
Model Reference Adaptive Search: A New Approach to
Global Optimization ∗

Jiaqiao Hu
Department of Electrical and

Computer Engineering &
Institute for Systems Research

University of Maryland,
College Park, MD 20742

jqhu@glue.umd.edu

Michael C. Fu
Robert H. Smith School of

Business & Institute for
Systems Research

University of Maryland,
College Park, MD 20742

mfu@rhsmith.umd.edu

Steven I. Marcus
Department of Electrical and

Computer Engineering &
Institute for Systems Research

University of Maryland,
College Park, MD 20742

marcus@umd.edu

ABSTRACT
We present a randomized algorithm called Model Reference
Adaptive Search (MRAS) for solving global optimization
problems. The algorithm generates at each iteration a group
of candidate solutions according to a parameterized prob-
abilistic model. These candidate solutions are then used
to update the parameters associated with the probabilistic
model in such a way that the future search will be biased
toward the region containing high quality solutions. The
parameter updating procedure in MRAS is guided by a se-
quence of implicit reference models that will eventually con-
verge to a model producing only the optimal solutions. We
establish global convergence of MRAS in both continuous
and combinatorial domains. Numerical studies are also car-
ried out to demonstrate the effectiveness of the algorithm.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization; G.3 [Probability and Statistics]: Probabilistic
algorithms; G.4 [Mathematical Software]: Algorithm de-
sign and analysis

General Terms
Design, algorithms

Keywords
cross-entropy method (CE), estimation of distribution algo-
rithms (EDAs)

1. INTRODUCTION
∗For a full version of this paper with complete technical
developments and detailed proofs, please refer to [6].

Global optimization problems arise in a wide range of appli-
cations and are often extremely difficult to solve. Following
[15], we classify the solution methods for both continuous
and combinatorial problems as being either instance-based
or model-based. In instance-based methods, searches for
new candidate solutions depend directly on previously gen-
erated solutions. Some well-known instance-based methods
are simulated annealing (SA) [7], genetic algorithms (GAs)
[14], tabu search [4], and the recently proposed nested parti-
tions (NP) method [13]. In model-based algorithms, new so-
lutions are generated via an intermediate probabilistic model
that is updated or induced from the previous solutions. The
model-based search methods are a class of solution tech-
niques introduced fairly recently. In general, most of the al-
gorithms that fall in this category share a similar framework
and usually involve the following two phases: (1) Generate
candidate solutions (random samples, trajectories) accord-
ing to a specified probabilistic model (e.g., a parameterized
probability distribution on the solution space). (2) Update
the parameters associated with the probabilistic model, on
the basis of the data collected in the previous step, in order
to bias the future search toward “better” solutions. Some
well-established model-based methods are ant colony opti-
mization (ACO) [3], the cross-entropy (CE) method [12],
[2], and the estimation of distribution algorithms (EDAs)
[9].

In this paper, we propose a new randomized algorithm,
called model reference adaptive search (MRAS), for solving
both continuous and combinatorial optimization problems.
MRAS resembles CE and EDAs in that it works with a
family of parameterized distributions on the solution space.
For a detailed discussion of the connection between MRAS
and the CE method and additional computational compar-
ison results, the reader is referred to [6]. The motivation
behind the method is to use a sequence of intermediate ref-
erence distributions to facilitate and guide the updating of
the parameters associated with the family of parameterized
distributions during the search process. At each iteration of
MRAS, candidate solutions are generated from the distribu-
tion (among the prescribed family of distributions) that pos-
sesses the minimum Kullback-Leibler (KL)-divergence with
respect to the reference model corresponding to the previ-
ous iteration. These candidate solutions are in turn used
to construct the next distribution that has the minimum

KL-divergence with respect to the current reference model,
from which future candidate solutions will be generated. We
show that for a class of parameterized probability distribu-
tions, the so-called Natural Exponential Family (NEF), the
algorithm converges to an optimal solution with probability
one.

The rest of the paper is organized as follows. In Section 2,
we discuss the general ideas behind MRAS. In Section 3,
we describe the deterministic version of the algorithm. In
Section 4, we describe the Monte Carlo version of MRAS
and present its global convergence properties. Illustrative
numerical studies on both continuous and combinatorial op-
timization problems are given in Section 5. Finally, conclud-
ing remarks are given in Section 6.

2. BACKGROUND
We consider the following optimization problem:

x∗ ∈ argmax
x∈X

H(x), x ∈ X ⊆ <n, (1)

where X is the solution space, and H(·) : X → < is a deter-
ministic function that is bounded from below, i.e., ∃ M >
−∞ such that H(x) ≥M ∀ x ∈ X . Throughout this paper,
we assume that problem (1) has a unique global optimal so-
lution, i.e., there exists x∗ ∈ X such that H(x) < H(x∗) for
all x 6= x∗, x ∈ X . Our primary concern in this paper is
on unconstrained or partially constrained optimization prob-
lems. We assume that random sampling can be done easily
on X , at least for a class of distributions of interest. For
constrained optimization problems, we refer the reader to
[8] for a discussion of how to convert them to unconstrained
problems.

