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ABSTRACT 
There are many approaches to guiding robots in partially known 
environments, including waypoints, D*, and various other 
methods.  In this paper, we describe a new method for robot 
navigation that uses navigation “beacons” called Voronoi 
classifiers to guide a robot to a goal area, and the application of a 
genetic algorithm for optimizing the placement of these 
classifiers.  Our results show that a genetic algorithm (GA) can be 
a good way of placing the classifiers. 

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence]: Robotics – autonomous vehicles, 
sensors 

General Terms 
Algorithms, theory 

Keywords 
Voronoi classifier, robot navigation, dynamic waypoints, genetic 
algorithm 

1. INTRODUCTION 
Successful navigation of robots or groups of robots from some 
start point to some goal is critical for military robots.  Some 
robotic applications that require accurate navigation schemes 
include robotic mules for delivering supplies, and using robots for 
perimeter search/patrol. 

There are a number of challenges involved in robot navigation.  
Some of these challenges are path planning, robot localization, 
and sensor inaccuracy [1,2,3,4].  To address these issues, a 
number of methods have been developed and implemented.   

Currently, waypoint navigation is the de facto standard for laying 
out a path for a robot to follow.  The U.S. Army has demonstrated 

the capabilities of waypoint navigation (sometimes known as 
laying out ‘electronic breadcrumbs’) in several well publicized 
experiments (such as Demo III leader-follower activities [5]).  
However, waypoint algorithms can exhibit problems when 
unknown obstacles or dynamically changing terrain alters the path 
between consecutive points. 

To solve the issues with waypoint navigation, a number of 
methods have been developed.   

Arkin’s potential field methods [6] use attractive and repulsive 
forces to guide a robot – obstacles “emit” repulsive forces, and 
attractive forces lead the robot towards the goal.  A resultant force 
from the combination of the various forces provides the robot 
with its navigation instructions.  This method breaks down when 
there are several obstacles in the field of interest, generating 
points of singularity or null points in the field [7]. 

Choset developed a path planning method based on computing all 
possible geometric center paths in cluttered environments. A tree 
search and pruning technique is then used to trim the all the paths 
down to the feasible ones.  Any location can be optimally moved 
to as long as these paths are followed until the robot get as close 
as possible to the final desired point.  This method combines 
SLAM concepts with computational geometry methods using 
Generalized Voronoi Graphs [8]. 

Stentz has developed a popular method called D* [9] that has 
been used in a number of applications.  D* combines A* search 
with a local re-planner that updates an optimal path based on 
sensor data.  While effective, this means that the robot could be 
spending a good deal of time recalculating optimal paths.  In an 
obstacle rich environment, a more robust, non-optimal solution 
may be more appropriate. 

Analysis of all of the above methods lead use to develop a new 
robot path planning and navigation method that uses Voronoi 
classifiers to provide navigation instructions to a robot or robots. 
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2. ROBOT PATH PLANNING USING 
VORONOI CLASSIFIERS 
2.1 Introduction 
We have previously presented our Voronoi classifier method for 
robot path planning and navigation, and have shown it to have the 
potential to be a more robust and easier to visualize than other 
current methods [10].  The basis for our method is the following 
problem statement: 



Given a playing field ‘F’ with a set of obstacles and a goal region 
‘G’ place a minimal set of ‘navigation classifiers’ that will allow 
any feasible starting location in ‘F’ to terminate at ‘G’ within a 
finite number of steps ‘K’ (see figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1: Playing field ‘F’ with obstacles and goal ‘G’.  
Several Voronoi classifiers are shown. 

The name Voronoi classifier comes from the fact that each 
navigation classifier Ci in figure 1 can be associated with a 
Voronoi region Vi.  A Voronoi diagram [11] may be generated by 
any finite set of points (sites) in a plane.  The partitioning of a 
plane with n sites into n convex polygons such that each polygon 
contains exactly one site and every point in a given polygon is 
closer to its site than to any other site yields a Voronoi diagram 
(see figure 2). 

