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ABSTRACT 
This paper describes an approach to air campaign mission 
planning using evolutionary multi-objective optimization. With 
the landscape of warfare constantly changing, timely and accurate 
employment of air assets for military operations has become even 
more crucial. Of particular importance is in addressing time-
sensitive and time-critical targets. Such operations require a rapid 
search of potential mission plans to evaluate their ability on an 
array of objectives. This type of system design problem, 
consisting of a large solution space and complicated fitness 
landscape, has proved to be approached successfully using 
evolutionary algorithms. Additionally, the presence of potentially 
multiple conflicting objectives lends to the suitability of using 
multi-objective optimization techniques. This paper describes our 
preliminary experiments using both aggregation and dominance-
based approaches to evolutionary multi-objective optimization for 
addressing time-sensitive/critical targets. 

Categories and Subject Descriptors 
G.1.6 – Optimization; I.2.8 – Problem Solving, Control Methods 
and Search; I.6.3 – Simulation and Modeling Applications 

General Terms 
Algorithms, Design 

Keywords 
Genetic Algorithms, Evolutionary Multi-Objective Optimization, 
Mission Planning, Time-Sensitive Targeting. 

1. INTRODUCTION 
The landscape of warfare is constantly changing. Where past 
engagements have normally focused on out-attriting enemy 
forces, current and future operations have been, and most likely 
will be, characterized by more timely and accurate employment of 
air assets.  The recent increase in the capabilities of precision 
guided munitions and the further development of strike warfare 

platforms and tactics have put this focus on addressing time-
sensitive and time-critical targeting. Time-sensitive targets (TSTs) 
are targets where modifiers such as, “emerging, perishable, high-
payoff, short dwell, or highly mobile” can be used [19]. Time-
critical targets (TCTs) further the criticality of TSTs with respect 
to achievement of mission objectives and a limited window of 
opportunity for attack. One such example of this type would be 
receiving intelligence about a clandestine meeting where leaders 
of a terrorist organization would gather.  
To fully realize the benefits of these emerging technologies and 
address the challenges of time-sensitive targeting, decision-
support systems are needed to assist warfighters in this effort. We 
are currently developing a system to support this growing need. 
The focal point of our approach is centered around using 
evolutionary multi-objective optimization (EMOO) to evolve 
mission plans for air operations regarding TST/TCTs. Described 
in this paper is our initial approach into this area [8][9], the results 
of our preliminary experiments, and a discussion of our future 
plans. The paper is organized as follows. Section 2 describes why 
we chose evolutionary multi-objective optimization to approach 
this problem. Section 3 outlines the component architecture of our 
system. Section 4 describes the representations used and 
evolutionary techniques employed in our preliminary 
experiments. Section 5 concludes the paper with relevant 
conclusions and future work. 

2. APPROACH 
Our approach focuses on using evolutionary multi-objective 
optimization to evolve mission plans to address the needs of air 
operations regarding TST/TCTs. Using evolutionary algorithms 
for engineering problems, such as air operation mission planning, 
has been met with considerable success in the past. In general, 
systems design problems that require optimizing a function 
depending on a large number of parameters pose a significant 
challenge. Large solution spaces and complicated fitness 
landscapes are difficult for standard gradient-based approaches. 
Evolutionary algorithm-based approaches, however, do not 
primarily rely on gradient information and can lend toward a 
more successful methodology.   

 Optimization of air campaign mission plans, like many real world 
problems, is characterized by multiple potential conflicting 
objectives. As an example, the shortest time route to the strike 
targets may impose undue vulnerability on the strike package, or 
the best weapons loadout may inversely effect the radar cross 
section of strike aircraft. Over the past 15 years or so a large 
volume of research within the optimization community has 

 



