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ABSTRACT
This paper presents a parallel version of RnaPredict, a ge-
netic algorithm (GA) for RNA secondary structure predic-
tion. The research presented here builds on previous work
and examines the impact of three different pseudorandom
number generators (PRNGs) on the GA’s performance. The
three generators tested are the C standard library PRNG
RAND, a parallelized multiplicative congruential generator
(MCG), and a parallelized Mersenne Twister (MT). A fully
parallel version of RnaPredict using the Message Passing
Interface (MPI) was implemented. The PRNG comparison
tests were performed with known structures that are 118,
122, 543, and 556 nucleotides in length. The effects of the
PRNGs are investigated and the predicted structures are
compared to known structures.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
D.1.3 [Programming Techniques]: Parallel programming;
G.3 [Probability and Statistics]: Random number gen-
eration

General Terms
Algorithms, Performance
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Bioinformatics, RNA Secondary Structure Prediction, Par-
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allel Evolutionary Algorithms, Random Number Generators

1. INTRODUCTION
The shape of organic molecules such as RNA and proteins

largely determines their function within an organic system.
These biomolecules are formed from a sequence of nucleic
or amino acids. The final three dimensional structure of a
biomolecule forms when a sequence folds back onto itself.
While physical methods such as Nuclear Magnetic Reso-
nance and X-ray Crystallography may determine a struc-
ture, they are too time-consuming and expensive to be ef-
fective. Thus, a major goal in bioinformatics is to develop
methods for computationally predicting the structure of a
given biomolecule.

RNA is central in several stages of protein synthesis. Het-
erogeneous nuclear RNA (hnRNA) acts as the transcriber
of DNA in eukaryotes. Messenger RNA (mRNA) carries the
coded message to the ribosomes for synthesis. Ribosomal
RNA is a component of ribosomes. Finally, transfer RNA
(tRNA) combines the amino acids. Each of these types of
RNA is synthesized by RNA polymerase [14].

The various algorithms that have been used for RNA
structure prediction include dynamic programming (DP) [20],
comparative methods [1], kinetic folding [31] and EAs [28,
30].

In the case of DP and EAs, structure prediction can be
formulated as an energy minimization problem using ther-
modynamic models. While DP has been shown to accu-
rately predict a structure with minimum energy within a
given thermodynamic model [20], the natural fold has been
shown to vary greatly from the predicted one [9]. How-
ever, van Batenburg et al [28] implemented a simple binary
GA which outperformed the DP algorithm when consider-
ing true positive canonical base pairs in the structure. As
the base pairs ultimately make up the secondary structure,
this development is quite significant. Although other GA
designs have been employed for RNA structure prediction,
such as massively parallel GAs [26] there has been relatively



little application of coarse-grained distributed GAs to this
problem domain.

Coarse-grained distributed GAs [3] offer a number of ad-
vantages beyond the benefits of parallelization. These in-
clude the prevention of premature convergence by maintain-
ing diversity, an increase of the selection pressure within the
entire population, and also reduction of the time to conver-
gence.

The foundation of this research is RnaPredict, a GA for
RNA secondary structure prediction developed by Wiese
and Glen [30] who have proposed to use permutations to
encode RNA secondary structures. Later, Deschênes and
Wiese [5] have shown that RnaPredict, using two stacking
based thermodynamic models, can predict certain RNA sec-
ondary structures with very high accuracy and also outper-
form a dynamic programming algorithm [6]. Our specific
work builds on [11, 10], in which a serial simulation of a dis-
tributed version of RnaPredict was implemented that pre-
dicted the secondary structure of RNA molecules from in-
put RNA sequences. The extension that we present here is
the redevelopment of the serial simulation of the distributed
RnaPredict into a fully parallelized distributed GA based
on the MPI standard to run on a 128 node Beowulf clus-
ter. We shall call this fully parallel version of RnaPredict
P-RnaPredict.

During development of P-RnaPredict, two major issues
arose in regard to PRNGs. First, we discovered that as
the RNA sequences increased in length, there was a propor-
tional and dramatic increase in random number consump-
tion. This dramatic consumption was further increased by
our requirement to conduct 30 independent runs to gather
averaged results. This can cause problems if the period of
the PRNG is exceeded. The second was that the standard
code library PRNG functions available in most development
environments are self-contained and the user can only re-
seed them with a new initial seed. These challenges de-
manded we develop a new parallel PRNG, which in turn led
us to review the impact of PRNGs on stochastic algorithms
including GAs in general, and for parallel GAs in particular.