In the case of our Voronoi classifier navigation method, each site 
in figure 2 would be a classifier providing direction and distance 
to travel instructions to any robot that is requesting instruction 
while in the classifier’s associated Voronoi region. 

2.2 Navigation Example using Voronoi 
Classifiers 
Each Voronoi classifier can be viewed as a dynamic waypoint 
generator – it provides a direction and distance command to any 
robot within its region that is in need of instruction.  This process 
continues until the robot either: 

1) Reaches the goal, 
2) Leaves the playing field, or 
3) Exceeds some maximum limit on distance traveled or 

number of steps taken. 
For example (see figure 3), a robot starting at b0 will request and 
receive its first instruction from C1, which tells it to go to b1.  In 
the case of path b, this process is repeated until the robot reaches 
the goal. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Trajectories on a playing field generated by Voronoi 
Classifiers.  The blue trajectory terminates at the goal.  The 

yellow trajectory leaves the playing field. 

2.3 Optimizing Classifier Placement 
Until now, we have used human placement for positioning the 
classifiers.  This has been done through a software tool we 
developed using a concept called the color map.  Figure 4 shows 
an example of a color map – green indicates areas from which a 
robot will be successfully directed to the goal, red indicates areas 
from which the robot will be directed to leave the playing field, 
and yellow indicates regions that do not lead the robot off the 
field and do not reach the goal within the number of steps 
specified.   
 
 
 
 
 
 
 
 

Figure 4: Example of Color Map, Goal in Center 
 

Figure 2: Example of a Voronoi 
diagram 
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Each colored region on the color map is based on the color for a 
sample point or points contained within that region.  The goal of 
placing classifiers is to make the entire playing field green. 

 

For an empty field, or even a field with few obstacles, it is not too 
difficult for a human to lay out a good set of classifiers.  
However, once the complexity of the playing field starts 
increasing, hundreds of classifiers may be needed to achieve the 
accuracy desired.  This has led us to investigate automated 
methods for placing classifiers and determining classifier 
magnitude and direction parameters.  The rest of this paper 
focuses on our research into the use of a genetic algorithm for 
optimizing classifier placement and magnitude and direction 
parameters. Figure 5b: The right-most classifier of the two that are to the 

upper left of the goal has its y position changed very slightly, 
relative to the playing field size – there is a dramatic increase 

in areas that are not directed to the goal (red + yellow) 
3. CLASSIFIER PLACEMENT USING 
GENETIC ALGORITHM 
3.1 Reason for using a Genetic Algorithm 3.2 Test Environment Setup We identified a genetic algorithm (GA) as a good optimization 
option for several reasons.  These are: For this experiment, we used the test environment shown in figure 

6.  This environment provides a reasonably dense obstacle field, 
and provides a good test for the effectiveness of different GA 
approaches.  This is also an environment for which a human can 
set up classifiers relatively easily, making comparisons possible. 

1) A set of classifiers can be treated as a string of real 
values, where every four values on the string represent 
the x and y position of that classifier, and the magnitude 
and direction of the navigation instruction it provides. The playing field is of size 1000 x 1000, normalized to be size 1.0 

x 1.0.  The goal is the small square just to the right and above of 
center, and has a normalized size of 0.1 x 0.1, or 1% the area of 
the playing field.  

2) We have not identified a solid mathematical expression 
for calculating how many steps a robot will take to get 
to a goal given some set of classifiers and a starting 
position.  Each path is a linear combination of some 
non-negative integer number of each classifier’s vector 
(direction + magnitude instruction), but the problem is 
highly constrained by obstacle and Voronoi region 
restrictions. 

 

3) The fitness landscape is very likely characterized by a 
number of sharp fitness changes over relatively small 
changes in a single parameter.  This is due to the 
discreet nature of taking classifier instructions, as well 
as to the properties of a Voronoi diagram.  Figures 5a 
and 5b demonstrate how a slight change in the y value 
of one classifier can dramatically affect the overall 
fitness of a set of classifiers. 