To explain the main idea behind MRAS, we consider the
following naive model-based approach for solving (1). Let
g0(x) > 0 ∀x ∈ X be an initial probability density/mass
function (p.d.f./p.m.f.) on the solution space X . At each
iteration k ≥ 1, we compute a new p.d.f. by tilting the
old p.d.f. gk−1(x) with the performance function H(x) (for
simplicity, here we assume H(x) > 0 ∀x ∈ X), i.e.,

gk(x) =
H(x)gk−1(x)∫
X H(x)gk−1(dx)

, ∀x ∈ X , (2)

One direct consequence of this is that each iteration of (2)
improves the expected performance. To be precise, let X =
(X1, . . . , Xn) be a random variable taking values in X . To
reduce the notational burden, henceforth X will be used
to denote a random variable having the distribution under
which the expectation is indicated. Thus, Egk [H(X)] =∫
X H(x)gk(dx) and Egk−1 [H(X)] =

∫
X H(x)gk−1(dx). Then

we have

Egk [H(X)] =
Egk−1 [(H(X))2]

Egk−1 [H(X)]

≥ Egk−1 [H(X)].

Furthermore, it is possible to show that the sequence of
p.d.f.’s {gk(·), k = 0, 1, . . .} will converge to a p.d.f. that
concentrates only on the set of optimal solutions for arbi-
trary g0(·). So we will have limk→∞Egk [H(X)] = H(x∗).

However, the above approach is generally of little practical

use, due to the following reasons: (i) It is usually not possi-
ble to enumerate all the points in the solution space in order
to perform the update (2); furthermore, if it were possible,
the optimal solution could be immediately identified simply
by checking which point has the best performance value. (ii)
The p.d.f. gk(x) constructed at each iteration may not have
any structure, and therefore may be very difficult to handle.

To overcome the above difficulties, we consider the Monte
Carlo (sampling) version of the above approach and at the
same time restrict ourselves to a family of parameterized
p.d.f.’s {f(·, θ)}, where θ is the parameter vector. In par-
ticular, at each iteration k of the algorithm, we look at the
projection of gk(·) on the family of p.d.f.’s {f(·, θ)} and com-
pute the parameter vector θk that minimizes the Kullback-
Leibler (KL) divergence

D(gk, f(·, θ)) := Egk

[
ln

gk(X)

f(X, θ)

]
=

∫

x∈X
ln

gk(x)

f(x, θ)
gk(dx).

The benefits of the above consideration are twofold: on the
one hand, f(·, θk) often has some special structure and there-
fore could be much easier to handle than gk(·). On the other
hand, the sequence {f(·, θk)} may retain some nice proper-
ties of {gk(·)} and converge to a degenerate p.d.f. concen-
trated on the set of optimal solutions.

First, however, we present the deterministic version of the
MRAS algorithm, because it serves as a starting point for
deriving the results of Section 4.

3. MRAS – DETERMINISTIC VERSION
Throughout the analysis, we use Pθk (·) and Eθk [·] to de-
note the probability and expectation taken with respect to
the p.d.f./p.m.f. f(·, θk), and I{·} to denote the indicator
function, i.e.,

I{A} :=

{
1 if event A holds,
0 otherwise.

Thus, under our notational convention,

Pθk (H(X) ≥ γ) =

∫

x∈X
I{H(x)≥γ}f(dx, θk), and

Eθk [H(X)] =

∫

x∈X
H(x)f(dx, θk).

3.1 Algorithm Description
The MRAS0 algorithm requires specification of a parameter
ρ, which determines the approximate proportion of samples
that will be used to update the probabilistic model. At
successive iterations of the algorithm, a sequence {γk, k =
1, 2, . . .}, i.e., the (1 − ρ)-quantiles with respect to the se-
quence of p.d.f’s {f(·, θk)}, are calculated at step 1 of MRAS0.
These quantile values are then used in step 2 to construct
a sequence of non-decreasing thresholds {γ̄k, k = 1, 2, . . .};
and only those candidate solutions that have performances
better than these thresholds will be used in parameter up-
dating (cf. equation (3)). As we will see, the theoretical
convergence of MRAS0 is unaffected by the value of the pa-
rameter ρ. The purpose of ρ in our approach is to concen-
trate the computational effort on the set of elite/promising
samples, which is a standard technique employed in most of
the population-based approaches, like GAs and EDAs.

Algorithm MRAS0: deterministic version

• Initialization: Specify the parameter ρ ∈ (0, 1], a small num-
ber ε ≥ 0, a continuous and strictly increasing function S(·) :

< → <+, and an initial p.d.f./p.m.f. f(x, θ0) > 0 ∀x ∈ X . Set
the iteration counter k = 0.

• Repeat until a specified stopping rule is satisfied:

1. Calculate the (1− ρ)-quantile

γk+1 := sup
l

{
l : Pθk

(H(X) ≥ l) ≥ ρ
}

.

2. if k = 0, then set γ̄k+1 = γk+1.

elseif k ≥ 1

if γk+1 ≥ γ̄k + ε, then set γ̄k+1 = γk+1.

else set γ̄k+1 = γ̄k.

endif

endif

3. Compute the new parameter vector θk+1 as

θk+1 =

argmax
θ∈Θ

Eθk

[
[S(H(X))]k

f(X, θk)
I{H(X)≥γ̄k+1} ln f(X, θ)

]
.

(3)

4. Set k = k + 1.

During the initialization step of MRAS0, a small number ε
and a continuous and strictly increasing function S(·) : < →
<+ are also specified. The function S(·) is used to account
for the cases where the values of H(x) are negative for some
x, and the parameter ε ensures that each strict increment
in the sequence {γ̄k} is lower bounded, i.e.,

inf
γ̄k+1 6=γ̄k
k=1,2,...

(γ̄k+1 − γ̄k) ≥ ε.

We require ε to be strictly positive for continuous problems,
and non-negative for discrete problems.

