
Genetic Algorithm Strategies for Voronoi Classifier
Navigation

Matthew Skalny
U.S. Army TARDEC

6501 E. 11 Mile Road
Warren, MI 48397

matthew.skalny@us.army.mil

Jim Overholt
U.S. Army TARDEC

6501 E. 11 Mile Road
Warren, MI 48397

jim.overholt@us.army.mil

Greg Hudas, Graham Fiorani
U.S. Army TARDEC

6501 E. 11 Mile Road
Warren, MI 48397

greg.hudas, graham.fiorani
@us.army.mil

ABSTRACT
There are many approaches to guiding robots in partially known
environments, including waypoints, D*, and various other
methods. In this paper, we describe a new method for robot
navigation that uses navigation “beacons” called Voronoi
classifiers to guide a robot to a goal area, and the application of a
genetic algorithm for optimizing the placement of these
classifiers. Our results show that a genetic algorithm (GA) can be
a good way of placing the classifiers.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics – autonomous vehicles,
sensors

General Terms
Algorithms, theory

Keywords
Voronoi classifier, robot navigation, dynamic waypoints, genetic
algorithm

1. INTRODUCTION
Successful navigation of robots or groups of robots from some
start point to some goal is critical for military robots. Some
robotic applications that require accurate navigation schemes
include robotic mules for delivering supplies, and using robots for
perimeter search/patrol.

There are a number of challenges involved in robot navigation.
Some of these challenges are path planning, robot localization,
and sensor inaccuracy [1,2,3,4]. To address these issues, a
number of methods have been developed and implemented.

Currently, waypoint navigation is the de facto standard for laying
out a path for a robot to follow. The U.S. Army has demonstrated

the capabilities of waypoint navigation (sometimes known as
laying out ‘electronic breadcrumbs’) in several well publicized
experiments (such as Demo III leader-follower activities [5]).
However, waypoint algorithms can exhibit problems when
unknown obstacles or dynamically changing terrain alters the path
between consecutive points.

To solve the issues with waypoint navigation, a number of
methods have been developed.

Arkin’s potential field methods [6] use attractive and repulsive
forces to guide a robot – obstacles “emit” repulsive forces, and
attractive forces lead the robot towards the goal. A resultant force
from the combination of the various forces provides the robot
with its navigation instructions. This method breaks down when
there are several obstacles in the field of interest, generating
points of singularity or null points in the field [7].

Choset developed a path planning method based on computing all
possible geometric center paths in cluttered environments. A tree
search and pruning technique is then used to trim the all the paths
down to the feasible ones. Any location can be optimally moved
to as long as these paths are followed until the robot get as close
as possible to the final desired point. This method combines
SLAM concepts with computational geometry methods using
Generalized Voronoi Graphs [8].

Stentz has developed a popular method called D* [9] that has
been used in a number of applications. D* combines A* search
with a local re-planner that updates an optimal path based on
sensor data. While effective, this means that the robot could be
spending a good deal of time recalculating optimal paths. In an
obstacle rich environment, a more robust, non-optimal solution
may be more appropriate.

Analysis of all of the above methods lead use to develop a new
robot path planning and navigation method that uses Voronoi
classifiers to provide navigation instructions to a robot or robots.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Genetic and Evolutionary Computation Conference (GECCO) ’05,
June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

2. ROBOT PATH PLANNING USING
VORONOI CLASSIFIERS
2.1 Introduction
We have previously presented our Voronoi classifier method for
robot path planning and navigation, and have shown it to have the
potential to be a more robust and easier to visualize than other
current methods [10]. The basis for our method is the following
problem statement:

Given a playing field ‘F’ with a set of obstacles and a goal region
‘G’ place a minimal set of ‘navigation classifiers’ that will allow
any feasible starting location in ‘F’ to terminate at ‘G’ within a
finite number of steps ‘K’ (see figure 1).

Figure 1: Playing field ‘F’ with obstacles and goal ‘G’.
Several Voronoi classifiers are shown.

The name Voronoi classifier comes from the fact that each
navigation classifier Ci in figure 1 can be associated with a
Voronoi region Vi. A Voronoi diagram [11] may be generated by
any finite set of points (sites) in a plane. The partitioning of a
plane with n sites into n convex polygons such that each polygon
contains exactly one site and every point in a given polygon is
closer to its site than to any other site yields a Voronoi diagram
(see figure 2).

In the case of our Voronoi classifier navigation method, each site
in figure 2 would be a classifier providing direction and distance
to travel instructions to any robot that is requesting instruction
while in the classifier’s associated Voronoi region.