Figure 6: Test Environment – Goal is circled in red. 

3.3 Strategy 
We have used a standard GA representation as our main 
approach.  Each individual in the population contains a fixed 
number of classifiers, where each classifier is represented by four 
consecutive values (x position on field, y position on field, 
magnitude instruction, direction instruction).   

 

Because it can be difficult to guess the number of classifiers 
needed for any given field, we have also begun investigation into 
using methods that add classifiers to an initially small set of 
classifiers.  The goal of this approach is to let the classifier set get 
built up to the proper size needed without having to make a 
decision on what the correct amount of classifiers is.  The 
methods we have begun to investigate include a complexifying 
method that resembles the NEAT (Neuro-Evolution of 
Augmenting Topologies) methodology for neural networks [12], 
and another method that uniformly adds one classifier to every 
individual in the population after the population has not shown 
significant improvement for some number of generations. 

Figure 5a: Initially, two classifiers to upper left of goal are 
placed very close to each other, and third classifier is placed 
below goal – the playing field is mostly green, indicating a 

good rate of success. 
 



3.4 Fixed Length GA 
For the fixed length GA, each individual in the population was 
given a fixed number of classifiers, with each classifier on the 
individual’s chromosome being a group of four consecutive 
scaled integer fields (x position, y position, magnitude, direction).  
N classifiers were used in each run, where N was varied to test the 
effectiveness of different sized classifier sets.  The advantage of 
using the fixed GA representation is that there are a number of 
software tools and methods available to efficiently perform the 
search, and the population can focus on searching a larger group 
of potential solutions that have the same number of classifiers.  
The downside is that the designer of the GA must choose the 
number of classifiers. 

3.5 Complexifying and Uniform Classifier 
Addition Genetic Algorithms 
We have also begun to investigate using methods for starting from 
a minimal set of classifiers and adding classifiers until a solution 
is reached in order to take the guess work out of the problem.  
There are two methods we are investigating – a complexifying 
method inspired by the NEAT method for evolving neural 
networks [12], and a method that involves uniform addition of a 
new classifier to every population member when the fitness of the 
population stagnates. 
NEAT evolves neural networks by starting with an initial 
population filled with very simple networks, and gradually adding 
new connections and nodes.  It uses speciation to protect newly 
added structure, and to allow new structures to develop without 
competition from less complex, but more optimized networks 
[12].  Similarly, our complexifying GA starts with a minimal set 
of classifiers, and gradually adds new classifiers with some 
probability over the duration of a run.  Kavka[13] also uses a 
similar scheme for evolving a Voronoi-based fuzzy controller.  
Like NEAT, we have also identified the use of speciation, based 
on the number of classifiers, as a way to separate different sized 
classifier sets and to protect innovation. 
The uniform classifier addition (UCA) GA involves starting from 
a minimal set of classifiers and uniformly adding a new random 
classifier to every member of the population when needed.  We 
base the need to add a new classifier on how much improvement 
the population has made over a specified number of generations – 
if the improvement is below some threshold, a new classifier is 
added to all members of the population.  When the settings are 
right, this method becomes very similar to running a fixed length 
GA with different fixed values over and over again. 

4. RESULTS AND OBSERVATIONS 
4.1 Fitness Function Used 
The fitness of each individual in each run is equal to the 
proportion of the color map that is green given a number of 
sample starting points.  This indicates over how much of the 
playing field a given classifier setup is able to successfully guide 
the robot to the goal.  For our experiments, about 1000 sample 
points arranged in a grid were used as starting points for the robot. 