focused on the multi-objective optimization problem [2][4]. Two 
specific approaches have normally been utilized, local search 
methods [3][6] and evolutionary algorithms. Primarily, 
evolutionary algorithms have outperformed local search methods 
in both speed and quality of solutions [14].  
Several methods are available to handle multi-objective 
optimization using evolutionary techniques. Coello, et al [2] 
classifies these into first and second-generation methods. First 
generation methods include aggregation, a simple approach where 
all the objectives are combined into a scalar value (e.g. weighted 
sum). While being simple and easy to implement, this approach 
can fail to generate optimal solutions for given search spaces. 
Schaffer [18] proposes the use of sub-populations that optimize 
each objective separately. The approach was successfully used by 
Rogers [16] to design the optimum placement of aircraft 
actuators, but in general does not guarantee Pareto optimum 
solutions. Goldberg [7] extended Schaffer’s work to support the 
generation of Pareto optimum solutions via the incorporation of a 
ranking procedure and a mechanism to maintain diversity in the 
population. Second generation techniques have focused on 
enhancing the efficiency of evolutionary algorithms. For example, 
Knowles and Corne’s Pareto Archived Evolution Strategy (PAES) 
[13] combines a local search method for the generation of new 
candidate solutions while also utilizing population information in 
its selection procedure. Inefficiencies in multi-objective 
optimization algorithms are addressed by Jensen [12] who 
proposed a new algorithm for non-denominated sorting, the 
method used for fitness assignment in many multi-objective 
evolutionary algorithms.  
Based on the aspects of the problem definition, the success of 

these approaches by others to solve similar problems, and 
stemming from our own past achievements with using genetic 
algorithms in the military domain [10][11][15][17], it seemed 
suitable to utilize evolutionary multi-objective optimization for 
the issue of rapid air operation mission planning for TST/TCTs.  

3. COMPONENT ARCHITECTURE 
In order to support mission plan generation through evolutionary 
multi-objective optimization for rapid air operations regarding 
TST/TCTs, the following component architecture was developed 
(See Figure 1). This architecture consists of four major 
components: A component to specify the given scenario, a genetic 
algorithm-based optimization component to evolve mission plans, 
an abstract wargamer to evaluate mission plans generated during 
the evolutionary process, and finally a user interface to support 
user interactions with the system.  

3.1 Scenario Specification 
The Scenario Specification component is responsible for 
gathering incoming information from various sources to formalize 
the problem the system is attempting to solve. These sources can 
include information gathered during the intelligence preparation 
of the battlefield (IPB) process, plan related information from 
command and control (C2) systems within an Air Operations 
Center (AOC), and other related sources. This information 
includes a description of the physical battlespace environment 
including both terrain and airspace management features; current 
battlespace state including order of battle or available friendly 
assets, likely enemy courses of action (COAs) that may pertain to 
the particular strike mission and any other relevant battlespace 

Figure 1: Component Architecture 



states; and commander’s intent information to support fitness 
specification (e.g. time constraints for destroying the target, 
prioritization of targets, allowable level of vulnerability, etc.). In 
our current implementation, this component also supplies the air 
tasking order (ATO) to describe the current state of occupied 
friendly assets for considering disruption to other missions. 

3.2 Genetic Algorithm-based Optimization 
The Genetic Algorithm-based Optimization component is the key 
component that drives the mission planning generation process 
supplied by the developed system. In this component, the problem 
supplied by the scenario specification is solved using evolutionary 
multi-objective optimization techniques. Mission plans encoded 
as gene strings are initially generated and then managed by an 
evolutionary algorithm. For evaluation, each mission plan is sent 
to the Abstract Wargamer to be played out in a simulated 
environment. Results from this simulation are used to calculate 
fitness on various objectives and used during the selection, 
recombination, and mutation process. When the optimization 
process is complete, selected solutions from the final population 
are returned to the user interface for playback and human-based 
evaluation.  

3.3 Abstract Wargamer 
The Abstract Wargamer component is responsible for playing out 
or “wargaming” each generated solution within the population at 
each iteration of the evolutionary algorithm. The key here is that 
the Abstract Wargamer only encompasses those key features that 
define the particulars of a mission plan at a minimum fidelity 
level to ensure that the plans are representative and useful as a 
decision support tool to address time-sensitive targeting. 
Furthermore, this is done to support a quick turnaround time on 
the optimization process, an essential requirement of the system 
we are developing.  

The simulation provided by the Abstract Wargamer utilizes the 

Open Experimental Platform (OEP) developed by Boeing. The 
OEP is based on the Boeing C4ISim, a simulator that models the 
collection, processing, and dissemination of battlefield 
information. The OEP includes a enemy controller to model 
enemy air defenses and behaviors. Simulation is performed via a 
Monte Carlo method, stochastically determining the operational 
success of both friendly and enemy weapon systems. 
Visualization of the simulations provided by the OEP utilizes 
BBN’s OpenMap technology, An example of the visualization 
within our system is illustrated in Figure 2.  

