
Rank Aggregation for Metasearch Engines using a Self-
Adapting Genetic Algorithm with Multiple Genomic 

Representations  
Michael L. Gargano 

Computer Science, Pace University, NY  
1 Martin Avenue 

White Plains, NY 10606-1909 
(011) 212 346 1687 

mgargano@pace.edu 

Maheswara P. Kasinadhuni* 
Computer Science, Pace University, NY  

1 Martin Avenue 
White Plains, NY 10606-1909 

(011) 732 977 8772 

mpkasinadhuni@hotmail.com 
 
 
 

ABSTRACT 
In this paper,  we consider the problem of combining rankings 
from the findings of various search engines in order to select 
documents based on differing and multiple criteria thus improving 
the results of a search.  We propose using multiple genomic 
redundant representations in a self-adapting genetic algorithm 
(GA) employing various codes with different locality properties. 
These encoding schemes insure feasibility after performing the 
operations of crossover and mutation and also ensure the 
feasibility of the initial randomly generated population (i.e., 
generation 0).  The GAs applied in solving this NP hard problem 
employ non-locality or locality representations when appropriate 
(i.e., the GA adapts to its current search needs) which makes the 
GAs more efficient [15]. 

 

Keywords: rank aggregation, metasearch, selfadapting genetic 
algorithm. 

1. INTRODUCTION TO THE PROBLEM 
We consider the problem of combining rankings from the findings 
of various search engines in order to select documents based on 
differing and multiple criteria thus improving the results of a 
search.  This problem is concerned with finding a consensus 
ranking that “faithfully” represents and reflects the combined 
rankings of many different search engines. This will provide a 
greater robustness of a search overcoming individual search 
engine bias or other inadequacies.  
Given a set of preference lists or rankings, we wish to find a 
consensus that minimizes the Kendall Tau distance (i.e., find a 
Kemeny optimal aggregation) [16].  The Kendall Tau distance 
between two rankings (i.e., n permutations) is the number of pairs 
of distinct integers a and b such that  1 ≤ a, b ≤ n  where a and b 
are in the opposite order in each ranking.  For example, if n = 6 
and ranking #1 is 162345 while ranking #2 is 231645, we find the 
the Kendall Tau distance to be 4 since only the four pairs  {1, 2},  
{1, 3},  {2, 6}, and  {3, 6} are in opposite order in each ranking.  
This is a standard method used by mathematicians to quantify the 
difference (i.e., distance) between the two rankings [16]. 
Here is a simple example of this problem.  Suppose we receive 
the resulting priority lists (of size 5) from six different search 

engines and wish to form a consensus list using the distance 
method described above. 
 

ranking #1 51324 
ranking #2 34125 

ranking #3 45312 
ranking #4 14253 

ranking #5 45321 
ranking #6 43521 

 

The consensus list that minimizes the Kendall Tau distance (i.e., 
finds a Kemeny optimal aggregation) is 45312 since the sum of 
the distances from each of the six rankings is 17 and is the 
smallest such total distance amongst all the possible lists (i.e., 5 
permutations).  A consensus is Condorcet if the ranking reflects 
the fact that if  a  is higher than b in a majority of the lists then a 
is ranked higher than b in the consensus [17].  However, since 
finding such a Condorcet consensus is not always possible, 
finding the minimium Kendall Tau distance (i.e., Kemeny optimal 
aggregation) is the best we can do while keeping in the spirit of 
the Condorcet idea [18]. 
Since finding such a consensus list is an NP hard we will solve it 
using genetic algorithmic methods. 

2. GENETIC ALGORITHM METHOD 
A genetic algorithm (GA) is a biologically inspired, highly 
robust heuristic search procedure that can be used to find optimal 
(or near optimal) solutions to Non-deterministic Polynomial,  NP 
hard problems.  The GA paradigm uses an adaptive methodology 
based on the ideas of Darwinian natural selection and genetic 
inheritance on a population of potential solutions.  It employs the 
techniques of crossover (or mating), mutation, and survival of the 
fittest to generate new, typically fitter members of a population 
over a number of generations [1, 2, 3].   
 