4.2 Results and Observations – Fixed Length 
GA 
We used the following settings for each run of the fixed length 
GA: 

- Two-point crossover, P(crossover) = 0.25 
- Field mutation, P(mutation)  = 1 / (4 * num classifiers) 
- Tournament Selection, tourn. Size = 3 
- Population Size    = 150 
- Number of Classifiers per Individual = 15, 25, 30 
- Number of Fields per Individual  = 60, 100, 120 
- Number of generations   = 400 

Five runs were done for each different number of classifiers – the 
table below shows the average fitness of the best individual after 
200 and 400 generations over all five runs, for each different 
fixed number of classifiers. 
Table 1. Average Fitness of Best Individual after 200 and 400 

Generations, for N = 15, 25, 30 Classifiers, Averaged over Five 
Runs 

Number of 
Classifiers 

(N) 

Fitness of Best 
Individual after 200 

Generations 

Fitness of Best 
Individual after 400 

Generations 

15 0.9172 0.9687 

25 0.9420 0.9797 

30 0.9518 0.9828 

 
The table shows that both 25 and 30 classifier solutions both can 
reach a very good value – about 0.98 each.  Generally, we 
consider 0.95 and above a successful result.  These results also 
indicate the difficulty in choosing a value for N – 15 classifiers 
performs almost as well as 25 and 30, and there is an indication 
that adding more than 30 classifiers could give even better 
performance. 

4.3 Initial Results and Observations – 
Complexifying GA and Uniform Classifier 
Addition GA 
Initial results for the complexifying GA were not as good as 
achieved when choosing a fixed number of classifiers for the 
entire population.  Our initial settings were as follows: 

- P(crossover) = 0.25 
- P(Adding Classifier)  = 0.10 – 0.30 
- P(Deleting Classifier)  = 0.10 – 0.30 
- P(Parameter Mutation)  = 0.01 – 0.10 
- Population Size   = 150 
- Number of Classifiers per Individual  = Variable 
- Number of Fields per Individual = Variable 
- Number of generations  = 400 
- Speciation = Based on number of classifiers 
- Threshold for Species Boundary = +/- (1–5) 



As the setting values show, we have tried a number of different 
settings for the complexifying GA.  Results for a typical run saw 
the maximum fitness topping out at about 0.75, which is 
significantly lower than the performance achieved by the fixed 
length GA.  There were two cases that occurred.  When the 
probability of adding new classifiers was kept low, and species 
were set up to include individuals with a greater variation in 
number of classifiers, premature convergence was prevalent.  
When the species threshold was reduced and the probability of 
adding a classifier was increased, solutions with newly added 
classifiers were able to survive, but classifier bloat began to 
occur.  Possible reasons for each case are discussed in section 5. 
For the uniform classifier addition GA, there are two critical 
settings that must be determined: 

- How much the fitness of the best individual must 
improve in order to avoid having a new classifier added 
to all members of the population AND 

- How many generations the best individual is given to 
make this improvement 

Our initial observations show that when the population is given 
too long to make small improvements, the run will take very long 
even though the maximum fitness has flattened out for some time.  
When too much pressure is put on a population to increase its best 
fitness, new classifiers are added before the population has had a 
chance to optimize its current number of classifiers.  Another 
important observation made during analysis of this method is that 
the initially evolved set of classifiers (from when the population’s 
individuals contained a minimal set of classifiers) at times is not 
even present in later solutions – reasons for this are discussed in 
section 5. 

5. DISCUSSION OF RESULTS 
There are a number of points of interest regarding the results and 
observations from section 4.  The first is the performance of the 
fixed length GA for this problem. 
The fixed length GA comes up with very good solutions – a robot 
will be successfully guided to the goal from 95% or more of the 
starting positions that were sampled (within the desired number of 
steps).  While this is a good value, the most important aspect of 
the GA performance is how it does in comparison to a human.  
The GA runs on a high end laptop in about 15 minutes for 400 
generations – from observation, and experience humans can 
create classifier setups that achieve similar 0.95+ fitness values 
within five minutes.  At some point, the complexity of the playing 
field will very likely make the GA faster at placing a classifier set 
than a human – additional studies are needed to analyze the 
performance of humans and a genetic algorithm on increasingly 
complex playing fields. 
The reasons for the less than desired performance of the 
complexifying and UCA genetic algorithms also present several 
important discussion points.  Potential reasons for the difficulties 
the complexifying and UCA methods have are directly related to 
the properties of the Voronoi diagram associated with the 
classifier set. 
First, there is the concept of equivalent solutions that have 
significantly different classifier locations.  Figure 7a and 7b both 
have the exact same Voronoi diagram and the exact same color 

map, even though the classifiers in 7a are very close to the goal 
and the classifiers in 7b are near the edges of the playing field. 
 