3.4 User Interface 
The User Interface component is responsible for allowing 
interactions with the user to help determine the scenario 
specification, provide parameters for the optimization process, 
and visualize the generated mission plans returned at the 
completion of the evolutionary algorithm. The user of the system 
can then provide a human-based assessment of selected plans 
given the internal simulator. Additionally, the user will be able to 
send the generated mission plan to a higher-fidelity external 
simulator for further evaluation. 

4. EVOLUTIONARY PROCESS 
We shall now describe the methods used to generate mission 
plans for the described system through evolutionary multi-
objective optimization. First, we shall describe the manner in 
which we create an abstract battlespace representation. We will 
then describe the representations developed for mission plans. 
Finally, we will describe the various evolutionary techniques 
employed to evolve mission plans. 

4.1 Abstract Battlespace Representation 
A crucial need exists to restrict the potential solution space from 
an infinite continuous range to a discrete range that can be 
adequately explored by an evolutionary algorithm.  To 
accomplish this, in our initial experiments we superimposed a 
square coordinate grid on the portion of the battlespace around the 
target that encompasses both the target and the range of 
effectiveness for the enemy assets defending it. Figure 3 shows an 
example of a grid, with paths from asset starting positions to the 
target. In our actual implementation, a 10x10 grid was chosen.  

 

 
Figure 3: Abstract Battlespace Grid 

 
Figure 2: OpenMap Visualization of Simulation



4.2 Plan Representation 
4.2.1 Initial Representation 
In our initial experiments, a minimum representation was used for 
our encoding. Each aircraft group was given a field indicating if it 
was “active” (i.e. included in the plan) by a simple binary flag. 
Additionally, each aircraft group was also given a fixed number 
of grid coordinates indicating two-dimensional waypoints 
between its initial position and the target destination. If a path 
intercepts the cell of the target, the path terminates immediately in 
that cell. In our initial experiments, the fixed number of 
waypoints was set to four to provide a rich, yet feasible, solution 
space to explore. Each aircraft group was given a static location 
within the chromosome to avoid the need for additional 
information. An illustration of the representation for a single 
aircraft group is supplied in Figure 4. 

 

Y x1 y1 x2 y2 x3 y3 x4 y4 

Indicates if this asset is used 

Route coordinate 

 
Figure 4: Initial Plan Representation 

4.2.2 Modifications and Improvements 
As our initial experiments completed, several questions arose as 
how to improve the representation to better characterize potential 
solutions as well as ease the evolutionary process in finding fit 
solutions. One question posed what influence the proximity of the 
active flag to the path for each aircraft group had. In response, an 
experiment was conducted in which the active flag fields for each 
aircraft group were collected together and placed at the beginning 
of the chromosome. Each aircraft group’s path was then set in 
order following the active flag fields in the same manner as in the 
initial representation.  Given the same evolutionary technique, 
each run performed comparatively to the prior representation. 
This was a puzzling result given that the hypothesis suggested the 
experiment would result in either an improvement or a decline in 
the findings. The central speculation, given the intricacies of the 
domain, was that the active flag fields influence the fitness of 
each objective to a higher degree than the path of the aircraft 
group. We are currently analyzing these results to determine why 
proximity does not seem to have a profound effect on the results. 
It is possible that this representation improved one property while 
worsening another, such as improved asset allocation but 
worsened path formation. 
We are also currently investigating developing a more intricate 
gene representation to provide a more realistic picture to properly 
correlate to our final domain. Current efforts are focusing on 
including three-dimensional waypoints to include altitude, 
including fuel levels and other logistics, and considering inter-
asset synchronization requirements to support a more 
collaborative approach to the mission plan. Additionally, we are 
exploring replacing explicit path formation via waypoints with a 
strategy of approach that will be translated into a path during 
simulation. 

