashville, USA, May 22-26, 2004), CD-ROM. 

[15] Bowerman, R., Hall, B., and Calamai, P. A Multi-Objective 
Optimization Approach to Urban School Bus Routing: 
Formulation and Solution Method. Transportation Research 
A, 29A, 2 (1995), 107-123. 

[16] Bennett, B. T., and Gazis, D. C. School Bus Routing By 
Computer. Transportation Research, 6, (1972), 317-325. 

[17] Tsay, H. –S., and Fricker, J. D. Practical Approach for 
Solving School Bus Routing. Transportation Research 
Record, TRB, 1202, (1988), 44-56. 

[18] Bodin, L., Golden, B., Assad, A., and Ball, M. The State of 
Art in the Routing and Scheduling of Vehicle and Crews. 
Computers and Operations Research, 10, (1983), 63-211. 

[19] Pattnaik, S. B., Mohan, S., and Tom, V. M. Urban Bus 
Transit Route Network Design using Genetic Algorithm. 
Journal of Transportation Engineering, ASCE, 124, 4 (1998), 
368-375. 

[20] Chien, S., Yang, Z., and Hou, E. Genetic Algorithm 
Approach for Transit Route Planning and Design. Journal of 
Transportation Engineering, ASCE, 127, 3 (2001), 200-207. 

[21] Jung, S., and Haghani, A. Genetic Algorithm for a Pickup 
and Delivery Problem with Time Windows. Transportation 
Research Record, TRB, 1733, (2000), 1- 7. 

[22] Koumousis, V. K., and Georgiou, P. G. Genetic Algorithms 
in Discrete Optimization of Steel Truss Roofs. Journal of 
Computing in Civil Engineering, ASCE, 8, 3 (1994), 309-
325. 

 

 