2.2 Navigation Example using Voronoi
Classifiers
Each Voronoi classifier can be viewed as a dynamic waypoint
generator – it provides a direction and distance command to any
robot within its region that is in need of instruction. This process
continues until the robot either:

1) Reaches the goal,
2) Leaves the playing field, or
3) Exceeds some maximum limit on distance traveled or

number of steps taken.
For example (see figure 3), a robot starting at b0 will request and
receive its first instruction from C1, which tells it to go to b1. In
the case of path b, this process is repeated until the robot reaches
the goal.

Figure 3: Trajectories on a playing field generated by Voronoi
Classifiers. The blue trajectory terminates at the goal. The

yellow trajectory leaves the playing field.

2.3 Optimizing Classifier Placement
Until now, we have used human placement for positioning the
classifiers. This has been done through a software tool we
developed using a concept called the color map. Figure 4 shows
an example of a color map – green indicates areas from which a
robot will be successfully directed to the goal, red indicates areas
from which the robot will be directed to leave the playing field,
and yellow indicates regions that do not lead the robot off the
field and do not reach the goal within the number of steps
specified.

Figure 4: Example of Color Map, Goal in Center

Figure 2: Example of a Voronoi
diagram

 G

C5

C4

C3

C2

C1

b5b4

b3

b2

b1

b0

y1

y3

y2

y0

 G

C5

C4

C3

C2

C1

F

Each colored region on the color map is based on the color for a
sample point or points contained within that region. The goal of
placing classifiers is to make the entire playing field green.

For an empty field, or even a field with few obstacles, it is not too
difficult for a human to lay out a good set of classifiers.
However, once the complexity of the playing field starts
increasing, hundreds of classifiers may be needed to achieve the
accuracy desired. This has led us to investigate automated
methods for placing classifiers and determining classifier
magnitude and direction parameters. The rest of this paper
focuses on our research into the use of a genetic algorithm for
optimizing classifier placement and magnitude and direction
parameters. Figure 5b: The right-most classifier of the two that are to the

upper left of the goal has its y position changed very slightly,
relative to the playing field size – there is a dramatic increase

in areas that are not directed to the goal (red + yellow)
3. CLASSIFIER PLACEMENT USING
GENETIC ALGORITHM
3.1 Reason for using a Genetic Algorithm 3.2 Test Environment Setup We identified a genetic algorithm (GA) as a good optimization
option for several reasons. These are: For this experiment, we used the test environment shown in figure

6. This environment provides a reasonably dense obstacle field,
and provides a good test for the effectiveness of different GA
approaches. This is also an environment for which a human can
set up classifiers relatively easily, making comparisons possible.

1) A set of classifiers can be treated as a string of real
values, where every four values on the string represent
the x and y position of that classifier, and the magnitude
and direction of the navigation instruction it provides. The playing field is of size 1000 x 1000, normalized to be size 1.0

x 1.0. The goal is the small square just to the right and above of
center, and has a normalized size of 0.1 x 0.1, or 1% the area of
the playing field.

2) We have not identified a solid mathematical expression
for calculating how many steps a robot will take to get
to a goal given some set of classifiers and a starting
position. Each path is a linear combination of some
non-negative integer number of each classifier’s vector
(direction + magnitude instruction), but the problem is
highly constrained by obstacle and Voronoi region
restrictions.

3) The fitness landscape is very likely characterized by a
number of sharp fitness changes over relatively small
changes in a single parameter. This is due to the
discreet nature of taking classifier instructions, as well
as to the properties of a Voronoi diagram. Figures 5a
and 5b demonstrate how a slight change in the y value
of one classifier can dramatically affect the overall
fitness of a set of classifiers.

Figure 6: Test Environment – Goal is circled in red.

3.3 Strategy
We have used a standard GA representation as our main
approach. Each individual in the population contains a fixed
number of classifiers, where each classifier is represented by four
consecutive values (x position on field, y position on field,
magnitude instruction, direction instruction).

Because it can be difficult to guess the number of classifiers
needed for any given field, we have also begun investigation into
using methods that add classifiers to an initially small set of
classifiers. The goal of this approach is to let the classifier set get
built up to the proper size needed without having to make a
decision on what the correct amount of classifiers is. The
methods we have begun to investigate include a complexifying
method that resembles the NEAT (Neuro-Evolution of
Augmenting Topologies) methodology for neural networks [12],
and another method that uniformly adds one classifier to every
individual in the population after the population has not shown
significant improvement for some number of generations.

