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ABSTRACT
Particle Swarm Optimization (PSO) is based on the notion
of particles flying through solution space. Each particle is
assumed to have n-dimensions that are mapped to the vari-
ables of the function that is being evaluated. The standard
PSO algorithm updates a particle’s position by moving to-
wards the particle’s past personal best and the best particle
that has been found. This paper introduces the Principal
Component Particle Swarm Optimization (PCPSO) proce-
dure. The Principal Component Particle Swarm Optimiza-
tion procedure flies the particles in two separates spaces at
the same time; the traditional n-dimensional x space and a
rotated m-dimensional z space where m ≤ n.

Categories and Subject Descriptors
G.1.6 [Global Optimization]

General Terms
Swarm, Algorithms

Keywords
Particle Swarm Optimization, Principal Component Analy-
sis, Topological Vector Space

1. INTRODUCTION
Particle Swarm Optimization (PSO) [1] [2] was introduced

as an optimization methodology based on a social psycho-
logical metaphor. The standard PSO is based on an anal-
ogy with particles flying through solution space whereby the
particle locations are mapped from a fixed coordinate sys-
tem. Tracking the particles from a fixed location is known
as the Eulerian point of view. Another possibility is to map
the particles from a coordinate system that moves with the
swarm. When using this perspective the particles are first
referenced by their local coordinate system which is mapped
back to a fixed system. This two stage mapping is known as
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the Lagrangian point of view [3]. This paper introduces one
methodology for creating and flying a dynamic coordinate
system with the particles. Before discussing the specifics of
this particular implementation it should be noted that topo-
logical psychology is a field that has a long history of being
theoretically advanced beyond its numerical implementation
[4]. Lewin’s field theory is discussed in [5], where the ques-
tion is asked:

We can only guess, if Lewin had a computer, how
he could have demonstrated his vision in ways
that others could really understand...

The following quotes are taken directly from Kurt Lewin’s
books [6] [7] [8] written between 50 and 70 years ago. From
Kurt Lewin’s book Field Theory in Social Sciences – 1951 :

Obviously, the state of development of psychol-
ogy is not such that a systematic linking of every
construct with any other by a system of quan-
titative equations can be realized. On the other
hand, I am inclined to think that psychology is
not far away from a level where a good number
of the basic constructs can be linked in a precise
manner [6].

Lewin also refers to Thurstone’s factor analysis [9] as a useful
device for finding relations between the factors that influence
an event[7]. In an earlier work Lewin states:

That there is a direct relationship between the
momentary state of the individual and the struc-
ture of his psychological environment.

These imperative environmental facts – we shall
call them valences [Aufforderungscharakter ] – de-
termine the direction of behavior.

The valences change with the momentary state
of the needs [8].

It is seen that Lewin anticipated much of the mathematics
and many of the social–psychological constructs that com-
prise the Principal Component Particle Swarm Optimiza-
tion methodology[10]. He surely would have implemented
something similar given a modern computer.

2. PRINCIPAL COMPONENT ANALYSIS
The goal of Principal Component Analysis (PCA) is to

transform a set of correlated variables xi into a set of min-
imally correlated variables zi. This is accomplished by se-
lecting a set of orthonormal basis vectors ui [11] that are



used to define the new variables as linear combinations of
the original variables. A weighted covariance matrix is used
to calculate the orthonormal basis vectors ui and is defined
as:
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where n is the number of dimensions, N is the number of
points defining the covariance matrix, and Wi is the weight
given to point i. Wi is defined as a function of the itera-
tion/generation k.

Wi =

�
k

kmax

�λ

(3)

λ allows for non-linear control over the applied weights.

In order to fly the particles in a rotated z space it is nec-
essary to span the z space by a matrix of orthonormal eigen-
vectors U , where U is implicitly defined as:

U ′SU = L (4)

The matrix U contains the eigenvectors as columns:

U = [u1|u2| · · · |un] (5)

The ui eigenvectors are orthonormal:

u′iui = 1
u′iuj = 0

(6)

Matrix L is a diagonal matrix containing the eigenvalues li.