The following lemma shows that there is a sequence of ref-
erence models {gk(·), k = 1, 2, . . .} implicit in MRAS0, and
the parameter θk+1 computed at step 3 indeed minimizes
the KL-divergence D(gk+1, f(·, θ)).

Lemma 3.1. The parameter θk+1 computed at the kth it-
eration of the MRAS0 algorithm minimizes the KL-divergence
D (gk+1, f(·, θ)), where

gk+1(x) :=
S(H(x))I{H(x)≥γ̄k+1}gk(x)

Egk

[
S(H(X))I{H(X)≥γ̄k+1}

] ∀x ∈ X , k = 1, . . . ,

and g1(x) :=
I{H(x)≥γ̄1}

Eθ0

[
I{H(X)≥γ̄1}

f(X,θ0)

] .

3.2 Global Convergence
Throughout this paper, we restrict our discussions to a par-
ticular family of p.d.f.’s/p.m.f.’s called the natural exponen-
tial family (NEF), for which the global convergence proper-
ties can be established. We start by stating the definition
of NEF and some regularity conditions.

Definition 3.1. A parameterized family of p.d.f ’s
{f(·, θ), θ ∈ Θ ⊆ <m} on X is said to belong to the natural

exponential family (NEF) if there exist functions h(·) : <n →
<, Γ(·) : <n → <m, and K(·) : <m → < such that

f(x, θ) = exp
{

θT Γ(x)−K(θ)
}

h(x), ∀θ ∈ Θ, (4)

where K(θ) = ln
∫

x∈X exp
{
θT Γ(x)

}
h(x)dx, and the super-

script “T” denotes the vector transposition.

Many common p.d.f.’s/p.m.f.’s belong to the NEF, e.g., Gaus-
sian, Poisson, binomial, geometric, and certain multivariate
forms of them.

Assumptions:

A1. There exists a compact set Π ⊆ X such that the level set
{x : H(x) ≥ γ̄1} ⊆ Π, where γ̄1 = supl{l : Pθ0(H(X) ≥
l) ≥ ρ} is defined as in the MRAS0 algorithm.

A2. For any given constant ξ < H(x∗), the set {x : H(x) ≥ ξ}
has a strictly positive Lebesgue measure.

A3. For any given constant δ > 0, supx∈Aδ
H(x) < H(x∗),

where Aδ := {x : ‖x− x∗‖ ≥ δ}.
A4. The maximizer of equation (3) is an interior point of

Θ for all k.

A5. supθ∈Θ ‖ exp{θT Γ(x)}Γ(x)h(x)‖ is integrable/summable
with respect to x, where θ, Γ(·), and h(·) are defined
as in Definition 3.1.

A6. Γ(·) : <m → <n given in Definition 3.1 is a continuous
mapping.

We have the following convergence result for the MRAS0

algorithm.

Theorem 3.1. (Continuous Optimization) Let
{θk, k = 1, 2, . . .} be the sequence of parameters generated
by MRAS0. If ε > 0 and assumptions A1−A6 are satisfied,
then

lim
k→∞

Eθk [Γ(X)] = Γ(x∗). (5)

The convergence result in Theorem 3.1 is much stronger
than it appears to be. For example, when Γ(x) is a one-to-
one function (which is the case for many NEFs encountered
in practice), the convergence result (5) can be equivalently
written as Γ−1 (limk→∞Eθk [Γ(X)]) = x∗. Also note that
the limit in equation (5) is component-wise. For some par-
ticular p.d.f.’s/p.m.f.’s, the solution vector x itself will be a
component of Γ(x) (e.g., multivariate normal distribution).
Under these circumstances, we can disregard the redundant
components and interpret equation (5) as limk→∞Eθk [X] =
x∗. Another special case of particular interest is when the
components of the random vector X = (X1, . . . , Xn) are
independent, i.e., each has a univariate p.d.f. of the form

f(xi, ϑi) = exp(xiϑi −K(ϑi))h(xi), ϑi ∈ <, ∀ i = 1, . . . , n.

In this case, since the p.d.f. of the random vector X is
simply the product of the marginal p.d.f.’s, we will clearly
have Γ(x) = x. Thus, equation (5) is again equivalent to
limk→∞Eθk [X] = x∗, where θk := (ϑk

1 , . . . , ϑk
n), and ϑk

i is
the value of ϑi at the kth iteration. Some of these special
cases are addressed below.

Corollary 3.1. (Multivariate Normal) If multivari-
ate normal p.d.f.’s are used in MRAS0, i.e.,

f(x, θk) =
1√

(2π)n|Σk|
exp

(
−1

2
(x− µk)T Σ−1

k (x− µk)

)
,

(6)
where θk := (µk; Σk), ε > 0, and assumptions A1−A4 are
satisfied, then

lim
k→∞

µk = x∗, and lim
k→∞

Σk = 0n×n,

where 0n×n represents an n-by-n zero matrix.

Corollary 3.2. (Independent Univariate) If the com-
ponents of the random vector X = (X1, . . . , Xn) are inde-
pendent, each has a univariate p.d.f. of the form

f(xi, ϑi) = exp(xiϑi −K(ϑi))h(xi), ϑi ∈ <, ∀ i = 1, . . . , n,

ε > 0, and assumptions A1−A6 are satisfied, then

lim
k→∞

Eθk [X] = x∗, where θk := (ϑk
1 , . . . , ϑk

n).

