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ABSTRACT

An immune system without tissue is like evolution without
genes. Something very important is missing. Here we present
the novel concept of tissue for artificial immune systems.
Much like the genetic representation of genetic algorithms,
tissue provides an interface between problem and immune
algorithm. Two tissue-growing algorithms are presented with
experimental results illustrating their abilities to dynamically
cluster data and provide useful signals. The use of tissue to
provide an innate immune response driving the adaptive
response of conventional immune algorithms is then
discussed.
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General Terms
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1. INTRODUCTION

So the immune system exists to protect tissue from harm. In
one sense, an immune system without tissue is meaningless.
Yet in the field of artificial immune systems there is no real
concept of tissue. Data is typically mapped directly to
antigens. In many cases there is not even the concept of
immune cells, let alone tissue cells. Both conceptually and
technically, this can cause difficulties — for if every new
artificial immune system is directly “wired” to a specific
problem, then it becomes difficult to compare, analyse and
even to apply the AIS to new problems.

Here we propose an alternative treatment for artificial immune
systems. Instead of joining the AIS to its application directly,
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it is proposed that an intermediary representation is employed,
much like the genetic representation of the genetic algorithm.
This intermediary will be a dynamic encoding of the current
problem providing the equivalent of an innate immune
response to support the adaptive response of an AIS. The
encoding will be modified according to the problem like the
genetic encoding of a GA [bentley99]. But regardless of the
underlying data, it will present a consistent interface to an
artificial immune system. That interface will be tissue, fig 1.
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Figure 1 Tissue should act as the interface between problem
and AIS.

1. BACKGROUND

The concept of artificial tissue is used extensively in cell
modelling and simulation, with additional applications in
electronics and biotechnology. One well-known example was
the POEtic project, which used the concept of cellular tissue
and immune cell modelling within hardware devices [11]. In
this architecture each cell is treated as an individual
processing device, with the tissue performing the role of
providing an interface between a biologically inspired
processing mechanism and data provided by the environment.
Similarily, in [3], fault tolerant -electronic circuits were
constructed and used a combination of embryonically grown
cells coupled with immune-inspired negative selection. This
model provides an immune inspired component and entity to
protect, though the protected cells did not provide feedback
signals to the AIS. The protected cells in this system were
embryonically grown, sending out signals to support each
other. The system partitioned the AIS and the cells into
separate layers, providing communication between the two
components. This architecture was implemented and applied to
various hardware devices. Examples of developmental models
that include aspects of tissue growth are becoming more
popular; interested readers should consult [7].

In biology, tissue has long been known to be a crucial
component of the immune system, and this role was
highlighted further by Matzinger. The Danger Model,
proposed by Polly Matzinger in 1994 [9], attempted to alter
the perspective from which the immune system was viewed.
This involved abandoning the belief that the immune system



is conditioned at an early age to distinguish self from non-self
proteins. Instead, this model proposes that the immune system
contains cells sensitive to cellular damage. In her words: “The
Danger model ... suggests that neither the innate nor adaptive
immune systems are in ultimate control. This function belongs
to the ancient innate responses of the normal bodily tissues
themselves” [8]

The theory suggests that signals are innately released from
cells under stress, due to damage, often derived from
pathogens, physical disruption, radiation, extreme pHs or
temperature. These signals may cause tolerance to proteins
through regulatory cell activation or lead to the activation of
effector cells [10]. This discrimination is based on the
information gathered from proteins collected within the body,
in combination with various signals derived from host tissue
cells. The combination of antigens-plus-signals can give
information regarding damage to a specific area of tissue. In
order to understand what the signals are and under what
conditions they arise, two important types of cell death have
to be examined.