L =

2
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. . . 0

0 0 0 ln

3
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The principal components are then defined as:

z = U ′ [x− x̄] (8)

Each zi space variable (principal component) is formed by a
linear combination of the original x space variables and has
a mean of zero and a variance li. This is written in terms of
the eigenvector ui and the centered vector (x− x̄) as:

zi∈{1...n} = u′i [x− x̄] (9)

The reverse operation is equally valid. Each particle in the z
space can be mapped back to the x space using the equation:

x = x̄ + Uz (10)

A reduced dimension z̃ space (∼ representing a dimensional
contraction) can be defined as:

z̃ = Ũ ′ [x− x̄] (11)

where Ũ is defined using the m eigenvectors associated with
the largest m ≤ n eigenvalues. This can also be written for
each variable z̃j as:

z̃j∈{1...m} = ũ′j [x− x̄] (12)

Again, the z space can be mapped back to the x space by
the equation:

x = x̄ + Ũ z̃ + (x− x̂) (13)

where x̂ is the residual.

3. PARTICLE SWARM OPTIMIZATION
The velocity weighting parameter wk is defined as:

wk = w1 − (w1 − w2)

�
k

kmax

�
(14)

where k is the current generation/iteration and kmax is the
maximum number of iterations for the current run. w1 and
w2 are therefore the starting and stopping values for wk re-
spectively.

The particle velocity is updated according to:

vk+1
ij = wkvk

ij + ϕ1ij

�
xk

ig − x̂k
ij

�
+ ϕ2ij
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xk

il − x̂k
ij

�
(15)

where i≤n is the x dimension index, j is the particle index,
g designates the best particle, and l designates the personal
best particle i. ϕ1ij and ϕ2ij are uniform random numbers

between 0 and 2. That is, xk
ig represents the ith dimension of

the best particle (solution) found during the last k iterations.
The ∧ represents a possible z̃ space contribution as defined
by equation 24. The x space particle positions are updated
as follows:

xk+1
ij = vk+1

ij + x̂k
ij (16)

4. PRINCIPAL COMPONENT
PARTICLE SWARM OPTIMIZATION

The z space velocity weighting parameter w̃k is defined
as:

w̃k = w̃1 − (w̃1 − w̃2)

�
k

kmax

�
(17)

The z space particle velocity is updated according to:

ṽk+1
ij = w̃kṽk

ij + ϕ̃1ij
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z̃k

ig − z̃k
ij

�
+ ϕ̃2ij
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il − z̃k
ij
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(18)

where i ≤ m ≤ n is the z̃ dimension index, j is the particle
index, g designates the best particle, and l designates the
personal best particle i. ϕ̃1ij and ϕ̃2ij are uniform random

numbers between 0 and 2. That is, z̃k
ig represents the ith

transformed dimension of the best particle (solution) found
during the last k iterations.

If the principal components have been recalculated since
the last ṽ calculation then z̃ and ṽ are re-initialized before
ṽk+1

ij is updated according to:

z̃ = Ũ ′ [x− x̄] (19)

ṽ = Ũ ′ [v] (20)

where x and v are the current x space particle locations and
velocities respectively.

Figure 1 illustrates how the principal axes move with the
swarm for a 2-dimensional problem. The smaller dots rep-
resent the global best locations found so far at time t1. The
larger dots represent the global best solutions found since
time t1 up to time t2, where t2 > t1. Having the coordinate



x1

x2

z11

z12

z22

z21

Time 1 
Principal Axes
(z11,z12)

Time 2 
Principal Axes
(z21,z22)

Standard PSO 
Coordinates

Figure 1: Principal Component Recalculation

system follow the swarm can seen as a form of adaptive La-
grangian swarm coordinates.

The z space particle positions are updated as follows:

z̃k+1
ij = ṽk+1

ij + z̃k
ij (21)

The updated z space locations are mapped back to x space
using the partial orthonormal basis Ũ , where Ũ contains
the first m eigenvectors of U corresponding to the m largest
eigenvalues. When m equals the dimension of the x space,
m = n resulting in Ũ = U .

x̃k+1
ij = x̄k+1

ij + Ũ
h
z̃k+1

ij

i
(22)

The fraction of the z̃ space flight that is included is defined
by the parameter β:

βk = α1 − (α1 − α2)

�
k

kmax

�
(23)

where α1 and α2 are the starting and stopping values for βk

respectively.