Note that the convergence of MRAS0 for discrete optimiza-
tion problems with infinite countable domains can be shown
similarly by following the proof of Theorem 3.1 in [6], pro-
vided that all assumptions A1−A6 except A2 are satisfied.
It is worth mentioning that for problems with finite solution
spaces, assumptions A1 and A3 are automatically satisfied.
Furthermore, the input parameter ε need not be strictly
positive as in the continuous case.

Theorem 3.2. (Discrete Optimization with Finite
Domain) If the solution space X is finite and assumptions
A4 and A5 are satisfied, then

lim
k→∞

Eθk [Γ(X)] = Γ(x∗).

4. MRAS – MONTE CARLO VERSION
The MRAS0 algorithm describes the idealized situation where
quantile values and expectations can be evaluated exactly.
In practice, we will usually resort to its stochastic counter-
part, where only a finite number of samples are used and
expected values are replaced with their corresponding sam-
ple averages. However, the theoretical convergence can no
longer be guaranteed for a simple stochastic counterpart of
MRAS0. We can only expect the algorithm to converge if
the expected values in the MRAS0 algorithm are closely ap-
proximated. Obviously, the quality of the approximation
will depend on the number of samples to be used in the
simulation, but it is difficult to determine in advance the
appropriate number of samples. A sample size too small
will cause the algorithm to fail to converge and result in
poor quality solutions, whereas a sample size too large may
lead to high computational cost.

As mentioned earlier, the parameter ρ, to some extent, will
affect the performance of the algorithm. Large values of ρ
mean that almost all samples generated, whether “good”
or “bad”, will be used to update the probabilistic model,
which could slow down the convergence process. On the
other hand, since a good estimate will necessarily require a
reasonable amount of valid samples, the quantity ρN (i.e.,

the approximate amount of samples that will be used in pa-
rameter updating) cannot be too small. Thus, small values
of ρ will require a large number of samples to be generated
at each iteration and may result in significant simulation ef-
forts. Thus, for a given problem, to determine a priori which
ρ gives a satisfactory performance may be difficult.

In order to address the above difficulties, we adopt the same
idea as in [5] and propose a modified Monte Carlo version of
MRAS0 in which the sample size N is adaptively increasing
and the parameter ρ is adaptively decreasing.

4.1 Algorithm Description
Algorithm MRAS1: Monte Carlo version

• Initialization: Specify ρ0 ∈ (0, 1], initial sample size N0 > 1,
ε ≥ 0, α > 1, mixing coefficient λ ∈ (0, 1], a function S(·) :

< → <+, and an initial p.d.f. f(x, θ0) > 0 ∀x ∈ X . Set

θ̃0 ← θ0, k ← 0.

• Repeat until a specified stopping rule is satisfied:

1. Generate Nk i.i.d. samples Xk
1 , . . . , Xk

Nk
according to

f̃(·, θ̃k) := (1− λ)f(·, θ̃k) + λf(·, θ0).

2. Compute the sample (1 − ρk)-quantile γ̃k+1(ρk, Nk) :=
H(d(1−ρk)Nke), where dae is the smallest integer greater
than a, and H(i) is the ith order statistic of the sequence{

H(Xk
i), i = 1, . . . , Nk

}
.

3. If k = 0 or γ̃k+1(ρk, Nk) ≥ γ̄k + ε
2 , then

3a. Set γ̄k+1 ← γ̃k+1(ρk, Nk), ρk+1 ←
ρk, Nk+1 ← Nk.

else, find the largest ρ̄ ∈ (0, ρk) such that γ̃k+1(ρ̄, Nk) ≥
γ̄k + ε

2 .

3b. If such a ρ̄ exists, then set γ̄k+1 ←
γ̃k+1(ρ̄, Nk), ρk+1 ← ρ̄, Nk+1 ← Nk.

3c. else (if no such ρ̄ exists), set γ̄k+1 ←
γ̄k, ρk+1 ← ρk, Nk+1 ← dαNke.

endif

4. Compute θ̃k+1 as

argmax
θ∈Θ

1

Nk

Nk∑

i=1

[S(H(Xk
i))]k

f̃(Xk
i , θ̃k)

I{
H(Xk

i
)≥γ̄k+1

} ln f(X
k
i , θ).

(7)

5. Set k ← k + 1.

Roughly speaking, the MRAS1 algorithm is essentially a
Monte Carlo version of MRAS0 except that the parameter
ρ and the sample size N may change from one iteration to
another. The rate of increase in the sample size is controlled
by an extra parameter α > 1, specified during the initial-
ization step. For example, if the initial sample size is N0,
then after k increases, the sample size will be approximately
dαkN0e.

At each iteration k, random samples are drawn from the

density/mass function f̃(·, θ̃k), which is a mixture of the
initial density f(·, θ0) and the density calculated from the

previous iteration f(·, θ̃k) (cf. e.g., [1] for a similar idea in
the context of multiarmed bandit models). Intuitively, mix-
ing in the initial density forces the algorithm to explore the
entire solution space and to maintain a global perspective
during the search process. Also note that if λ = 1, then ran-
dom samples will always be drawn from the initial density,

in which case, MRAS1 becomes a pure random sampling
method.

At step 2, the sample (1−ρk)-quantile γ̃k+1 is calculated by
first ordering the sample performances H(Xk

i), i = 1, . . . , Nk

from smallest to largest, H(1) ≤ H(2) ≤ · · · ≤ H(Nk), and
then taking the d(1 − ρk)Nketh order statistic. We use the
function γ̃k+1(ρk, Nk) to emphasize the dependencies of γ̃k+1

on both ρk and Nk, so that different sample quantile values
used during one iteration can be distinguished by their ar-
guments.