This paper has the following objectives:

• To investigate the effects of two new PRNGs, a par-
allelized MCG and a parallelized MT on our parallel
GA

• To measure the accuracy of our predicted structures
by comparing them to known structures

First, we describe the thermodynamic models in Section 2.
Section 3 details the GA algorithm and design, while Sec-
tion 4 offers an overview of the impact of PRNGs on GAs.
Section 5 reviews our experiment design and presents the
experimental results. Section 6 offers a discussion of the re-
sults, and finally Section 7 concludes the paper and offers a
brief summary of future work.

2. THERMODYNAMIC MODELS
To date, four thermodynamic models have been imple-

mented in RnaPredict. These include Individual Nearest
Neighbour (INN) [25], Individual Nearest Neighbour - Hy-
drogen Bond (INN-HB) [32], and the models proposed by
Major [17] and Matthews et al. [19].

Extensive testing with the serial GA [5] has shown con-
clusively that in terms of base-pairs found in known struc-
tures the INN and INN-HB stacking-energy thermodynamic

models outperformed the simple Major and Matthews base-
pairing models. Hence, for the experiments presented here,
the thermodynamic model chosen was the INN-HB stacking-
energy model.

2.1 Review of stacking-energy models
The essential idea of stacking-energy models is that the

stabilizing contribution each base pair makes to its helix
depends on that base pairs nearest neighbours. For example,
the free energy contribution of a GC base pair would vary
depending if the adjacent base pair in the helix is either an
AU base pair, or its mirror a UA base pair.

2.1.1 Individual Nearest-Neighbour Hydrogen Bond
Model (INN-HB)

INN-HB is largely based on INN. We will briefly review
INN and INN-HB below. There are two distinct compo-
nents to computing the free energy of a helix using INN.
The first is initiation, or the formation of the first base pair.
Initiation brings the two bases together and entails hydro-
gen bonding. The second component is propagation, or the
continued formation of subsequent base pairs. Propagation
involves nearest-neighbour or stacking interactions as well as
hydrogen bonding. The nearest-neighbour thermodynamic
parameters used in the INN model were initially computed
at 25◦C, but were later re-computed and extended at 37◦C.
Additional details and references on these parameters may
be found in [5].

Later experimentation determined that duplexes with iden-
tical nearest neighbours but varying terminal ends also dif-
fered in their stabilities. Specifically, a duplex with one ad-
ditional terminal GC pair and one less terminal AU pair is
always more stable [32].

This difference is accounted for by a modification of the
INN model, described via the following equation:

∆G◦(duplex) = ∆G◦init +
X

j

nj∆G◦j (NN) +

mterm-AU∆G◦term-AU + ∆G◦sym (1)

This modification is known as INN-HB. Each ∆G◦j (NN)
term accounts for the free energy contribution of the jth
nearest neighbour with nj occurrences in the sequence. The
mterm-AU term is the number of terminal AU pairs, and the
∆G◦term-AU term is the free energy contribution of a termi-
nal AU pair. The only difference from the INN model is the
inclusion of the mterm-AU∆G◦term-AU term to account for the
free energy penalty attributed to terminal AU pairs. Exam-
ples of this computation may be found in [32].

Although the INN-HB model only specifies a penalty for
terminal AU pairs, we give terminal GU pairs the same
penalty as suggested by Mathews et al in [19].

The INN-HB model as presented here is unable to account
for higher-order structures such as loops, junctions, bulges
and pseudoknots. A detailed review of the thermodynamic
models employed in RnaPredict can be found in [5].