1. Apoptosis. Tissue cells can die in a number of different
ways, forming part of the life cycle of a cell. It is essential for
cells to die under controlled conditions to provide regulation
of tissue growth and to remove defective and virally infected
cells. This type of pre-programmed cell death is known as
apoptosis. On receipt of an apoptotic signal the cell releases a
number of degrading enzymes which have dramatic effects on
the internal structure of the cell. The cell's DNA is fragmented
into orderly portions, nuclear condensation is initiated and
organelles are broken down. During this period of degradation,
the integrity of the outer cell membrane remains intact, while
expressing greater quantities of signalling molecules on the
membrane surface. These molecules are detected by innate
immune cells, such as macrophages, which are triggered to
ingest the cell, ultimately resulting in removal of the
apoptotic cell from the tissue[5].

2. Necrosis. In contrast, unexpected, chaotic cell death does
not involve an intricate removal system. Unlike apoptotic
cells, the necrotic cell swells up, the internal material is
chaotically fragmented and the membrane integrity is lost.
Ultimately, the cell explodes, releasing its contents into the
fluid surrounding the cell. Cellular products released as a
result of necrotic cell death are known as danger signals -
endogenous activators of the innate immune system. This
includes molecules derived due to cell degradation, inclusive
of uric acid, adenosine-tri-phosphate, and heat shock
proteins[12], in addition to an array of pro-inflammatory
cytokines.

Without tissue there would be no endogenous danger signals,

no innate immune activation and nothing to protect.
Additionally it is thought that the absence of tissue derived
danger signals is as equally important as their presence,
through the generation of proteins that do not belong to the
host, yet cause no damage, e.g. bacterial gut flora. The
detection of an apoptotic signal is translated into the
activation of the adaptive immune system's regulatory cells
[10].

It is clear that tissue has been highlighted as an integral part of
immune function. Danger signals released from cells dying
under stressful conditions activate cells belonging to the
innate immune systems. These cells ultimately control the
effector cells, and giving direction to the immune response.

Yet, the concept of tissue has not been widely used within AIS.
The question remains: is it possible to construct artificial
tissue to provide an interface between an application and an
artificial immune system?

1. DEFINING TISSUE

Focussing for now on the task of anomaly detection, it is
proposed that tissue designed for artificial immune algorithms
should comprise a series of linked cells, each cell “grown” in
response to specific data, in a data stream being input to the
system. Cells should grow and be supported by homogeneous
data. Where data does not exist to support a cell, the cell dies.
Where too much/too diverse data exists for a cell, the cell
divides. Cells should exist in a dynamic network structure,
with similar cells linked or placed near to each other. The use
of a cellular representation is also intended to enable
distributed processing and the support of multiple
datastreams simultaneously.

In the ‘tissue paradigm’ all communication between a problem
and AIS is mediated via the tissue. Tissue thus provides some
functionality of the innate immune system, with the AIS
performing the common role of adaptive immune system.

1.1 Uplinks

Given a data stream of temporally homogeneous data items,
the tissue will quickly grow to form a specific shape, structure
and size, which will be maintained indefinitely. The artificial
immune system should consult all cells in the tissue,
examining them and any corresponding danger signals. If the
data changes, the tissue will change in response. Those aspects
of the data that remain the same will continue to support the
corresponding parts of tissue. Those aspects that differ will
result in a restructuring or even cell death. An artificial
immune system should thus be able to ignore static tissue and
quickly cause an immune response on and near to the cells
where the changes (and corresponding signals) are occurring.
In this way the tissue provides more than an interface to the
underlying data — it provides a spatial and temporal structure,
enabling the AIS to specialise and focus to different extents,
spatially and temporally.

It is recognised (and experiments confirm later) that the tissue
will not perform perfectly as a clusterer and anomaly detector —
if it did there would be no reason to have the AIS. Instead, the
tissue provides useful data preprocessing, gathering similar
data items together, and presenting gross, short-term
anomalies to the AIS. (Specific, problem dependent knowledge
can also be incorporated and exploited in the cells in order to
present other innate signals to the AIS.) It is expected that
critical anomalies will still occur within “normal” tissue. Thus
the role of the AIS in the ‘tissue paradigm’ is now to consult
cells within the tissue and identify fragments of data
(antigens) presented by the cells that together may indicate a
critical anomaly. Note that there is no real concept of a
self/non-self division; here the concept is more one of
stability/entropy. A stable tissue is considered ‘healthy’;
unstable or entropic tissue is ‘unhealthy’ and will attract
attention from the AIS.