4.3 Evolutionary Techniques 
4.3.1 Plan Evaluation 
Each generated mission plan from the evolutionary algorithm is 
played out within the Abstract Wargamer to simulate the effects 
of that mission plan in the environment. In our current 
implementation, the following objectives are retrieved from data 
supplied by the Abstract Wargamer and calculated: 
� Probability of destroying the target 
� Vulnerability of friendly assets 
� Time required to accomplish the mission 
� Disruption to the Air Tasking Order  
Each objective is calculated and normalized to a real number 
between 0.0 and 1.0. For simplification, each objective is set to be 
maximized through inversion where need be. Each objective will 
be referred to in the following manner: Success (S), Vulnerability 
(V), Time (T), and Disruption (D).  
Success is defined as the probability that a given mission plan will 
successfully reach and destroy its target. As described above, the 
mission plan is simulated using the OEP simulation capabilities. 
Due to the stochastic nature of the Monte Carlo simulation, 
several runs are completed and the results averaged together. 
Vulnerability is defined by two separate means. The initial 
vulnerability metric is a straight calculation of the number of 
friendly aircraft destroyed during the simulation. Again, several 
runs are completed and results averaged together to receive an 
average number of friendly aircraft destroyed during mission 
execution. An additional vulnerability metric used is by 
integrating the vulnerability described by the path of each friendly 
aircraft. This computation is performed by comparing the inherent 
vulnerability of the friendly aircraft to the vulnerability 
characterized by the threat at each location in the abstract 
battlespace grid. Friendly aircraft are initially given associated 
discrete values of vulnerability from a lookup table based on the 
aircraft type. The threat at each location is then given by the 
capabilities of the enemy aircraft and enemy artillery compared to 
the inherent vulnerability of the friendly asset to compute the 
vulnerability. Figure 5 illustrates an example of the varying threat 
levels in the abstract battlespace grid for a sample friendly 
aircraft. 
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Figure 5: Threat Levels in Abstract Battlespace Grid  



Time is defined by how long the given mission plan takes to 
complete. This is calculated by how long it takes from the 
beginning of the mission plan until the last aircraft included in the 
plan reaches its target. This calculation is then inverted and 
normalized by comparing it to the maximum possible duration of 
a mission plan. Missions that take less time are given higher 
levels of fitness for this objective.  
Disruption is defined by the number of friendly aircraft utilized in 
the mission and the associated priority levels of the previous 
targets of those aircraft governed by the retrieved ATO. Plans that 
use fewer aircraft and with lower priority for their original target 
are rated higher than those who divert assets from higher priority 
targets. 
In addition to the objectives outlined above, we are currently 
performing experiments to include additional objectives as well as 
further detailing current objectives. One element we wish to bring 
into the picture is the concept of secondary effects due to the 
weaponry used and the location of targets. An additional desirable 
objective would be the minimization of cost and weapon 
expenditure. Furthermore, the degree to which the given mission 
plan violates airspace restrictions is an important attribute. 
Additionally, there are other performance metrics to determine the 
probability of success under consideration. For example, the 
performance data of an asset is useful to integrate into the 
probability of success computation. The weapon load 
effectiveness is an additional piece of data we plan on integrating. 
Also in consideration is the proximity to the target window that a 
given mission plan executes within. 

4.3.2 Aggregation-based Multi-objective 
Optimization 
In our initial experiments, we began by using a simple 
aggregation-based method of multi-objective optimization. Here, 
fitness was calculated by weighting (wi) each objective and 
summing up all objectives. The applied weights were supplied by 
the user of the system to designate the priority of each objective 
in relation to the others. Equation 1 describes the simple 
mathematical formulation for this aggregation-based fitness. 
This method was then tested using a scenario developed by a 
domain expert. In this scenario, a single, fixed target was used 
surrounded by two surface-to-air missiles (SAMs). This form of 
the scenario was developed to serve as a test problem by which to 
examine the capabilities of the evolutionary technique given. 

Table 1 shows the status of each friendly asset to be potentially 
included in the mission plan. 

Equation 1: Aggregation-based Fitness 
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Several experiments were run using a standard genetic algorithm 
with elitism, roulette wheel selection, N-point crossover with N=2 
and crossover rate of 0.7, a standard jump mutation operator with 
a 0.05 mutation rate, a population size of 25, each run given 20 
generations, and 10 simulations. Each set of experiments used 
different combinations of weightings for the objectives given by 
the problem. A selection of the fitness results from several runs is 
summarized in Table 2. 

