
Rank Aggregation for Metasearch Engines using a Self-
Adapting Genetic Algorithm with Multiple Genomic

Representations
Michael L. Gargano

Computer Science, Pace University, NY
1 Martin Avenue

White Plains, NY 10606-1909
(011) 212 346 1687

mgargano@pace.edu

Maheswara P. Kasinadhuni*
Computer Science, Pace University, NY

1 Martin Avenue
White Plains, NY 10606-1909

(011) 732 977 8772

mpkasinadhuni@hotmail.com

ABSTRACT
In this paper, we consider the problem of combining rankings
from the findings of various search engines in order to select
documents based on differing and multiple criteria thus improving
the results of a search. We propose using multiple genomic
redundant representations in a self-adapting genetic algorithm
(GA) employing various codes with different locality properties.
These encoding schemes insure feasibility after performing the
operations of crossover and mutation and also ensure the
feasibility of the initial randomly generated population (i.e.,
generation 0). The GAs applied in solving this NP hard problem
employ non-locality or locality representations when appropriate
(i.e., the GA adapts to its current search needs) which makes the
GAs more efficient [15].

Keywords: rank aggregation, metasearch, selfadapting genetic
algorithm.

1. INTRODUCTION TO THE PROBLEM
We consider the problem of combining rankings from the findings
of various search engines in order to select documents based on
differing and multiple criteria thus improving the results of a
search. This problem is concerned with finding a consensus
ranking that “faithfully” represents and reflects the combined
rankings of many different search engines. This will provide a
greater robustness of a search overcoming individual search
engine bias or other inadequacies.
Given a set of preference lists or rankings, we wish to find a
consensus that minimizes the Kendall Tau distance (i.e., find a
Kemeny optimal aggregation) [16]. The Kendall Tau distance
between two rankings (i.e., n permutations) is the number of pairs
of distinct integers a and b such that 1 ≤ a, b ≤ n where a and b
are in the opposite order in each ranking. For example, if n = 6
and ranking #1 is 162345 while ranking #2 is 231645, we find the
the Kendall Tau distance to be 4 since only the four pairs {1, 2},
{1, 3}, {2, 6}, and {3, 6} are in opposite order in each ranking.
This is a standard method used by mathematicians to quantify the
difference (i.e., distance) between the two rankings [16].
Here is a simple example of this problem. Suppose we receive
the resulting priority lists (of size 5) from six different search

engines and wish to form a consensus list using the distance
method described above.

ranking #1 51324
ranking #2 34125

ranking #3 45312
ranking #4 14253

ranking #5 45321
ranking #6 43521

The consensus list that minimizes the Kendall Tau distance (i.e.,
finds a Kemeny optimal aggregation) is 45312 since the sum of
the distances from each of the six rankings is 17 and is the
smallest such total distance amongst all the possible lists (i.e., 5
permutations). A consensus is Condorcet if the ranking reflects
the fact that if a is higher than b in a majority of the lists then a
is ranked higher than b in the consensus [17]. However, since
finding such a Condorcet consensus is not always possible,
finding the minimium Kendall Tau distance (i.e., Kemeny optimal
aggregation) is the best we can do while keeping in the spirit of
the Condorcet idea [18].
Since finding such a consensus list is an NP hard we will solve it
using genetic algorithmic methods.

2. GENETIC ALGORITHM METHOD
A genetic algorithm (GA) is a biologically inspired, highly
robust heuristic search procedure that can be used to find optimal
(or near optimal) solutions to Non-deterministic Polynomial, NP
hard problems. The GA paradigm uses an adaptive methodology
based on the ideas of Darwinian natural selection and genetic
inheritance on a population of potential solutions. It employs the
techniques of crossover (or mating), mutation, and survival of the
fittest to generate new, typically fitter members of a population
over a number of generations [1, 2, 3].

We propose GAs for solving this optimal sequencing problem
using novel multiple genomic redundant encoding schemes. Our

GAs create and evolve an encoded population of potential
solutions so as to facilitate the creation of new feasible members
by standard mating and mutation operations. (A feasible search
space contains only members which satisfy the problem
constraints, that is, a sequencing [4, 5, 6, 7, 13,14].) When
feasibility is not guaranteed, numerous methods for maintaining a
feasible search space have been addressed in [11], but most are
elaborate and complex. They include the use of problem-
dependent genetic operators and specialized data structures,
repairing or penalizing infeasible solutions, and the use of
heuristics.) By making use of problem-specific encodings, our
problem insures a feasible search space during the classical
operations of crossover and mutation and, in addition, eliminates
the need to screen during the generation of the initial population.