 
Figure 7a: Three Classifiers and Associated Color Map 

 

 
Figure 7b: Three Classifiers at Different Positions, but with 

Same Color Map 
 
There is also the concept of global effect in Voronoi diagrams 
when there are very few sites.  Figure 8a shows a set of classifiers 
used to provide a solution for a simple playing field with a goal in 
the middle of a few small obstacles.  When a new classifier is 
added in figure 8b, it has a significant impact on both the Voronoi 
diagram and color map – this is an effect of there being so few 
classifiers. 
 

 
Figure 8a: Three Classifiers and Associated Color Map 

 



 
Figure 8b: Global Effects of Adding Classifier in Upper Right 
 
Figures 7a, 7b, 8a, and 8b illustrate a critical reason why starting 
with a minimal set of classifiers and gradually adding new 
classifiers tends to perform poorly – the best performer in a 
population with few classifiers per individual may not include 
building blocks that will scale up to individuals with larger 
numbers of classifiers.  This means that all the effort put into 
evolving a population with fewer classifiers may not translate into 
a benefit when more classifiers are added. This occurs in both the 
complexifying genetic algorithm and the UCA genetic algorithm. 
 

 
Figure 9a: Many Classifiers and Associated Color Map 

 

 
Figure 9b: Many Classifiers and Associated Color Map with 

Classifier Added at Left 
 
In contrast to the global effects shown in figures 8a and 8b, there 
is also the concept of effects being limited to a local region of the 
Voronoi diagram when a new Voronoi site is added to a field that 
already contains many sites.  Figure 9a shows a playing field with 
many classifiers, and figure 9b shows the effect of adding a new 
classifier to that field.  Figure 9b shows relatively little change 

from figure 9a, especially when compared to the change that 
occurs between figure 8a and 8b.  This has an important impact 
on the complexifying method when using speciation – at some 
point, adding new classifiers will have very little impact on the 
overall fitness of an individual solution.  This leads to solutions 
becoming overly complex, and makes it much more time 
consuming and difficult for the GA to come up with a solution. 
All of these issues with the observations and results of the various 
genetic algorithm setups leads to some valuable conclusions and 
action items for future work. 

6. CONCLUSIONS AND FUTURE WORK 
We have introduced our Voronoi classifier based method for 
robot navigation, and have demonstrated that a traditional GA 
setup is a feasible method for optimizing the placement of 
classifiers.  We have also proposed alternate GA approaches, and 
demonstrated properties of our problem that have made those 
approaches challenging to implement. 
There are a number of action items that we have identified for 
future work.  Avoiding having to guess the best amount of 
classifiers is not the only reason for allowing the number of 
classifiers per individual to grow – we will in the near future be 
implementing the classifiers as hardware sensors/transmitters.  
This means that a cost will be associated with adding a classifier, 
making this a multi-objective optimization problem where we 
want to maximize the effectiveness of the classifier setup, while 
minimizing the number of classifiers used. 
We are also investigating hybrid GA and non-GA approaches for 
optimizing the number and placement of classifiers.  One thing 
that we have noticed while placing classifiers ourselves is that it is 
a very methodical process.  One typical strategy we use when 
manually placing classifiers is to start by placing classifiers very 
near the goal.  When we add new classifiers, we work backwards 
from the goal, each time making a new portion of the playing 
field green by pointing a newly added classifier towards a region 
that is already green.  For these reasons, we are examining 
methods like dynamic programming and locally greedy heuristic 
measures to supplement or replace the use of a genetic algorithm. 
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