Table 1: Friendly Asset Status 

Asset Allocation Status 
2 x 4 x F-16C Priority 0 Coming off target 
2 x 2 x F-15E Priority 2 Taxing, 250 nm from target 
1 x 4 x A-10 Priority 2 80 nm from target 
1 x 1 x B1-B Priority 1 150 nm from target 
2 x 2 x F-18G Priority 3 80 nm from target 
1 x 2 x A-10 Priority 0 On strip alert, 150 nm from 

target 
 
When a high weight was given to Success (S), the probability of 
destruction given was almost always definite. However, it should 
be noted that the probability of approaching the target and being 
successful in its destruction is inherently easy given the 
parameters set forth by the simulation. Even when the priority 
was not given to Success, the destruction of the target was fairly 
certain arriving at a probability around 1. When a high weight 
was given to Vulnerability (V), the average number of friendly 
aircraft destroyed varied between runs. During some instances, 
the average number destroyed fell much lower than when priority 
was given to other objectives. In other instances, however, the 
average number of friendly aircraft destroyed was about equal to 
when higher priority was given to other objectives. When a high 
weight was given to Time (T), the average time required dropped 

s 

Priority 

FSuccess 
F
FVulnerability 
F
FTime 
F
FDisruption 
F

 

Table 2: Selection of Aggregation-based Results Given Various Priority Rating
Asset Groups Fitness Probability of 
Destruction 

Average Assets 
Destroyed 

Average Time 
Required 

/A-18G-1, F-16C-1 0.861 1 0.4 0.504 
/A-18G-1, F-16C-2 0.852 1 0.5 0.422 
-16C-2, F-16C-1 0.849 1 0.5 0.431 
/A-18G-1, F/A-16C-2 0.828 1 0.2 0.476 
-16C-1 0.865 0.99 0.4 0.112 
-16C-1 0.845 0.99 0.5 0.114 
-16C-2 0.985 1 0 0.211 
-16C-2 0.981 1 0 0.268 



considerably and the algorithm was able to minimize the number 
of friendly aircraft used and find a short path to the target. 
Coincidently, the aircraft selected also minimize the disruption to 
the ATO by utilizing aircraft with low priorities specified by the 
order of battle. When a high weight was given to Disruption (D), 
low priority aircraft were utilized. Additionally, these runs 
seemed to result in a quite accurate path formulation as the 
average number of assets destroyed was minimized to 0. The 
alternative vulnerability calculation, however, remained within 
the normal bounds. 
Based on these results, several findings were realized. First, there 
are some clear interactions between the differing objectives that 
are not always contradictory given this scenario. Primarily, there 
seemed to exist a relationship between both time and disruption to 
push evolution to select a minimum number of aircraft and to 
utilize those close to the target and with low priority ratings. 
Further study is underway in this area by staging more deliberate 
scenarios and reexamining the underlying objective calculations. 
An additional finding was that when a priority was placed on 
vulnerability, this evolutionary technique failed to consistently 
provide a better vulnerability rating. We speculate that for this 
objective, the fitness landscape may be more complex, causing 
the optimization procedure to culminate at local maxima. Finally, 
and perhaps most importantly, further runs resulted in the 
identification that the final population often contained multiple 
mutants of single individuals. This clustering behavior suggests 
that this evolutionary strategy consistently results in premature 
convergence. Since the goal of the optimization process is to 
provide an optimal, yet diverse, population of solutions for the 
end user, a crucial need exists to implement a method of diversity 
preservation. 

4.3.3 Dominance-based Multi-objective Optimization 
Based on the preliminary tests, the aggregation-based multi-
objective optimization approach as described in the previous 
section did not adequately explore the search space, resulting in 
non-optimal solutions on several runs. Additionally, the process 
consistently fell victim to premature convergence.  In order to 
maintain a diverse set of solutions, we looked towards other 
evolutionary strategies. A decision was made to move from an 

aggregation-based approach to a dominance-based approach. In 
particular, we chose to implement the NSGA-II [5] algorithm 
because of its popular use, speed, ease of implementation, and 
ability to maintain a diverse set of solutions through non-
dominated sorting and crowded distance estimation.  
NSGA-II was developed by in response to criticisms of the 
original NSGA algorithm, one of the first multi-objective 
evolutionary algorithms (MOEAs) created. The revised form 
reduces computational complexity, includes a form of elitism, and 
removes the need of a sharing parameter. At each iteration of the 
algorithm, NSGA-II combines parent and child populations. The 
combined population is then sorted using a fast non-dominated 
sorting algorithm. During this process, each individual in the 
population is given a rank as to which Pareto front it belongs. 
Each Pareto front contains individuals which non-dominate each 
other. Pareto dominance is defined as an individual which is 
greater or equal than another individual on all objectives and 
greater on at least one objective. The individuals included in a 
Pareto front are removed from consideration when determining 
subsequent fronts. Once ranked by Pareto front, each front is 
subjected to a crowded distance calculation and sorting algorithm. 
This algorithm maintains diversity by ranking each individual by 
their proximity to other individuals on all objectives. Higher 
distance values represent more diverse solutions. Each front that 
can fit in the parent population is included. Individuals from the 
front that follows are then included in the parent population based 
on their crowding distance until the parent population is filled. 
Tournament selection (based on the crowded-comparison 
operator), crossover, and mutation operators are then used to 
generate the new child population. 
We have included the NSGA-II algorithm in our system and 
performed some initial experiments to examine its performance 
compared to our previous aggregation-based approach. In our 
implementation, the same four objectives were used and each 
objective treated of equal importance as described by the NSGA-
II process. Binary tournament selection based on the crowded-
comparison operator, N-point crossover with N=2 as well as 
uniform crossover, and simple jump mutation were used. Runs 
processed for 50 generations, used population sizes of 50 
individuals, and evaluated for 10 simulations. Initial tests have 