Figure 5a: Initially, two classifiers to upper left of goal are
placed very close to each other, and third classifier is placed
below goal – the playing field is mostly green, indicating a

good rate of success.

3.4 Fixed Length GA
For the fixed length GA, each individual in the population was
given a fixed number of classifiers, with each classifier on the
individual’s chromosome being a group of four consecutive
scaled integer fields (x position, y position, magnitude, direction).
N classifiers were used in each run, where N was varied to test the
effectiveness of different sized classifier sets. The advantage of
using the fixed GA representation is that there are a number of
software tools and methods available to efficiently perform the
search, and the population can focus on searching a larger group
of potential solutions that have the same number of classifiers.
The downside is that the designer of the GA must choose the
number of classifiers.

3.5 Complexifying and Uniform Classifier
Addition Genetic Algorithms
We have also begun to investigate using methods for starting from
a minimal set of classifiers and adding classifiers until a solution
is reached in order to take the guess work out of the problem.
There are two methods we are investigating – a complexifying
method inspired by the NEAT method for evolving neural
networks [12], and a method that involves uniform addition of a
new classifier to every population member when the fitness of the
population stagnates.
NEAT evolves neural networks by starting with an initial
population filled with very simple networks, and gradually adding
new connections and nodes. It uses speciation to protect newly
added structure, and to allow new structures to develop without
competition from less complex, but more optimized networks
[12]. Similarly, our complexifying GA starts with a minimal set
of classifiers, and gradually adds new classifiers with some
probability over the duration of a run. Kavka[13] also uses a
similar scheme for evolving a Voronoi-based fuzzy controller.
Like NEAT, we have also identified the use of speciation, based
on the number of classifiers, as a way to separate different sized
classifier sets and to protect innovation.
The uniform classifier addition (UCA) GA involves starting from
a minimal set of classifiers and uniformly adding a new random
classifier to every member of the population when needed. We
base the need to add a new classifier on how much improvement
the population has made over a specified number of generations –
if the improvement is below some threshold, a new classifier is
added to all members of the population. When the settings are
right, this method becomes very similar to running a fixed length
GA with different fixed values over and over again.

4. RESULTS AND OBSERVATIONS
4.1 Fitness Function Used
The fitness of each individual in each run is equal to the
proportion of the color map that is green given a number of
sample starting points. This indicates over how much of the
playing field a given classifier setup is able to successfully guide
the robot to the goal. For our experiments, about 1000 sample
points arranged in a grid were used as starting points for the robot.

4.2 Results and Observations – Fixed Length
GA
We used the following settings for each run of the fixed length
GA:

- Two-point crossover, P(crossover) = 0.25
- Field mutation, P(mutation) = 1 / (4 * num classifiers)
- Tournament Selection, tourn. Size = 3
- Population Size = 150
- Number of Classifiers per Individual = 15, 25, 30
- Number of Fields per Individual = 60, 100, 120
- Number of generations = 400

Five runs were done for each different number of classifiers – the
table below shows the average fitness of the best individual after
200 and 400 generations over all five runs, for each different
fixed number of classifiers.
Table 1. Average Fitness of Best Individual after 200 and 400

Generations, for N = 15, 25, 30 Classifiers, Averaged over Five
Runs

Number of
Classifiers

(N)

Fitness of Best
Individual after 200

Generations

Fitness of Best
Individual after 400

Generations

15 0.9172 0.9687

25 0.9420 0.9797

30 0.9518 0.9828

The table shows that both 25 and 30 classifier solutions both can
reach a very good value – about 0.98 each. Generally, we
consider 0.95 and above a successful result. These results also
indicate the difficulty in choosing a value for N – 15 classifiers
performs almost as well as 25 and 30, and there is an indication
that adding more than 30 classifiers could give even better
performance.