1.1 Downlinks

The natural immune system is designed to both detect harmful
anomalies and remove the causal agents. However, an artificial
immune system using the ‘tissue paradigm’ cannot simply
remove ‘infected’ cells from the tissue — this would only



prevent the tissue from presenting information about the
anomaly to the AIS, it would not prevent the underlying
anomaly in the application from reoccurring. Instead, the AIS
should use the tissue as an interface to the application. If a
critical anomaly is discovered, cells should be informed which
antigens are responsible. The cells then pass this information
down to the underlying application, where the information
should be used to remove the cause of the anomaly. For
example, in a computer network intrusion detection
application, if the AIS identifies a specific antigen in one cell,
the cell will then communicate this information to the network
management software. This software might terminate a
corresponding process and thus remove the ‘infection’ from
the input data stream, or just inform the system administrator.
If there is a one-to-one correspondence between cell and
anomaly, then by identifying the anomalous antigen within
the cell, and causing the subsequent prevention of the
anomalous data in the input stream, the corresponding cell
will no longer be supported by the data stream and will die. In
other words, it is possible for the AIS to cause tissue cell death
by interacting with the application via the tissue.

1. Tissue Algorithms

There are many ways in which tissue can be developed. Here we
present two different approaches: a network tissue growing
algorithm, and a swarm tissue growing algorithm. Both
effectively act as dynamic clusterers, using danger signals as
approximate alerts of anomalies in the input stream.

1.1 Network Tissue Algorithm

The network-based algorithm explicitly maintains cells in a
dynamic network, with parent cells pointing to daughter cells,
and link restructuring on cell death to maintain network
coherence (e.g., the death of a parent cell results in the oldest
daughter cell taking the parent’s position in the network). In
this  algorithm, each  cell may  hold up to
maxantigenspercell antigens before dividing into two.
Figure 2 outlines the network tissue algorithm.

1.1.1 Biological Analogies

Figure 3 summarises the model with respect to natural
biology. In this model a single cell may represent a particular
cell type of a living organism. While there is data to support a
cell (i.e., while the impact of the environment and genes results
in a particular type of tissue structure), the cell will survive
indefinitely (the tissue will have a certain cell type and
structure  indefinitely). If the input stream changes
permanently (or for a sufficiently long duration), even if the
change is dramatic, the new data will cause corresponding new
tissue to develop and be supported (i.e. a long-term change in
the environment causes long-term useful changes in tissue
structure). But if an anomalous datum creates a cell, and there
is insufficient subsequent similar data to support that cell,
then the cell will die. (In an organism, cells can be created in
response to the environment, affected by the existing tissue;
but the environment might include some form of pathogen,
which infects and destroys cells of that type). It is not
necessary for apoptosis to be modelled explicitly — it is
assumed that a single cell represents many cells of that type
growing and dying to be replaced by new cells naturally. So
should a cell die in the model, this can only be necrosis — and
thus it causes the release of a danger signal, to be passed to the
neighbouring cells in the tissue.

create zygote with first data point (antigen)
—p» get next antigen from data steam
find nearest cell (cell with mean antigen
closest to current antigen)
if current antigen is sufficiently similar*
to nearest cell mean
then add antigen to nearest cell
if nearest cell has number of antigens ==
maxantigenspercell
then split current cell into two linked cells
s.t. antigens are shared equally**
update cell means, danger signals and
linked neighbours
else
create new cell at current antigen;
nearest cell is linked parent

for every cell
for every antigen in the cell
age antigen
if antigen age > maxantigenage
remove antigen
if antigens in cell == 0
cell dies (can no longer respond to input)
create new dangersignal, origin = final antigen,
range = cell stddev,
strength = max (or inversely proportional
to cell age)
pass all danger signals of dying cell to
linked neighbouring cells

for every dangersignal
reduce stength
if stength ==

delete dangersignal

*similarity measures depend on the matching function used

and underlying application; in the experiments reported
here, data values are normalised and the Euclidian distance
between cell mean and antigen compared against a similarity
threshold of 0.2 (default).
**the cell split function should use the same distance
function to divide antigens into two groups; in the
experiments reported here, all antigens greater than the
mean are placed in one cell, all antigens less than the mean
are placed in the other.