 

ID # Assets 

1 4 F-16C
2 4 F-16C
3 4 F-16C
4 6 F/A-1
5 6 F/A-1
6 2 F/A-1
7 4 F-16C
8 4 F-16C
9 4 F-16C
10 4 F-16C

 

Table 3: Single Run Results with NSGA-II
Asset Groups Probability of 
Destruction 

Average 
Assets 

Destroyed 

Average Time 
Required 

-1 1 0 0.091 
-1 1 0.2 0.118 
-2 1 0.8 0.100 

8G-1, F-16C-2 1 0 0.300 
8G-1, F-16C-2 1 0.4 0.286 
8G-1 1 0 0.245 
-1 0.24 0.2 0.102 
-2 1 0.4 0.104 
-1 1 0.6 0.102 
-1 1 0.2 0.118 



risen to a much better performance in terms of diversity. Selected 
runs have resulted in a spread of solutions that exhibit higher 
fitness levels in single objective domains than could be obtained 
with aggregation-based optimization. An example of the results 
from a single run is displayed in Table 3. The most dominant 
solution discovered by this algorithm was mission plan ID 1, 
which uses a low-priority asset group, has a high probability of 
success, loses no assets during simulation, and is completed in the 
least amount of time. Other solutions vary in tradeoffs among 
objectives. Mission plans ID4 and ID5 use higher-priority asset 
groups that result in less vulnerability but are higher average time 
required. Mission plan ID7 uses a low-priority asset group and 
has a low vulnerability rating and low time required, but has a low 
probability of success. 
One of the downfalls, however, of the initial experiments utilizing 
the NSGA-II approach is that each objective is treated equally. As 
a result, it is not possible to provide the end user with a means by 
which to give preference to certain objectives and restrict the 
importance of other objectives. Recent work in the field has 
identified this limitation and is currently developing means to 
include user preferences in dominance-based multi-objective 
optimization. Of particular interest is the work discussed in [1], 
since it describes a guided evolutionary multi-objective 
evolutionary algorithm and a way to augment NSGA-II in using a 
biased crowding operator and the concept of guided dominance. 
Our future work includes utilizing this developed technique in the 
hopes that we can supply user preferences to the success of the 
dominance-based approach in this work. 

5. CONCLUSION 
We have outlined a system for the generation of air campaign 
mission plans using evolutionary multi-objective optimization and 
described the approaches and results of our preliminary 
experiments. Our aggregation-based approach was met with some 
success, but during many runs failed to locate the more optimal 
solutions. It was hypothesized that this approach did not fully 
explore the search space and was leading the evolutionary process 
to prematurely converge. To address this issue, we shifted to 
using a dominance-based approach, specifically the NSGA-II 
algorithm. Runs using this technique resulted in more optimal 
solutions, and also returned a more diverse collection for the end 
user. However, NSGA-II lacks a method by which the user can 
inject preferences into the evolutionary process, a largely required 
aspect of our system.  
Future work in the development of this decision-support tool will 
focus on various fronts. First, we are looking towards 
experimenting with different representations for the encoding of 
our mission plans. Such representations might include a more 
abstract depiction of paths, encoding strategy instead of explicit 
route methods. Additionally, we are looking towards using more 
involved scenarios to test and validate the approach. Primarily, 
however, our focus will be on studying, implementing, and 
modifying existing multi-objective evolutionary algorithms and 
testing their success for our defined problem. 
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