Step 3 of MRAS1 is used to extract a sequence of non-
decreasing thresholds {γ̄k, k = 1, 2 . . .} from the sequence
of sample quantiles {γ̃k}, and to determine the appropriate
values of ρk+1 and Nk+1 to be used in subsequent iterations.
This step is carried out as follows. At each iteration k, we
first check whether the inequality γ̃k+1(ρk, Nk) ≥ γ̄k + ε

2
is

satisfied, where γ̄k is the threshold value used in the pre-
vious iteration. If the inequality holds, then it means that
both the current ρk value and the current sample size Nk

are satisfactory; thus we proceed to step 3a and update the

parameter vector θ̃k+1 in step 4 by using γ̃k+1(ρk, Nk). Oth-
erwise, it indicates that either ρk is too large or the sample
size Nk is too small. To determine which, we fix the sample
size Nk and check if there exists a smaller ρ̄ < ρk such that
the above inequality can be satisfied with the new sample
(1 − ρ̄)-quantile. If such a ρ̄ does exist, then the current
sample size Nk is still deemed acceptable, and we only need
to decrease the ρk value. Accordingly, the parameter vector
is updated in step 4 by using the sample (1 − ρ̄)-quantile.
On the other hand, if no such ρ̄ can be found, then the
parameter vector is updated by using the threshold γ̄k cal-
culated during the previous iteration and the sample size Nk

is increased by a factor α.

We make the following assumption about the parameter vec-

tor θ̃k+1 computed at step 4:

Assumption A4′. The parameter vector θ̃k+1 computed
at step 4 of MRAS1 is an interior point of Θ for all k.

It is important to note that the set {x : H(x) ≥ γ̄k+1, x ∈{
Xk

1 , . . . , Xk
Nk

}}
could be empty if step 3c is visited. If this

happens, the right hand side of equation (7) will be equal to

zero, so any θ ∈ Θ is a maximizer, and we define θ̃k+1 := θ̃k

in this case.

4.2 Global Convergence
In this section, we present the convergence properties of the
MRAS1 algorithm for natural exponential families (NEFs).
We denote by Pθ̃k

(·) and Eθ̃k
[·] the respective probability

and expectation taken with respect to the p.d.f. f(·, θ̃k),

and P̃θ̃k
(·) and Ẽθ̃k

[·] the respective probability and expec-

tation taken with respect to f̃(·, θ̃k). Note that since the

sequence {θ̃k} results from random samples generated at
each iteration of MRAS1, these quantities are also random.

To present the main theorem, we require one more assump-
tion.

Assumption B1. There exists a compact set Πε such that
{x : H(x) ≥ H(x∗)−ε} ⊆ Πε. Moreover, f(x, θ0) is bounded
away from zero on Πε, i.e., f∗ := infx∈Πε f(x, θ0) > 0.

Theorem 4.1. (Continuous Optimization) Let ε >
0, and define the ε-optimal set Oε := {x : H(x) ≥ H(x∗)−
ε}. If assumptions A2, A4′, A5, and B1 are satisfied, then
there exists a random variable K such that, w.p.1., K > 0
and
1. γ̄k > H(x∗)− ε, ∀ k ≥ K
2. Eθ̃k+1

[Γ(X)] ∈ CONV {Γ(Oε)} , ∀ k ≥ K,

where CONV {Γ(Oε)} indicates the convex hull of the set
Γ(Oε).
Furthermore, let β be a positive constant satisfying the con-
dition that the set

{
x : S(H(x)) ≥ 1

β

}
has a strictly positive

Lebesgue measure. If assumptions A2, A3, A4′, A5, A6, and
B1 are satisfied and α > (βS∗)2, where S∗ := S(H(x∗)),
then
3. limk→∞Eθ̃k

[Γ(X)] = Γ(x∗) w.p.1.

The following results are now immediate.

Corollary 4.1. (Multivariate Normal) If multivari-
ate normal p.d.f.’s are used in MRAS1, i.e.,

f(x, θ̃k) =
1√

(2π)n|Σ̃k|
exp

(
−1

2
(x− µ̃k)T Σ̃−1

k (x− µ̃k)

)
,

ε > 0, α > (βS∗)2, and assumptions A2, A3 and A4′ are
satisfied, then

lim
k→∞

µ̃k = x∗, and lim
k→∞

Σ̃k = 0n×n w.p.1.

Corollary 4.2. (Independent Univariate) If the com-
ponents of the random vector X = (X1, X2, . . . , Xn) are in-
dependent, each with a univariate p.d.f. of the form

f(xi, ϑi) = exp(xiϑi −K(ϑi))h(xi), ϑi ∈ <, ∀ i = 1, . . . , n,

ε > 0, α > (βS∗)2, and assumptions A2, A3, A4′, A5, and
B1 are satisfied, then

lim
k→∞

Eθ̃k
[X] = x∗ w.p.1, where θ̃k := (ϑk

1 , . . . , ϑk
n).

Theorem 4.2. (Discrete Optimization with Finite
Domains) If the solution space X is finite, α > 1, and
assumptions A4′, and A5 are satisfied, then

lim
k→∞

Eθ̃k
[Γ(X)] = Γ(x∗) w.p.1.

5. NUMERICAL EXAMPLES
In this section, we illustrate the performance of the MRAS
method for both continuous and combinatorial optimization
problems. In the former case, we test the algorithm on vari-
ous functions that are well-known in global optimization. In
the latter case, we apply the algorithm to several Asymmet-
ric Traveling Salesman Problems (ATSP), which are typi-
cal representatives of NP-hard combinatorial optimization
problems.