In addition to the
important constants:

similarity measures, there are 2
maxantigenage - determines number of antigens held by tissue
cells at any point in time.

maxantigenspercell - affects how many cells there will be in
the tissue

Figure 2 The network tissue algorithm.

In an attempt to match biological characteristics of danger
signals, in the model, danger signals emitted as a result of
necrosis are general indicators of an anomaly, but are spatially
and temporally specific. The danger signals from a dead cell
are held by its neighbouring cells (which, through automatic
network restructuring or swarming after necrosis, “fill the gap”
left by the dead cell). It is possible for cells to hold many
danger signals at once. Danger signals decay over time; they
are removed once their strength falls to zero.
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Figure 3. Left: Organic tissue grows according to its DNA,
and interactions with its environment. To create a new cell,
an existing cell divides into two. Necrosis results in “danger
signals”. Immune cells consult antigens presented by tissue
cells and respond by destroying infection. Right: AIS tissue
grows according to its rules of growth and interactions with
a problem. To create a new cell, an existing cell may split
into two. Unnatural cell death results in danger signals. The
AIS consults antigens presented by tissue cells and responds
by signalling the underlying application via the cells,
potentially resulting in the destruction of cells that are
presenting anomalous antigens.

1.1.1 Experiments

A series of experiments were performed using the standard
“breast cancer” UCI machine learning data set, comprising 240
‘malignant’ items in class 1 and 460 ‘benign’ items in class 2.
For each system setting, the same experiment was repeated 30
times. Implemented in ‘C’ and running on a Mac Powerbook
G4, each run of 10,000 iterations (with one randomly picked
data item presented to the tissue each iteration) lasted less
than 5 seconds. Class 2 (benign) is treated as the ‘“normal”
class of data, with items from class 1 (malignant) being
introduced into the datastream every 25 iterations (this value
is investigated in the first 3 experiments).

Table 1 lists the different parameter settings used in the
experiments.

Table 1 System setups for the nine experiments.

. Max Max Similarity Class 1
Experiment antigen age ﬁgltllgens/ threshold item freq.
1 40 10 0.2 25
2 40 10 0.2 10
3 40 10 0.2 5
4 40 10 0.1 25
5 40 10 0.3 25
6 40 5 0.2 25
7 40 15 0.2 25
8 20 10 0.2 25
9 60 10 0.2 25

1.1.1 Analysis

Table 2 shows the results for the nine experiments. As is to be
expected from a deterministic algorithm (where the only
stochastic element is the data item order in the data stream),
the results for all experiments were very consistent across
runs, as shown by the low standard deviation values.
Experiments 1 to 3 indicate how the frequency of anomalous
data items influences the accuracy of danger signals, i.e., more
frequent items from class 1 reduces the tendency of the tissue
to treat class 1 items as anomalous (true positive), while the
percentage of items in class 2 treated as anomalous remains
unchanged (false positive). Experiments 4 and 5 (also compare

with experiment 1) show how changing the similarity
threshold affects danger signal accuracy. A smaller threshold
produces near perfect detection of anomalies from class 1, but
also increases the tendency for items in class 2 to be detected
as anomalies. The opposite effect occurs when the threshold is
increased. Experiments 6 and 7 (also compare with experiment
1) show how the number of antigens per cell affects danger
signals. No real change occurs to the accuracy of detection of
anomalous items from class 2, but a smaller number of
antigens produces far less tolerance for different items in class
1 (the cells are more specialised, increasing the chances for
even slightly different antigens to be treated as anomalous).
Increasing the number of antigens has the opposite effect —
causing a significant reduction in the number of items in class
2 that are treated as anomalous. Finally, experiments § and 9
(also compare with experiment 1) show the effect of varying
the maximum antigen age. In the experiments, this has only a
minor effect on danger signal accuracy, although the results
suggest that the age should be set in relation to the expected
frequency of anomalies in the datastream, i.e., a long age for
frequent anomalies increases the tolerance of the tissue for the
anomalies, while a short age causes infrequent but normal data
items to be treated as anomalies.