We adapted many of the standard GA techniques found in [1, 2,
3] to this problem. A brief description of these techniques
follows. Selection of parents for mating involves randomly
choosing one very fit member of the population (i.e., one with a
small Kendall Tau distance) and the other member randomly.
The reproductive process is a simple crossover operation whereby
two randomly selected parents are cut into sections at some
randomly chosen positions and then have the parts of their
encodings swapped to create two offspring (children). In our
application the crossover operation produces an encoding for the
offspring that have element values that always satisfy the position
bounds (i.e., range constraints). Mutation is performed by
randomly choosing a member of the population, cloning it, and
then changing values in its encoding at randomly chosen positions
subject to the range constraints for that position. A grim reaper
mechanism replaces low scoring members in the population with
newly created more fit offspring and mutants. Our fitness
measure will be the Kendall Tau distance. The GA is terminated
when, for example, either no improvement in the best fitness
value is observed for a number of generations, a certain number of
generations have been examined, and/or a satisficing solution is
attained (i.e., the result is not necessarily optimum, but is
satisfactory).

3. THE GENERIC GENETIC ALGORITHM
 We can now state the generic genetic algorithm we used for each
application:
1) Randomly initialize a population of multiple genomic

redundantly encoded potential solutions.
2) Map each population member to its equivalent phenome.
3) Calculate the fitness of any population member not yet

evaluated.
4) Sort the members of the population in order of fitness.
5) Randomly select parents for mating and generate offspring

using crossover.
6) Randomly select and clone members of the population to

generate mutants.
7) Sort all the members of the expanded population in order of

fitness adjusting each of the multiple segments to reflect the
phenome with best fit.

8) Use the grim reaper to eliminate the population members
with poor fitness.

9) If (termination criteria is met) then return best population
member(s)
 else go to step 5.

4. ENCODINGS
This application has multiple permutation encodings to identify
the sequencing via different representations. Here we define the
permutation code, forward code, and backward code for a
permutation.

 The 5-permutation 41532 or P[1] = 4, P[2] = 1, P[3] = 5,
P[4] = 3, and P[5] = 2 can represent itself. This is one of multiple
representations of 41532. We call this the permutation code and
PC[1] = 4, PC[2] = 1, PC[3] = 5, PC[4] = 3, and PC[5] = 2.

 An n permutation of the integers { 1, 2, …, n } can also be
encoded by an array of size n where the value of the kth position
can range over the values 1, 2, …, n-k+1.

 An encoding of a permutation of the elements can also be
represented as an array FC (forward coding) where 1 ≤ FC[k] ≤
n-k+1 for 1 ≤ k ≤ n. In order to decode a permutation code FC to
obtain the permutation that it represents, begin with an empty
array P of size n, then for 1 ≤ i ≤ n fill in the FC[i]th empty
position (from left to right starting at position 1) of P with the
value i.
 Consider an example, with n = 5 and FC[1] = 2, FC[2] =
4, FC[3] = 3, FC[4] = 1, and FC[5] = 1 (or 24311) which
represents the permutation P[1] = 4, P[2] = 1, P[3] = 5, P[4] = 3,
and P[5] = 2 (or 41532).
 Given a permutation array P, the reverse process begins
with an empty array FC of size n, then for 1 ≤ i ≤ n starting with i
= 1 and ending with i = n fill in the ith position of FC (from left to
right starting at position 1) with the value k-(# of values ≤ i that
occur before position i in P) where P[k] contains the value i.
(Note that FC[n] will always be 1, so that, we can shorten FC to
an n – 1 element array if we wish.) An ordering of a set of 5
elements { e1, e2, e3, e4, e5 } based on the forward code (24311)
would then be 5-tuple (e4, e1, e5, e3, e2).

 An encoding of a permutation of the elements can also be
represented as an array BC (backward coding) where 1 ≤ BC[k]
≤ n-k+1 for 1 ≤ k ≤ n. In order to decode a permutation code BC
to obtain the permutation that it represents, begin with an empty
array P of size n, then for 1 ≤ i ≤ n fill in the BC[i]th empty
position (from left to right starting at position 1) of P with the
value n-i+1.
 Consider an example, with n = 5 and BC[1] = 3, BC[2] =
1, BC[3] = 2, BC[4] = 2, and BC[5] = 1 (or 31221) which
represents the permutation P[1] = 4, P[2] = 1, P[3] = 5, P[4] = 3,
and P[5] = 2 (or 41532).

 Given a permutation array P, the reverse process begins
with an empty array BC of size n, then for 1 ≤ i ≤ n starting with i
= 1 and ending with i = n fill in the ith position of BC (from left to
right starting at position 1) with the value k-(# of values ≥i that
occur before position i in P) where P[k] contains the value n – i +
1. (Note that BC[n] will always be 1, thus, we can shorten BC to
an n – 1 element array if we wish.) An ordering of a set of 5
elements { e1, e2, e3, e4, e5 } based on the backward code (31221)
would then be 5-tuple (e4, e1, e5, e3, e2).