The z and x space flight components are combined using
the β parameter to define the new x space particle position:

x̂k+1
ij = βk

�
x̃k+1

ij

�
+ (1− βk)

�
xk+1

ij

�
(24)

When βk = 0:

x̂k+1
ij = xk+1

ij (25)

That is:

(βk → 0) ⇒ (PCPSO → PSO) (26)

4.1 PCPSO algorithm

1. Initialization

(a) Initialize swarm

(b) Initialize covariance matrix (1-3)

(c) Calculate principal components (4)

(d) Map particles to Z space (8-12)

2. Fly Particles

(a) Fly particles in X space (14-16)

(b) Fly particles in Z space (17-21)

i. Map new Z locations to X space (22)

3. Form weighted average of 2.a and 2.b.i (23-24)

4. New personal best

(a) Update Pbest

(b) Pbest covariance updating:

i. Update covariance matrix using the
new weighted Pbest location (1-3)

ii. Recalculate principal components (4)

iii. Map current X space velocities and
locations to Z space (19-20)

5. New global best

(a) Update Gbest

(b) Gbest covariance updating:

i. Update covariance matrix using the
new weighted Gbest location (1-3)

ii. Recalculate principal components (4)

iii. Map current X space velocities and
locations to Z space (19-20)

6. Fly Particles Again

Equation numbers in parentheses.

5. COMPARISON STUDY
A study comparing the PCPSO algorithm with previ-

ously published results [12] [13] [14] [15] was performed us-
ing 30 dimensional Sphere, Griewank, generalized Rosebrock
and Rastrigin functions (f1, f2, f3 and f4) respectively.

f1 (x) =

nX
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x2
i (27)
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i
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�

(30)



30 Dimensions, 20 Particles, 2000 Iterations, 100 Runs
PSO: w1 = .7, w2 = .4, φ ∈ {0 . . . 2}

PCPSO: w̃1 = .7, w̃2 = .4, φ̃ ∈ {0 . . . 2}
PCPSO: β = .3, m = n = 30

f1 – Sphere

Initial Range {50, 100} Fitness σ

PSO† 7.06E-13 2.00E-12

PCPSO† (λ = .5) 1.00E-13 5.31E-14

PCPSO† (λ = 1.) 1.51E-14 9.99E-15
PSO[12] 6.29E-13 7.64E-14
Hybrid[12] 0.012 6.3E-4

f2 – Griewank (Vmax = 600.)

Initial Range {300, 600} Fitness σ

PSO† 0.0120 0.0197

PCPSO† (λ = .5) 0.0076 0.0109

PCPSO† (λ = 1.) 0.0055 0.0116

PSO‡ 0.0167 0.0127

PCPSO‡ (λ = .5) 0.0075 0.0106

PCPSO‡ (λ = 1.) 0.0073 0.0118
PSO[13] 0.0182 NA
PSO[12] 0.0150 0.0024
Hybrid[12] 0.0991 0.0011
FPSO [14] 0.0216 NA
HPSO1[15] 0.0157 NA

f3 – Rosenbrock (Vmax = 30.)

Initial Range {15, 30} Fitness σ

PSO† 276 518

PCPSO† (λ = .5) 126 180

PCPSO† (λ = 1.) 142 224

PSO‡ 115 198

PCPSO‡ (λ = .5) 121 155

PCPSO‡ (λ = 1.) 85 144
PSO[13] 316 NA
PSO[12] 154 25
Hybrid[12] 187 23
FPSO [14] 184 NA
HPSO2[15] 128 NA

f3 – Rastrigin (Vmax = 5.12)

Initial Range {2.56, 5.12} Fitness σ

PSO† 76 20

PCPSO† (λ = .5) 155 54

PCPSO† (λ = 1.) 154 47

PSO‡ 47 13

PCPSO‡ (λ = .5) 113 61

PCPSO‡ (λ = 1.) 123 61
PSO[13] 47 NA
PSO[12] 47 1.3
Hybrid[12] 27.8 0.81
FPSO [14] 48.5 NA
HPSO1[15] 35.6 NA

†: (this study): Vmax = ∞
‡: (this study): Vmax = specified limit

Table 1: PSPSO Comparison Study
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Figure 2: Rastrigin Contour Plot {x, y} ∈ {−100, 100}
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Figure 3: Rastrigin Contour Plot {x, y} ∈ {−4, 4}

The settings for the PSO and PCPSO are shown at the
top of table 1. The averages and standard deviations for this
study were calculated using 100 runs. PSO‡ and PCPSO‡

represent runs that enforced a Vmax velocity limit as spec-
ified in table 1. The PSO algorithm did not employ a con-
striction factor χ [16]. The PCPSO was run with two dif-
ferent covariance matrix weighting exponents (λ = .5 and
λ = 1.) as described in equation 3. The PCPSO used a full
set of principal components (m = n = 30). On each itera-
tion the z space particle location is combined with the x
space location using a constant beta factor (β = .3). The
values of λ and β were not optimized. The reported val-
ues for the PCPSO are reasonable when compared with the
previous studies. The PCPSO solutions were less than the
previously published results for the Sphere, Griewank and
Rosenbrock functions without the inclusion of a maximum
velocity(Vmax). The results improved with the inclusion of
a maximum velocity.