We now discuss some implementation issues of the MRAS1

algorithm.

1. Since all examples considered are minimization prob-
lems, the function S(·) is initialized as a strictly de-
creasing function. Throughout this section, we take
S(H(x)) := exp {−rH(x)}, where r is a positive con-
stant.

2. In actual implementation of the algorithm, a smoothed
parameter updating procedure as in [10] is used, i.e.,

first a smoothed parameter vector θ̂k+1 is computed at
each iteration k according to

θ̂k+1 := υ θ̃k+1+(1−υ)θ̂k, ∀ k = 0, 1, . . . , and θ̂0 := θ̃0,

where θ̃k+1 is the parameter vector computed at step 4
of MRAS1, and υ ∈ (0, 1] is the smoothing parameter;

then f(x, θ̂k+1) (instead of f(x, θ̃k+1)) is used in step
1 to generate new samples.

3. In the numerical experiments, we stop the algorithm
when either one of the following two conditions is sat-
isfied at iteration k:

(1) max1≤i≤d |γ̄k − γ̄k+i| ≤ τ ;

(2) Nk > Nmax;

where τ > 0 is a predefined tolerance level, d is a
positive integer, and Nmax is the maximum number of
samples allowed per iteration.

5.1 Continuous Optimization
In our preliminary experiments, we take the family of pa-
rameterized p.d.f.’s to be multivariate normal p.d.f.’s. A
mean vector µ0 and a covariance matrix Σ0 are specified
initially. By Corollary 4.1, the sequence of mean vectors
{µ̃k} generated by the algorithm will converge to the op-
timal solution x∗, and the sequence of covariance matrices

{Σ̃k} to the zero matrix.

The following five functions {Hi, i = 1, . . . , 5} are used to
test the algorithm.

(1) Quadratic function

H1(x) =
3∑

i=1

x2
i , where x = (x1, x2, x3).

The function has a global minimum f(0, 0, 0) = 0.

(2) Two-dimensional Rosenbrock function

H2(x) = 100(x2
1 − x2)2 + (1− x2

1), where x = (x1, x2).

The function has a global minimum f(1, 1) = 0.

(3) Shekel’s Foxholes

H3(x) =
1

0.002 +
∑25

j=1
1

j+
∑2

i=1(xi−aj,i)6

,

where aj,1 = {−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,
−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32},
aj,2 = {−32,−32,−32,−32,−32,−16,−16,−16,−16,
−16, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32} , and
x = (x1, x2). The function has 24 local minima and
one global minimum at f(−32,−32) ≈ 0.998004.

(4) Corana’s Parabola

H4(x) =
4∑

i=1

{
0.15[0.05 sgn(zi)− zi]

2dj if |xi − zi| < 0.05,
dix

2
i otherwise,

where

zi = 0.2
⌊xi

2

 + 0.49999
⌋

sgn(xi),

d = {1, 1000, 10, 100}, and x = (x1, x2, x3, x4). It has
a global minimum f(0, 0, 0, 0) = 0.

(5) Goldstein-Price function

H5(x) =

(1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))

(30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)),

where x = (x1, x2)
T . The function has four local min-

ima and a global minimum f(0,−1) = 3.

For all five problems, the same set of parameters is used to
test MRAS: ε = 10−5, initial sample size N0 = 100, ρ0 = 0.2,
λ = 0.02, α = 1.5, r = 0.1, the stopping control parameters
d = 5, τ = 10−5, Nmax = 50000, and the smoothing param-
eter υ = 0.5. The initial mean vector µ0 is a d-by-1 vector
of all 10s, and Σ0 is a d-by-d diagonal matrix with all diag-
onal elements equal to 200, where d is the dimension of the
problem. Table 1 shows the performance of the algorithm

Hi Ntotal (std) H̃∗
i (std) Hi(x

∗) Mε

H1 4.4e+03(6.8e+01) 9.9e-09(1.1e-09) 0 50
H2 1.2e+04(4.9e+02) 2.3e-09(3.1e-10) 0 50
H3 2.2e+04(7.2e+02) 2.40(4.15e-01) 0.998 37
H4 7.4e+03(1.6e+02) 0.00(0.00e-00) 0 50
H5 5.8e+03(1.4e+02) 3.00(5.30e-10) 3 50

Table 1: Performance of MRAS on five test func-
tions, based on 50 independent simulation runs.

on the five test functions. For each function, we performed
50 independent simulation runs of the algorithm, and the
means and standard errors are reported in the table, where

Ntotal is the total number of function evaluations, and H̃∗
i

is the value of the function Hi(·) at the final value of the
estimated optimum. The optimal value Hi(x

∗) is included
for reference, and Mε indicates the number of runs that an
ε-optimal solution was found out of 50 trials. The algorithm
performs quite well in most cases, except for H3, where only
37 ε-optimal solutions were found. H3 represents a class of
continuous optimization problems that are extremely diffi-
cult to solve for most model-based sampling approaches. A
graphical representation of the function H3 is given in Fig-
ure 1. Notice that the function values at the 25 “holes”
(local minima) are very close to each other; thus in order
to locate the global optimal solution, the algorithm must
make sure that samples are drawn from the right “hole”,
and there must be enough samples to fall in this “hole” to
guarantee that the parameter vectors are updated in the
right direction.

Table 2 gives the performance of MRAS on function H3 us-
ing different sample sizes and ρ values (all other parameters
are the same as before). We see that for the N0 = 200 cases,

−50

0

50

−50

0

50
0

100

200

300

400

500

Figure 1: Shekel’s Foxholes, −50 ≤ xi ≤ 50, i = 1, 2.