Table 2 Results for experiments 1-9, showing mean number
of danger signals per run, standard deviation, and
percentage of danger signals that correspond to data items
in class 1 and class 2.

Class 1 Class 2

exp mean stddev | % mean | stddev | %

1 3828 26 98.1% | 10085 | 25.1 10.5%
2 9334 58 956% | 946.7 20.2 10.5%
3 1801.7 | 20.2 92.3% | 8426 220 10.5%
4 3901 14 99.9% | 1378 272 14.4%
5 3735 35 95.7% | 849.7 200 8.9%
6 3837 24 98.3% | 21658 | 27.3 22.6%
7 384.0 22 984% | 796.7 248 8.3%
8 389.6 16 99.6% | 1046.1 | 195 10.9%
9 3787 30 97.2% | 946.0 240 9.9%

1.1 Swarm Tissue Algorithm

The swarm-based algorithm is a second, alternative approach
to tissue development. It is designed to follow much the same
“tissue growing” principles as outlined previously, but now
clusters in the tissue are formed by cell movement in a two-
dimensional space (of size 1000 by 1000 units) which is
unrelated to the data values, with similar cells moving
together and dissimilar cells moving apart. In this algorithm,
each cell holds just one data item; cells are created by new data
and die constantly — thus apoptosis is modelled in this
algorithm. If cells have not grouped themselves into a cluster
by the time they die, they produce a danger signal, i.e. necrosis
is modelled by the death of “abnormal”cells that do not
participate in normal tissue development. Figure 4 outlines
the algorithm, which uses the following swarming rules to
drive the motion of cells:



Vi = Wvitcir i(Xpbest,i — Xi) Rule 1

Vi = Vi=f2c2r 2(Xavoid,i — Xi) Rule 2

if (Vil>Viax) Vi = (Vmax/|Vi)Vi Rule 3

X; =xitv; Rule 4
where:

x; is the current position of data item i

Xpbest,i 1S the current best position of data item i

Xavoidi Tepresents the current avoidance position of data
item i.

v; is the velocity of data item i

w is a random inertia weight between 0.5 and 1 [4]
crand ¢y are spring constants set to 1.494 [4]

r;and r, are random numbers between 0 and 1 [2]

/> is the repulsive factor (default value 2). Defines the
effect of the repulsive force on velocity; the higher the
value the more that dissimilar items repel each other.
Vmax 18 the maximum velocity (default value of 300)

Note: Xppess,i is either the central position of all items in the
same cluster as 7/ or the central position of all items in the
swarming space (if i does not belong to a cluster)

Xavoidi Tepresents the central position of all data items in i’s
neighbourhood whose similarity value falls below the
similarity threshold.

1.1.1 Biological Analogies

Figure 5 summarises the model with respect to natural
biology. In this model cells are modelled more directly. New
data generates new cells which all live for a fixed lifespan
before dying. While they live they move with respect to each
other, with similar cells clustering and dissimilar cells moving
apart (i.e., the impact of the environment and genes results in a
particular type of tissue structure, with similar cells adhering
to each other and forming organs). As with the previous
algorithm, if the input stream changes permanently (or for a
sufficiently long duration), even if the change is dramatic, the
new data will cause corresponding new tissue to develop and
be supported (i.e. a long-term change in the environment
causes long-term useful changes in tissue structure). But if an
anomalous datum creates a cell, and there is insufficient
subsequent similar data to produce similar cells, then the cell
will be unable to form a cluster before it dies. (In an organism,
cells can be created in response to the environment, affected by
the existing tissue; but the environment might include some
form of pathogen, which infects and alters cells of that type).
In this algorithm, apoptosis is modelled explicitly — cells
grow and die to be replaced by new cells naturally. So in this
model, necrosis is modelled by a dying cell that has not
formed part of a group of other cells — and thus it causes the
release of a danger signal, to be passed to the neighbouring
cells in the tissue.