The PCPSO did not perform as well on the Rastrigin func-
tion (f4). Figures 2 and 3 demonstrate the topology of the
Rastrigin function. From a distance the Rastrigin function
appears as a type of Sphere function. This is illustrated by
the contour plot in Figure 2. As the swarm approaches the
bottom of the bowl the Rastrigin takes on a dimple topology



Rotated Space Principal
Config Gen Contribution Components

1 500 β = .0 NA
2 1000 β = .0 NA
3 500 β ∈ {.3 → .0} m = n

10
= 10

4 1000 β ∈ {.3 → .0} m = n
10

= 10
5 500 β = .3 m = n = 100
6 1000 β = .3 m = n = 100

Table 2: 100 Dimension, 30 Particle – Configura-
tions

Config f1 f2 f3 f#1
4 f#2

4

1 88364 591 6.8E+8 1334 2.39E5
2 22521 165 2.8E+8 968 2.35E5
3 2305 13.8 1.6E+5 1142 2519
4 18.5 1.09 3.3E+3 1024 953
5 2074 1.43 1.0E+4 1076 1282
6 13.1 .0211 937 1136 840

2∗ 620 6.43 7.9E+5 473 2031
6∗ 3.9E-5 .0078 887 638 798

Config∗: Vmax = as defined in Table 1�
2∗

6∗

�
1.6E7 824 891 .71 2.6�

2∗

6

�
47 305 843 .42 2.4

Table 3: 100 Dimension, 30 Particle – Study Results

as shown in Figure 3. The dimples are lined up with the
standard Rastrigin coordinates at regular intervals.

It is this type of topology where a rotated coordinate
system does not have any beneficial effect and actually de-
creases the probability of a particle landing on the global
optimum. In this case there is no linkage[17] to learn.

6. PCPSO – HIGH DIMENSIONAL STUDY
A primary motive for developing the PCPSO algorithm

was to increase the convergence of the PSO on high dimen-
sional problems. A study was performed using 100 dimen-
sional Sphere, Griewank, generalized Rosebrock and Rastri-
gin functions (f1, f2, f3 and f4) respectively. The six config-
urations investigated are shown in table 2. The other set-
tings (with the exception of β) are the same as those given
in table 1. Configurations 1 and 2 represent the standard
PSO. Special cases of configurations 2 and 6 (2∗ and 6∗)
investigate the inclusion of a maximum velocity (Vmax).

When the number of principal components is less than the
dimensionality of the problem (m < n) the rotated space will
not be able to find an exact answer. One solution to this
is to reduce the rotated space contribution with increasing
iterations as in configurations 3 and 4. The motivation for
this approach is to use the principal component information
(via combined particle movement) early in the run (large β)
to accelerate convergence, while transitioning to a standard
PSO at the end of the run (small β). Convergence is en-
hanced by using the principal component algorithm during
early generations to identify particle gradient information.

PCPSO - Sphere (f1)
100 Dimensions, 30 Particles 
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Figure 4: Sphere Study (f1 )

PCPSO - Griewank (f2)
100 Dimensions, 30 Particles
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Figure 10: PCPSO parameter dialog

PCPSO - Rosenbrock (f3)
100 Dimensions, 30 Particles

Average Over 20 Runs
Initialization Range (15,30)
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Figure 6: Rosenbrock Study (f3)

PCPSO - Rastrigin #1 (f4)
100 Dimensions, 30 Particles

Average Over 20 Runs
Initialization Range (2.56,5.12)
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PCPSO - Rastrigin #2 (f4)
100 Dimensions, 30 Particles

Average Over 20 Runs
Initialization Range (-100,100)
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Figure 8: Rastrigin Study f#2
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In configurations 5 and 6, the full set of principal compo-
nents is used throughout the run. That is, the dimension
of the rotated space is maintained at m = n = 100. The
particle flight from the rotated space and the traditional
space were combined throughout the run (β = .3). An op-
tion for associating a generationally dependent weight with
each update to the covariance matrix was included in the
PCPSO algorithm (configurations 3-6 used equation 3 with
λ = .5). The current generation is divided by the max gen-
eration and this fraction is raised to a weighting exponent.
Higher weights tend to attract the eigenvectors that fill out
the z space; which has the effect of making the current di-
rection the particles are flying in more important than past
directions. With respect to the particle swarm social psycho-
logical metaphor, this has the effect of making current ideas
more important than past ideas.