ε-optimal solutions were found in more than 90% of the total
simulation runs; whereas for the N0 ≥ 500 cases, ε-optimal
solutions were found in all 50 runs.

parameters Ntotal (std) H̃∗
3 (std) Mε

N0=200, ρ0=0.2 2.3e+4(6.8e+2) 1.14(0.06) 45
N0=200, ρ0=0.1 2.2e+4(7.1e+2) 1.08(0.05) 47
N0=500, ρ0=0.2 3.0e+4(6.7e+2) 0.998(3.4e-11) 50
N0=500, ρ0=0.1 2.8e+4(8.7e+2) 0.998(3.9e-11) 50
N0=1000, ρ0=0.2 5.6e+4(8.3e+2) 0.998(3.4e-11) 50
N0=1000, ρ0=0.1 4.3e+4(8.5e+2) 0.998(3.8e-11) 50

Table 2: Performance of MRAS on test function H3.
The optimum H3(x

∗) ≈ 0.998004.

We also applied MRAS to a 10-dimensional trigonometric
function and a 10-dimensional Rosenbrock function.

(6) Trigonometric function

H6(x) =
10∑

i=1

8 sin2
(
7(xi − 0.9)2

)
+ 6 sin2

(
14(xi − 0.9)2

)

+ (xi − 0.9)2.

The function has a global minimum at x∗ = (0.9, . . . , 0.9)T ,
and H6(x

∗) = 0.

(7) Rosenbrock function

H7(x) =
9∑

i=1

100(xi+1 − x2
i)2 + (xi − 1)2

The function has a global minimum at x∗ = (1, . . . , 1)T ,
and H7(x

∗) = 0.

In our preliminary experiments with function H6, we use
the same set of parameters as before. Test results in Table 3
indicate that the algorithm may frequently get trapped in
local optimal solutions. We believe this is due to the fact
that the covariance matrix often converges too quickly to a
zero matrix.

In order to reduce the convergence speed of the covariance
matrix, we reran the algorithm with smaller values of r and
υ. Table 4 shows the performance of the algorithm with
r = 0.01 and υ = 0.2. We see that the algorithm success-
fully escaped the local optima in all simulation runs. How-
ever, decreasing the values of r and υ also slows down the

convergence of the algorithm; note that the total number of
function evaluations in all cases almost increased by a factor
of 10 as compared to Table 3. For a given problem, how to
choose the most appropriate parameters in MRAS is still an
open issue.

parameters Ntotal (std) H̃∗
6 (std) Mε

N0=200, ρ0=0.1 5.6e+4(4.4e+3) 1.05(0.17) 20
N0=200, ρ0=0.2 4.7e+4(2.4e+3) 1.02(0.16) 16
N0=500, ρ0=0.1 7.8e+4(3.9e+3) 0.29(0.06) 28
N0=500, ρ0=0.2 6.2e+4(3.0e+3) 0.64(0.11) 23

Table 3: Performance of MRAS (r = 0.1, υ = 0.5) on
test function H6, based on 50 independent runs.

parameters Ntotal (std) H̃∗
6 (std) Mε

N0=200, ρ0=0.1 5.8e+5(4.6e+4) 3.3e-7(2.6e-8) 50
N0=200, ρ0=0.2 4.2e+5(4.6e+4) 3.6e-7(2.6e-8) 50
N0=500, ρ0=0.1 6.0e+5(4.8e+4) 2.9e-7(2.3e-8) 50
N0=500, ρ0=0.2 5.4e+5(3.1e+4) 2.6e-7(1.9e-8) 50

Table 4: Performance of MRAS (r = 0.01, υ = 0.2)
on test function H6.

The same set parameters are also used to solve the function
H7, and the numerical results are reported in Table 5.

parameters Ntotal (std) H̃∗
7 (std) Mε

N0=200, ρ0=0.1 2.7e+5(1.3e+4) 2.4e-8(2.9e-9) 50
N0=200, ρ0=0.2 2.6e+5(1.5e+4) 2.3e-8(2.2e-9) 50
N0=500, ρ0=0.1 3.3e+5(1.4e+4) 1.8e-8(1.8e-9) 50
N0=500, ρ0=0.2 3.6e+5(1.6e+4) 2.9e-8(3.4e-9) 50

Table 5: Performance of MRAS (r = 0.01, υ = 0.2)
on test function H7.

5.2 Combinatorial Optimization
In this section, we present the performance of MRAS on
various ATSP problems. All test cases are taken from the
URL http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95.

For each ATSP problem with Nc cities, an Nc-by-Nc dis-
tance matrix G is given, whose (i, j)th element Gi,j repre-
sents the distance from city i to city j. The goal is to find
the shortest path that visits all the cities and returns to the
starting city.

We use the same technique as in [11] for solving these prob-
lems, i.e., we associate with each distance matrix G an initial

state transition matrix P̃0, whose (i, j)th element specifies
the probability of transitioning from city i to city j. Thus,
at each iteration of MRAS the following two steps are funda-
mental: (1) Generating random (admissible) tours according
to the transition matrix and evaluating the performance of
each sample tour. (2) Updating the transition matrix based
on the sample tours generated from the previous step.