—P» get next antigen from data steam
create cell using antigen and place in swarm-tissue

for every cell, (current cell = C;)
for every cell in neighbourhood* of C;
(neighbour cell = Cj)
if C; is sufficiently similar**
to C,/cell-cluster***
then C; joins/makes cluster with C,/cell-cluster
if C; and C, were in clusters with differences <
current similarity
then they form a new cluster together
else
C,/cell-cluster*** is added to
cell avoidance list
if C; is in a cluster, C; best position is mean pos.
of cells in C; cluster
else C; best position is mean tissue position

update velocity of C; using best pos,
mean avoidance values (Rules 1 to 3)
update C; position based on velocity (Rule 4)

increase age of C;
if C; age is greater than celllifespan
remove C; from swarm-tissue
if C; was not in a cluster
create dangersignal, origin = Ci,
range = cell stddev,
strength = max
(pass all danger signals of dying cell
to neighbouring cells)

for every dangersignal
reduce strength
if stength ==

delete dangersignal

* defined by radius around C; where radius = 300

** similarity measures depend on the matching function used
and underlying application; in the experiments reported
here, data values are normalised and the Euclidian distance
between the two cell values are compared against a
similarity threshold of 0.2 (default). In addition, the
similarity measure between C; and C, where Cp, 1is 1in a
cluster is scaled by the inverse of the number of cells in
the cluster, making larger clusters more attractive.

***% if C, is in a cluster, the mean value of cells in the
cluster is used, otherwise the value of C, is used.

Figure 4 The swarm tissue algorithm.

environment + DNA

problem + rules of growth

Figure 5. Left: Organic tissue grows according to its DNA,
and interactions with its environment. Right: AIS tissue
grows by moving cells relative to each other according to
their rules of growth and interactions with a problem. A cell
that has not formed part of the tissue before it dies is
necrotic and produces a danger signal. The AIS consults
antigens presented by tissue cells and responds by
signalling the underlying application via the cells.




1.1.2 Experiments

Again, a series of experiments were performed using the
standard “breast cancer” UCI machine learning data set. As
before, for each system setting, the same experiment was
repeated 30 times. This time implemented in Java J2SE and
running on a 2.4 Ghz Pentium 4 PC, each run of 10,000
iterations lasted between 30 and 145 seconds. The same
parameter settings as listed in table 1 were used for the
experiments, although experiments 6 and 7 could not be
performed as each cell only holds one antigen in this model.

Table 3 Results for experiments 1-9, showing mean number
of danger signals per run, standard deviation, and
percentage of danger signals that correspond to data items
in class 1 and class 2.

Class 1 Class 2

experiment | mean | sstdev | % mean | stdev | %

1 3980 | 0.18 99.99% | 19736 | 39.2 20.6%
2 9%6.0 | 0.18 100.0% | 1903.1 | 384 21.2%
3 19919 | 037 100.0% | 17834 | 46.0 22.4%
4 398 0 100.0% | 40450 | 61.7 42.3%
5 3973 | 092 99.82% | 14344 | 448 15.0%
8 399 00 100.0% | 64259 | 754 67.1%
9 3969 | 025 99.98% | 14224 | 445 14.9%

1.1.3 Analysis

Table 3 shows the results for the nine experiments. Accuracy of
danger signals for class 1 is consistently high for all
experiments, but the changes in parameter settings do appear
to affect the percentage of items in class 2 treated as
anomalous. Presenting items from class 1 more frequently (see
results for experiments 1,2,3) produces a subtle increase in
class 2 anomalies; this may be caused by a disturbance effect
of more cells in class 1 disrupting the path of class 2 cells as
they try to cluster. A lower similarity threshold allows fewer
cells to cluster and so produces a considerably worsened
percentage for class 2 anomalies, while a higher threshold has
the reverse effect (see results for experiments 1,4,5). The same
effect occurs when cell age is modified (see results for
experiments 1,8,9) — a lower age produces fewer chances for
clusters to form in time; a higher age increases the chance and
thus reduces the class 2 signals. Further experiments showed
that increasing the lifespan to 100 and using a threshold of 0.3
produced accuracy in class 1 of 99.8% and in class 2 of 8.9%,
although execution times increased to 145 seconds for 10,000
items.