We propose GAs for solving this optimal sequencing problem 
using novel multiple genomic redundant encoding schemes.   Our 



GAs create and evolve an encoded population of potential 
solutions so as to facilitate the creation of new feasible members 
by standard mating and mutation operations. ( A feasible search 
space contains only members which satisfy the problem 
constraints, that is, a sequencing [4, 5, 6, 7, 13,14].)  When 
feasibility is not guaranteed, numerous methods for maintaining a 
feasible search space have been addressed in [11], but most are 
elaborate and complex.  They include the use of problem-
dependent genetic operators and specialized data structures, 
repairing or penalizing infeasible solutions, and the use of 
heuristics.)  By making use of problem-specific encodings, our 
problem insures a feasible search space during the classical 
operations of crossover and mutation and, in addition, eliminates 
the need to screen during the generation of the initial population.   
 
We adapted many of the standard GA techniques found in [1, 2, 
3] to this problem.  A brief description of these techniques 
follows.  Selection of parents for mating involves randomly 
choosing one very fit member of the population (i.e., one with a 
small Kendall Tau distance) and the other member randomly.  
The reproductive process is a simple crossover operation whereby 
two randomly selected parents are cut into sections at some 
randomly chosen positions and then have the parts of their 
encodings swapped to create two offspring (children).  In our 
application the crossover operation produces an encoding for the 
offspring that have element values that always satisfy the position 
bounds (i.e., range constraints). Mutation is performed by 
randomly choosing a member of the population, cloning it, and 
then changing values in its encoding at randomly chosen positions 
subject to the range constraints for that position. A grim reaper 
mechanism replaces low scoring members in the population with 
newly created more fit offspring and mutants.  Our fitness 
measure will be the Kendall Tau distance. The GA is terminated 
when, for example, either no improvement in the best fitness 
value is observed for a number of generations, a certain number of 
generations have been examined, and/or a satisficing solution is 
attained (i.e., the result is not necessarily optimum, but is 
satisfactory). 
 

3. THE GENERIC GENETIC ALGORITHM 
 We can now state the generic genetic algorithm we used for each 
application: 
1) Randomly initialize a population of multiple genomic 

redundantly encoded potential solutions.  
2) Map each population member to its equivalent phenome. 
3) Calculate the fitness of any population member not yet 

evaluated. 
4) Sort the members of the population in order of fitness. 
5) Randomly select parents for mating and generate offspring 

using crossover. 
6) Randomly select and clone members of the population to 

generate mutants. 
7) Sort all the members of the expanded population in order of 

fitness adjusting each of the multiple segments to reflect the 
phenome with best fit. 

8) Use the grim reaper to eliminate the population members 
with poor fitness. 

9) If (termination criteria is met)  then return best population 
member(s)  
                                                  else go to step 5. 

 

4. ENCODINGS 
This application has multiple permutation encodings to identify 
the sequencing via different representations.  Here we define the 
permutation code, forward code, and backward code for a 
permutation. 
 

           The 5-permutation  41532 or P[1] = 4, P[2] = 1, P[3] = 5, 
P[4] = 3, and P[5] = 2 can represent itself.  This is one of multiple 
representations of 41532.  We call this the permutation code and 
PC[1] = 4, PC[2] = 1, PC[3] = 5, PC[4] = 3, and  PC[5] = 2.   
 

           An n permutation of the integers { 1, 2, …, n } can also be 
encoded by an array of size n where the value of the kth position 
can range over the values  1, 2, …, n-k+1.    
 

           An encoding of a permutation of the elements can also be 
represented as an array FC (forward coding) where 1 ≤ FC[k] ≤ 
n-k+1 for 1 ≤ k ≤ n.  In order to decode a permutation code FC to 
obtain the permutation that it represents, begin with an empty 
array P of size n, then for 1 ≤ i ≤ n  fill in the FC[i]th empty 
position (from left to right starting at position 1) of P with the 
value i.   
           Consider an example, with n = 5 and  FC[1] = 2, FC[2] = 
4, FC[3] = 3, FC[4] = 1, and FC[5] = 1 (or 24311) which 
represents the permutation  P[1] = 4, P[2] = 1, P[3] = 5, P[4] = 3, 
and P[5] = 2 (or 41532).   
           Given a permutation array P, the reverse process begins 
with an empty array FC of size n, then for 1 ≤ i ≤ n starting with i 
= 1 and ending with i = n fill in the ith position of FC (from left to 
right starting at position 1) with the value  k-(# of values ≤  i that 
occur before position i in P) where P[k] contains the value i. 
(Note that FC[n] will always be 1, so that, we can shorten FC to 
an n – 1 element array if we wish.) An ordering of a set of 5 
elements { e1, e2, e3, e4, e5 } based on the forward code (24311) 
would then be 5-tuple (e4, e1, e5, e3, e2).   
  