4.3 Initial Results and Observations –
Complexifying GA and Uniform Classifier
Addition GA
Initial results for the complexifying GA were not as good as
achieved when choosing a fixed number of classifiers for the
entire population. Our initial settings were as follows:

- P(crossover) = 0.25
- P(Adding Classifier) = 0.10 – 0.30
- P(Deleting Classifier) = 0.10 – 0.30
- P(Parameter Mutation) = 0.01 – 0.10
- Population Size = 150
- Number of Classifiers per Individual = Variable
- Number of Fields per Individual = Variable
- Number of generations = 400
- Speciation = Based on number of classifiers
- Threshold for Species Boundary = +/- (1–5)

As the setting values show, we have tried a number of different
settings for the complexifying GA. Results for a typical run saw
the maximum fitness topping out at about 0.75, which is
significantly lower than the performance achieved by the fixed
length GA. There were two cases that occurred. When the
probability of adding new classifiers was kept low, and species
were set up to include individuals with a greater variation in
number of classifiers, premature convergence was prevalent.
When the species threshold was reduced and the probability of
adding a classifier was increased, solutions with newly added
classifiers were able to survive, but classifier bloat began to
occur. Possible reasons for each case are discussed in section 5.
For the uniform classifier addition GA, there are two critical
settings that must be determined:

- How much the fitness of the best individual must
improve in order to avoid having a new classifier added
to all members of the population AND

- How many generations the best individual is given to
make this improvement

Our initial observations show that when the population is given
too long to make small improvements, the run will take very long
even though the maximum fitness has flattened out for some time.
When too much pressure is put on a population to increase its best
fitness, new classifiers are added before the population has had a
chance to optimize its current number of classifiers. Another
important observation made during analysis of this method is that
the initially evolved set of classifiers (from when the population’s
individuals contained a minimal set of classifiers) at times is not
even present in later solutions – reasons for this are discussed in
section 5.

5. DISCUSSION OF RESULTS
There are a number of points of interest regarding the results and
observations from section 4. The first is the performance of the
fixed length GA for this problem.
The fixed length GA comes up with very good solutions – a robot
will be successfully guided to the goal from 95% or more of the
starting positions that were sampled (within the desired number of
steps). While this is a good value, the most important aspect of
the GA performance is how it does in comparison to a human.
The GA runs on a high end laptop in about 15 minutes for 400
generations – from observation, and experience humans can
create classifier setups that achieve similar 0.95+ fitness values
within five minutes. At some point, the complexity of the playing
field will very likely make the GA faster at placing a classifier set
than a human – additional studies are needed to analyze the
performance of humans and a genetic algorithm on increasingly
complex playing fields.
The reasons for the less than desired performance of the
complexifying and UCA genetic algorithms also present several
important discussion points. Potential reasons for the difficulties
the complexifying and UCA methods have are directly related to
the properties of the Voronoi diagram associated with the
classifier set.
First, there is the concept of equivalent solutions that have
significantly different classifier locations. Figure 7a and 7b both
have the exact same Voronoi diagram and the exact same color

map, even though the classifiers in 7a are very close to the goal
and the classifiers in 7b are near the edges of the playing field.

Figure 7a: Three Classifiers and Associated Color Map

Figure 7b: Three Classifiers at Different Positions, but with

Same Color Map

There is also the concept of global effect in Voronoi diagrams
when there are very few sites. Figure 8a shows a set of classifiers
used to provide a solution for a simple playing field with a goal in
the middle of a few small obstacles. When a new classifier is
added in figure 8b, it has a significant impact on both the Voronoi
diagram and color map – this is an effect of there being so few
classifiers.

Figure 8a: Three Classifiers and Associated Color Map

Figure 8b: Global Effects of Adding Classifier in Upper Right

Figures 7a, 7b, 8a, and 8b illustrate a critical reason why starting
with a minimal set of classifiers and gradually adding new
classifiers tends to perform poorly – the best performer in a
population with few classifiers per individual may not include
building blocks that will scale up to individuals with larger
numbers of classifiers. This means that all the effort put into
evolving a population with fewer classifiers may not translate into
a benefit when more classifiers are added. This occurs in both the
complexifying genetic algorithm and the UCA genetic algorithm.

Figure 9a: Many Classifiers and Associated Color Map

Figure 9b: Many Classifiers and Associated Color Map with

Classifier Added at Left

In contrast to the global effects shown in figures 8a and 8b, there
is also the concept of effects being limited to a local region of the
Voronoi diagram when a new Voronoi site is added to a field that
already contains many sites. Figure 9a shows a playing field with
many classifiers, and figure 9b shows the effect of adding a new
classifier to that field. Figure 9b shows relatively little change

from figure 9a, especially when compared to the change that
occurs between figure 8a and 8b. This has an important impact
on the complexifying method when using speciation – at some
point, adding new classifiers will have very little impact on the
overall fitness of an individual solution. This leads to solutions
becoming overly complex, and makes it much more time
consuming and difficult for the GA to come up with a solution.
All of these issues with the observations and results of the various
genetic algorithm setups leads to some valuable conclusions and
action items for future work.