Configurations 3-6 used global updating for the covari-
ance matrix. The developed program also implements local
updating (figure 10, LBest PCA updating) of the covari-
ance matrix resulting in each particle having input into the
rotation of the life space[18]. A GUI program was developed
for implementing the PCPSO algorithm. Figure 10 shows
the settings for the PSPSO parameters for configuration’s
5 and 6.

6.1 PCPSO – High Dimensional Results
The results of the high dimensional study are given in

table 3. Figures 4, 5 and 6 illustrate the improved conver-
gence characteristics of the PCPSO algorithm on the Sphere,
Griewank and Rosenbrock functions respectively. Figure 7
illustrates the problem of initializing the PCPSO at the bot-
tom of the Rastrigin bowl as discussed in the previous sec-
tion. When the PCPSO algorithm was initialized in a larger
Rastrigin space, as in Figure 8, it again converged faster
than the standard PSO.

The last two rows of table 3 demonstrate that the PCPSO
is less dependent on the selection of a maximum velocity
(Vmax). That is, the convergence characteristics of configu-
rations 6 (Vmax = ∞) and 6∗ were very similar (see figures
4, 5, 6 and 8). PCPSO configuration 6∗ outperformed the

PSO configuration 2∗ on all but the Rastrigin f#1
4 as shown

in figure 7.
The time complexity study that follows assumes that the

PCPSO converges at least twice as fast as the PSO on many
functional spaces. The results of the high dimensional study
support this hypothesis.

7. TIME COMPLEXITY
A parameter study was conducted to illustrate the time

complexity of the PCPSO algorithm. Equations 31 and 32
were developed using the Griewank function, 30 particles
and n dimensions; on a 3.2GHz Pentium-4 with 1GB RAM.

tPSO = (iter × tprob) + .06 + .002n (31)

tPCPSO = (iter × tprob) + .132− .005n + .0005n2 (32)

The (iter × tprob) term was added after the equation fit
assuming that:

tprob � tGriwank (33)

It is seen that the time complexity of the PCPSO algorithm
using Gbest covariance updating is O(n2). This is less than



the time complexity of the covariance matrix and eigenvec-
tor calculations (which are O(p ·n2) and O(n3) respectively)
since the eigenvectors and covariance matrix are only up-
dated for each new Gbest. An incremental covariance matrix
algorithm was employed, whereby a new weighted Gbest is
incorporated without requiring a rebuild of the entire covari-
ance matrix. For the PCPSO algorithm to be competitive
with the standard PSO it must be able to find solutions
in fewer iterations than the standard PSO. Figure 5 illus-
trates a case where the PCPSO is converging faster than
the standard PSO. Setting two times equation 31 equal to
equation 32 (with iter = 500) and solving for n:

2(tPSO) = tPCPSO (34)

n = 1000
�
.009+

p
.000057 + tprob

�
(35)

Figure 9 is a log–log plot of equation 35. It is interesting to
note that, for problems having less than a certain number
of dimensions, the PCPSO is a better choice for all function
evaluation times. Since many engineering problems (with
1000 variables or less) require more than a second to eval-
uate, Figure 9 demonstrates that the PCPSO could be an
economical alternative for a large number of engineering op-
timization problems. Figure 5 demonstrates that for high

dimensional problems only
�

1
10

�th
of the eigenvectors may

need to be calculated for a substantial boost in convergence.

8. CONCLUSION
The Principal Component Particle Swarm Optimization

procedure performed well on a set of standard 30-dimensional
test functions. The increased performance of the PCPSO on
higher dimensional problems was demonstrated to be signif-
icant on three of the four test functions. A time complexity
study was developed to provide guidance for the practical
implementation of the PCPSO algorithm.

Since hybrid PSO algorithms can be implemented within
the PCPSO framework without loss of generality the PCPSO
should not be viewed as a competing algorithm, but rather
a symbiotic algorithm that can be employed to accelerate
convergence for high dimensional particle swarm optimiza-
tion problems. The high dimensional and complexity stud-
ies demonstrate that the PCPSO is a promising algorithm
for reducing the time complexity for some high dimensional
engineering problems.

From a social psychological perspective the PCPSO al-
gorithm is grouping certain ideas together based on past
experience. This grouping of ideas can be seen as a form of
linkage-learning [17] or dynamic probabilistic building block
discovery [19].

The mathematics utilized for the PCPSO were limited
to the real vector space <n which is a subset of the set of
topological vector spaces. The PCPSO is a step towards
a topological swarm intelligence that has the potential to
utilize a much richer topological formulation.

A GUI program for verifying the results in this paper will
be provided upon request.
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