           An encoding of a permutation of the elements can also be 
represented as an array BC (backward coding) where 1 ≤ BC[k] 
≤ n-k+1 for 1 ≤ k ≤ n.  In order to decode a permutation code BC 
to obtain the permutation that it represents, begin with an empty 
array P of size n, then for 1 ≤ i ≤ n  fill in the BC[i]th empty 
position (from left to right starting at position 1) of P with the 
value n-i+1.   
           Consider an example, with n = 5 and  BC[1] = 3, BC[2] = 
1, BC[3] = 2, BC[4] = 2, and BC[5] = 1 (or 31221) which 
represents the permutation P[1] = 4, P[2] = 1, P[3] = 5, P[4] = 3, 
and P[5] = 2 (or 41532).   



           Given a permutation array P, the reverse process begins 
with an empty array BC of size n, then for 1 ≤ i ≤ n starting with i 
= 1 and ending with i = n fill in the ith position of BC (from left to 
right starting at position 1) with the value  k-(# of values ≥i that 
occur before position i in P) where P[k] contains the value n – i + 
1. (Note that BC[n] will always be 1, thus, we can shorten BC to 
an n – 1 element array if we wish.) An ordering of a set of 5 
elements { e1, e2, e3, e4, e5 } based on the backward code (31221) 
would then be 5-tuple (e4, e1, e5, e3, e2).   
 

           Next we consider a multiply redundant representation [12] 
that can be given by concatenating these lists.  Thus a multiply 
redundant representation of the permutation 41532 would then 
be 243113122141532 with forward, backward, and permutation 
codes concatenated in that order.  It is easy to mate and mutate 
this multiple representation scheme [6, 7, 13, 14], however the 
resulting list may not reflect the same phenotype in each segment 
of the multiple genome. In this case we simply choose a best 
performing segment and repair the entire multiple genome to 
mirror the best phenome in all of the other redundant segments.   
Suppose  243113122141532  is a multiple genome for  41532  and  

322211431152134 is a multiple genome for 52134. 
Mating on positions 010110000110100 i.e.,swap positions 
2,4,5,10,11,13 to get the child, 223213122151432     after 
swapping in those positions.  
(Notice in last segment we get 51432 since positions 11 and 13 
now reflect 4 and 5 in the first genome 41532 in the same order as 
the second genome 52134.)                                    
Assuming the first segment 22321 represents the best phenome 
51243, we repair the entire code and get 223211332151243 which 
is the multiple genome for   51243. 
 

5. RESULTS 
The multiple genomic redundant representation using all three 
segments was most efficient.  We experimented with all seven 
possible combinations, i.e., forward only, backward only,  
permutation only, forward&backward, forward&permutation 
backward&permutation and finally all three together 
forward&backward&permutation.  The experiments using all 
three were consistently most efficient even though more overhead 
was generated.  
 
The multiple genomic redundant representation using all three 
segments was also examined as to which representations 
dominated at various stages of the search.  The permutation code 
was used extensively in the earlier generations when the GA 
was searching more globally since this coding scheme does not 
have a good locality property.  In the later stages the GA 
adapted its search using mostly the forward and backward 
codes which have a stronger locality property.  
 

6. CONCLUSIONS 
We considered using multiple genomic redundant representations 
in a self-adapting genetic algorithm to solve the Kemeny optimal 
aggregation problem which is NP hard.  We then demonstrated 

that using multiple genomic redundant representations to create a 
self-adapting genetic algorithm by employing various codes with 
different locality properties that the genetic algorithm’s efficiency 
was improved. The GA solving this NP hard problem,  employ 
non-locality or locality representations when appropriate since the 
GA adapts to its current search needs making the GA more 
efficient.    
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