 Next we consider a multiply redundant representation [12]
that can be given by concatenating these lists. Thus a multiply
redundant representation of the permutation 41532 would then
be 243113122141532 with forward, backward, and permutation
codes concatenated in that order. It is easy to mate and mutate
this multiple representation scheme [6, 7, 13, 14], however the
resulting list may not reflect the same phenotype in each segment
of the multiple genome. In this case we simply choose a best
performing segment and repair the entire multiple genome to
mirror the best phenome in all of the other redundant segments.
Suppose 243113122141532 is a multiple genome for 41532 and

322211431152134 is a multiple genome for 52134.
Mating on positions 010110000110100 i.e.,swap positions
2,4,5,10,11,13 to get the child, 223213122151432 after
swapping in those positions.
(Notice in last segment we get 51432 since positions 11 and 13
now reflect 4 and 5 in the first genome 41532 in the same order as
the second genome 52134.)
Assuming the first segment 22321 represents the best phenome
51243, we repair the entire code and get 223211332151243 which
is the multiple genome for 51243.

5. RESULTS
The multiple genomic redundant representation using all three
segments was most efficient. We experimented with all seven
possible combinations, i.e., forward only, backward only,
permutation only, forward&backward, forward&permutation
backward&permutation and finally all three together
forward&backward&permutation. The experiments using all
three were consistently most efficient even though more overhead
was generated.

The multiple genomic redundant representation using all three
segments was also examined as to which representations
dominated at various stages of the search. The permutation code
was used extensively in the earlier generations when the GA
was searching more globally since this coding scheme does not
have a good locality property. In the later stages the GA
adapted its search using mostly the forward and backward
codes which have a stronger locality property.

6. CONCLUSIONS
We considered using multiple genomic redundant representations
in a self-adapting genetic algorithm to solve the Kemeny optimal
aggregation problem which is NP hard. We then demonstrated

that using multiple genomic redundant representations to create a
self-adapting genetic algorithm by employing various codes with
different locality properties that the genetic algorithm’s efficiency
was improved. The GA solving this NP hard problem, employ
non-locality or locality representations when appropriate since the
GA adapts to its current search needs making the GA more
efficient.

7. ACKNOWLEDGEMENTS
We wish to thank Pace University’s School of Computer Science
and Information Systems for partially supporting this research.
We also wish to thank DIMACS at Rutgers University for a
workshop that introduced the authors to this interesting and
important problem.

8. REFERENCES
 [1] M. Mitchell, An Introduction to Genetic Algorithms, MIT
Press, (2001).
 [2] D. E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison Wesley, (1989).
 [3] L. Davis, Handbook of Genetic Algorithms, Van Nostrand
Reinhold, (1991).
 [4] M. L. Gargano and S. C. Friederich, On Constructing a
Spanning Tree with Optimal Sequencing, Congressus
Numerantium 71, (1990) pp. 67-72.
 [5] M. L. Gargano, L. V. Quintas and S. C. Friederich, Matroid
Bases with Optimal Sequencing, Congressus Numerantium 82,
(1991) pp. 65-77.
 [6] M. L. Gargano and W. Edelson, A Genetic Algorithm
Approach to Solving the Archaeology Seriation Problem,
Congressus Numerantium 119, (1996) pp. 193-203.
 [7] W. Edelson and M. L. Gargano, Minimal Edge-Ordered
Spanning Trees Solved By a Genetic Algorithm with Feasible
Search Space, Congressus Numerantium 135, (1998) pp. 37-45.
 [8] F. S. Roberts, Discrete Mathematical Models, Prentice-Hall
Inc., (1970).
 [9] F. S. Hillier and G. J. Lieberman, Introduction to
Operations Research, Holden-Day Inc. (1968).
[10] K. H. Rosen, Discrete Mathematics and Its Applications,
Fourth Edition, Random House (1998).
[11] Z. Michalewicz, Heuristics for Evolutionary Computational
Techniques, Journal of Heuristics, vol. 1, no. 2, (1996) pp. 596-
597.
[12] F. Rothlauf and D.E.Goldberg,Redundant Representations in
Evolutionary Computation, Evolutionary Computation, vol. 11,
no. 4, 2003 pp.381-416.

[13] J. DeCicco, M.L. Gargano, W. Edelson, A Minimal Bidding
Application (with slack times) Solved by a Genetic Algorithm
Where Element Costs Are Time Dependent, GECCO, (2002).
[14] M.L. Gargano, W. Edelson, Optimally Sequenced Matroid
Bases Solved By A Genetic Algorithm with Feasible Search

Space Including a Variety of Applications, Congressus
Numerantium 150, (2001) pp. 5-14.

 [15] M.L. Gargano, Maheswara Prasad Kasinadhuni , Self-
adaption in Genetic Algorithms using Multiple Genomic
Redundant Representations, Congressus Numerantium 167,
(2004) pp. 183-192.
[16] C. Dwork,, R. Kumar, M. Naor, D. Sivakumar, Rank
Aggregation Methods for the Web, ACM (5/2001) pp. 613-622.

[17] H.P. Young, Condorcet’s Theory of Voting, Amer.
Political Sci. Review, 82, pp.1231-1244,1988.
[18] H.P. Young, A. Levenglick, A Consistent Extension of
Condorcet’s Election Principle, SIAM J. Applied Math.,
35(2), pp.285-300, 1978.