The performance of the algorithm on various ATSP prob-
lems is reported in Table 6. For each of the 7 instances,

ATSP Nc Ntotal (std err) Hbest H∗ H∗ δ∗ δ∗ δ (std err)
ftv33 34 7.95e+04(3.25e+03) 1286 1364 1286 0.061 0.000 0.023(0.008)
ftv35 36 1.02e+05(3.08e+03) 1473 1500 1475 0.018 0.001 0.008(0.002)
ftv38 39 1.31e+05(4.90e+03) 1530 1563 1530 0.022 0.000 0.008(0.003)
p43 43 1.02e+05(4.67e+03) 5620 5637 5620 0.003 0.000 0.001(2.5e-4)

ry48p 48 2.62e+05(1.59e+04) 14422 14810 14446 0.027 0.002 0.012(0.003)
ft53 53 2.94e+05(1.58e+04) 6905 7236 6973 0.048 0.010 0.029(0.005)
ft70 70 4.73e+05(2.91e+04) 38673 39751 38744 0.028 0.002 0.017(0.003)

Table 6: Performance of MRAS on various ATSP problems based on 10 independent replications.

we performed 10 independent runs of the algorithm. In Ta-
ble 6, Ntotal is the total number of tours generated (mean
and standard error reported), Hbest is the length of the true
(optimal) shortest path, H∗ and H∗ are the worst and best
solutions obtained out of 10 trials of the MRAS1 algorithm,
δ∗ and δ∗ are the respective relative errors for H∗ and H∗,
and δ is the relative error (mean and standard error re-
ported). For all cases, ε = 1, the initial samples N0 = 1000,
ρ0 = 0.1, λ = 0.02, α = 1.5, r = 0.1, the stopping control
parameters d = 5, τ = 0, Nmax = 10N2

c , smoothing param-

eter υ = 0.5, and the initial transition matrix P̃0 is initialized
as a stochastic matrix whose (i, j)th entry is proportional to

the inverse of the (i, j)th entry of G, i.e., P̃0(i, j) ∝ 1
Gi,j

and
∑

j P̃0(i, j) = 1 ∀i.

6. CONCLUSIONS
We have proposed a randomized optimization technique called
Model Reference Adaptive Search (MRAS) for solving both
continuous and discrete optimization problems. Highlights
of the method include the following: (1) It is generic, requir-
ing only a few mild regularity conditions on the underlying
problem. (2) It is convergent w.p.1 to the set of ε-optimal
solutions in a finite number of iterations and asymptotically
to a global optimal solution. (3) It is insensitive to the
choices of the initial solutions (parameter vectors), provided
that the initial sampling variance is large enough. (4) It
offers an alternative general framework for global optimiza-
tion, based on which one can design and implement other
efficient algorithms.

The MRAS algorithm demonstrated great promise on some
preliminary examples, but practical implementation issues
remain. For example, selection of the input parameters in
our numerical experiments was based mainly on trial and
error. For a given problem, how to determine a priori the
most appropriate values of these parameters is an open issue.
Designing an adaptive scheme to update these parameters
during the search process may also enhance the convergence
rate of the algorithm.

7. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.

Schapire. The nonstochastic multiarmed bandit
problem. SIAM J. Comput., 32(1):48–77, 2002.

[2] P. T. De Boer, D. P. Kroese, S. Mannor, and R. Y.
Rubinstein. A tutorial on the cross-entropy method.
Annals of Operation Research, to appear, 2004.

[3] M. Dorigo and L. M. Gambardella. Ant colony
system: A cooperative learning approach to the

traveling salesman problem. IEEE Trans. on
Evolutionary Computation, 1(1), 1997.

[4] F. Glover. Tabu search: A tutorial. Interfaces,
20(4):74–94, 1990.

[5] T. Homem-de Mello and R. Y. Rubinstein. Rare event
estimation for static models via cross-entropy and
importance sampling.
http://iew3.technion.ac.il/CE/pubs.php, 2003.

[6] J. Hu, M. C. Fu, and S. I. Marcus. A model reference
adaptive search algorithm for global optimization.
Operations Research, Under review, 2005.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220:671–680, 1983.

[8] D. P. Kroese, R. Y. Rubinstein, and S. Porotsky. The
cross-entropy method for continuous multi-extremal
optimization. Operations Research, Under review,
2004.

[9] H. Múhlenbein and G. Paaß. From Recombination of
Genes to the Estimation of Distributions: I. Binary
Parameters. In Hans-Michael Voigt, Werner Ebeling,
Ingo Rechenberg, and Hans-Paul Schwefel, editors,
Parallel Problem Solving from Nature - PPSN IV, pp.
178-187, Springer Verlag, Berlin, 1996.

[10] R. Y. Rubinstein. The cross-entropy method for
combinatorial and continuous optimization.
Methodology and Computing in Applied Probability,
2:127–190, 1999.

[11] R. Y. Rubinstein. Combinatorial optimization, ants
and rare events. In In S. Uryasev and P. M. Pardalos,
editors, Stochastic Optimization: Algorithms and
Applications, pages 304–358. Kluwer, 2001.

[12] R. Y. Rubinstein and D. P. Kroese. The
Cross-Entropy Method: a unified approach to
combinatorial optimization, Monte-Carlo simulation,
and machine learning. Springer Science+Business
Media, Inc, New York, 2004.

[13] L. Shi and Ólafsson. Nested partitions method for
global optimization. Operations Research, 48(3), 2000.

[14] M. Srinivas and L. M. Patnaik. Genetic algorithms: a
survey. IEEE Computer, 27(6):17–26, 1994.

[15] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo.
Model-based search for combinatorial optimization: A
critical survey. Annals of Operations Research,
131:373–395, 2004.