6. CONCLUSIONS AND FUTURE WORK
We have introduced our Voronoi classifier based method for
robot navigation, and have demonstrated that a traditional GA
setup is a feasible method for optimizing the placement of
classifiers. We have also proposed alternate GA approaches, and
demonstrated properties of our problem that have made those
approaches challenging to implement.
There are a number of action items that we have identified for
future work. Avoiding having to guess the best amount of
classifiers is not the only reason for allowing the number of
classifiers per individual to grow – we will in the near future be
implementing the classifiers as hardware sensors/transmitters.
This means that a cost will be associated with adding a classifier,
making this a multi-objective optimization problem where we
want to maximize the effectiveness of the classifier setup, while
minimizing the number of classifiers used.
We are also investigating hybrid GA and non-GA approaches for
optimizing the number and placement of classifiers. One thing
that we have noticed while placing classifiers ourselves is that it is
a very methodical process. One typical strategy we use when
manually placing classifiers is to start by placing classifiers very
near the goal. When we add new classifiers, we work backwards
from the goal, each time making a new portion of the playing
field green by pointing a newly added classifier towards a region
that is already green. For these reasons, we are examining
methods like dynamic programming and locally greedy heuristic
measures to supplement or replace the use of a genetic algorithm.

7. REFERENCES
[1] Durrant-Whyte, H.F.. Where am I? A Tutorial on Mobile

Vehicle Localization. Industrial Robot, 21 (2):11-16, 1994.
[2] Bornstein,J., Everett, B., and Feng, L. Navigating Mobile

Robots: Systems and Techniques, A.K. Peters, Ltd.,
Wellesley, MA, ISBN 1-56881-058-X, 1996.

[3] Bonnifait, Ph., and Garcia G. A Multisensor Localization
Algorithm for Mobile Robots and its Real-Time
Experimental Validation. Proc. IEEE Int’l Conf. on Robotics
and Automation, Minneapolis, MN, April, 1996.

[4] Hudas G., Cheok, Ka C., and Overholt, J. Two Dimensional
Localization using Nonlinear Kalman Approaches. In
Proceedings SPIE Optics East, Philadelphia, PA, October
2004.

[5] Shoemaker, C. M., and Bornstein, J. A. Overview of the
Demo III UGV Program. In Proceedings of the SPIE Robotic
and Semi-Robotic Ground Vehicle Technology, Vol. 3366,
1998.

[6] Arkin, R. C. Motor Schema-Based Mobile Robot
Navigation. The International Journal of Robotics Research,
August 1989, pp. 92-112.

[7] Koren, Y., and Borenstein, J. Potential Field Methods and
Their Inherent Limitations for Mobile Robot Navigation. In
Proceedings of the IEEE Conference on Robotics and
Automation, 1991.

[8] Choset, H., and Burdick, J. Sensor-Based Exploration: The
Hierarchical Generalized Voronoi Graph. The International
Journal of Robotics Research, Vol. 19 No. 2, 2000.

[9] Stentz, A. Optimal and Efficient Path Planning for Partially-
Known Environments. In Proceedings of the IEEE
International Conference on Robotics and Automation, 1994.

[10] Overholt, J., Skalny, M., Fiorani, G., and Hudas, G. Robot
Path Planning Using Voronoi Classifiers. In Proceedings of
SPIE, Vol. 5804, March 2005.

[11] Fortune, S. Voronoi diagrams and Delaunay triangulations in
Computing in Euclidian Geometry. World Scientific, 1992.

[12] Stanley, K., and Miikkulainen, R. Evolving Neural Networks
Through Augmenting Topologies, Evolutionary Computation
10(2):99-127, 2002.

[13] Kavka, C., and Schoenauer, M. Evolution of Voronoi-based
Fuzzy Controllers. In PPSN 2004, September 2004,
Birmingham, England.

	INTRODUCTION
	ROBOT PATH PLANNING USING VORONOI CLASSIFIERS
	Introduction
	Navigation Example using Voronoi Classifiers
	Optimizing Classifier Placement

	CLASSIFIER PLACEMENT USING GENETIC ALGORITHM
	Reason for using a Genetic Algorithm
	Test Environment Setup
	Strategy
	Fixed Length GA
	Complexifying and Uniform Classifier Addition Genetic Algorithms

	RESULTS AND OBSERVATIONS
	Fitness Function Used
	Results and Observations – Fixed Length GA
	Initial Results and Observations – Complexifying

	DISCUSSION OF RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