1. Discussion

Like immunobiology, the field of artificial immune systems
has been obsessed with the workings of the adaptive immune
system and its capabilities of specificity, diversity and
memory, with little work spent on the innate immune system.
This work attempts to lay the foundations of a more complete
view of the immune system for AIS. We propose that the
concept of tissue is important for several reasons:

* Tissue provides a generic data representation which
interfaces between problem and conventional AIS,
simplifying future AIS development.

e Tissue stores the current state of the application,
providing a clearer concept of “organism” and enabling

the AIS to learn to detect changes in the organism, correct
harmful changes and prevent future damage by similar
agencies.

* For applications such as anomaly detection, tissue
provides a dynamic window of the input data stream; the
data is dynamically organized and spatially structured,
encapsulating the important concepts of temporal and
spatial variability. An AIS exploiting tissue would be
able to specialize and focus on different areas of the
problem, at different times, enabling a more precise
response.

* Tissue encapsulates ideas of homeostasis — if the problem
becomes heterogenous or chaotic, the tissue will
reorganize its structure in response. An AlS collaborating
with the tissue would be able to correct harmful changes
and work to maintain homeostasis.

* Tissue is essential for the innate immune system, and
tissue algorithms can be used to provide desirable
“automatic” processing and signals from data.

It is proposed that an AIS will employ tissue by traversing its
spatial representation and allocating resources according to
the spatial and temporal requirements. A network-based AIS
might form distinct and functionally diverse subnetworks to
focus on tissue cells of different types. A population-based
AIS would be able to allocate subpopulations of agents (e.g.,
antibodies, B-cells or T-cells) for specific regions of tissue. In
all cases, all aspects of the problem should be presented to the
AIS through tissue, and all AIS responses should be presented
to the underlying application by the tissue.

In this work we have focused on the task of anomaly detection,
and both tissue-growing algorithms were developed with this
in mind. However, we propose that the concept of tissue
should be employed for all AIS applications. This may
inevitably involve different forms of tissue growth. For
example, in a robot control application [6], sensor input might
be used as an input data stream and the algorithms presented
above could be used. Alternatively, the state of sensors and
actuators might be represented by a fixed and predefined
tissue structure (e.g. a cell for each sensor, and a cell for each
motor). Such a structure would change if sensors or motors
were lost through damage — obviously requiring a significant
response from the controlling AIS. But normal control would
occur through the robot presenting its changing state via
antigens and signals from the cells, interpreted by the AlIS,
with responses made to the cells being mapped back to robot
motor control.

Like the genetic representations of genetic algorithms, the
exact tissue representation necessary is likely to be
application-specific, but the AIS used to consult with the
tissue and respond to it should be generic. It is conceivable
that evolutionary computation could be employed to evolve
useful innate tissue responses for a given application and AIS.
Indeed if each tissue cell contained an evolving GP function
[1], cells would be able to present one or more evolved
interpretations (i.e., signals) derived from the raw data, in
addition to the raw data.

1. Conclusions

In this work we have presented the novel concept of tissue for
artificial immune systems. Much like the genetic
representation of genetic algorithms, tissue provides an
interface between problem and immune algorithm. From the



perspective of immunobiology, tissue provides an innate
immune response, with the AIS providing an adaptive
response. Two tissue-growing algorithms were presented with
experimental results illustrating their abilities to dynamically
cluster data and provide useful signals. Both algorithms are
able to detect anomalous data items with accuracies up to
100% depending on the parameter settings. Future work will
investigate the integration of these algorithms with artificial
immune systems for intrusion detection.
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