3. ALGORITHMS
In our model, RNA secondary structure forms as a con-

sequence of chemical (hydrogen) bonds that form between
specific pairs of nucleotides, i.e. GC, AU, and GU, and
their mirrors which are collectively known as the canonical
base pairs. Searching a sequence of nucleotides for all pos-



sible base pairs is rapid and straightforward; the challenge
comes from attempting to predict which specific canonical
base pairs will form bonds in the real structure. Different
structural elements will manifest themselves in the result-
ing secondary structure depending on which base pairs form
bonds. These include hairpin loops which contain one base
pair, internal loops which contain two base pairs, and bulges
which contain 2 base pairs with 1 base from each of its pairs
adjacent in the backbone of the molecule. There are also
multi-branched loops, which contain more than two base
pairs, and external bases which are not contained in any
loop. Stacked pairs, which form helices, provide stability in
the secondary structure. A set of stacked pairs is formed by
two or more base pairs, such that the ends of the pairs are
adjacent, forming a ladder type structure.

In our model, a helix is specified by two constraints. First,
each helix must have at least three stacked base pairs. Sec-
ond, the sequence or loop connecting the two strands must
be at least 3 nucleotides long. With this in mind, our objec-
tive is to generate the set of all possible helices under these
constraints. This is accomplished by first finding all valid
base pairs under our model within the given RNA sequence.
Next, the algorithm iterates through each base pair and at-
tempts to build a helix by stacking valid base pairs on it. If
the resulting helix meets or exceeds the above requirements,
it is added to the set H of possible helices. With this for-
mulation for structure generation, the structure prediction
problem becomes a combinatorial optimization problem of
picking x helices from H to make the final structure.

The fitness metric employed to guide RnaPredict through
this search space is energy minimization. As an RNA molecule
will fold into a structure with near minimal free energy [19],
RnaPredict attempts to find the combination of helices that
result in the lowest energy possible. The energy function
used in this implementation takes into account the stacking
energies in the helices according to INN-HB.

The final solution to the secondary structure prediction
problem is a subset of all possible helices that contains only
the helices composing the final structure. It is key that only
chemically feasible structures are predicted; thus each helix
in the subset must be mutually exclusive, (i.e., must not
share nucleotides with any other helix in the subset.)

When a given GA is ”parallelized,” there are a number
of different models for implementation which largely involve
how the existing single panmictic population is distributed
amongst different processors. In this case, our GA employed
a coarse-grained distributed model [3]. Briefly, the term
coarse-grained refers to a high ratio of time spent in compu-
tation versus the time spent in communication. The essence
of this distributed GA is the separation of the initial, pan-
mictic population into segregated subpopulations which are
also known as demes. These isolated demes behave essen-
tially like miniature serial GAs, and will exchange individ-
uals with each other on an intermittent basis.

The distributed RnaPredict should improve performance
through preserving diversity in the population through mul-
tiple demes, while increasing the selection pressure through
periodic migration [11]. The parallel implementation(P-
RnaPredict) will offer a speedup as each deme in the dis-
tributed GA will be distributed to its own processor.

4. RANDOM NUMBER GENERATION
Random numbers are useful in many applications and we

rely on them extensively in our model. They can be used
in simulations, sampling, numerical analysis, decision mak-
ing, and recreation. An algorithm that employs random
numbers is given the name Monte Carlo method, in honour
of the European resort town in Monaco, to which random
processes are so important. It was first suggested by Stan
Ulam in 1946 for modeling various neutron transport prob-
lems. Other early pioneers include Enrico Fermi and John
von Neumann. In our parallel GA, random numbers are used
to make coarse-grained decisions in the following functions:

1. Initialization of the random population

2. Determining if crossover occurs

3. Random selection of parents

4. Performance of crossover

5. Determining if mutation occurs on each child

6. Performance of mutation

7. Determining the random order of nodes for migration

Although there appears to be very little in the literature
regarding parallel GAs and PRNGs, several studies have
been done on how serial GA performance is impacted by
PRNGs. These are discussed below.

4.1 PRNGs and Serial GAs
In 1997 [21], Meysenberg performed a thorough empirical

study on the effect twelve PRNGs of varying quality had on
a simple GA using an eleven function real-value test suite.
He found that PRNGs did not significantly impact this GA’s
performance. In a later study, Meysenberg and Foster [22]
discovered isolated cases where poor PRNG quality resulted
in slightly improved GA performance. Again, better PRNG
quality failed to provide better GA performance.

In 1999, Meysenberg and Foster pursued what they re-
ferred to as their granularity hypothesis [23]. In essence, a
simple GA only requires a PRNG to make choices between
several options; this requires only that the PRNG produce
a uniform distribution. Since even a poor quality PRNG
can accomplish this, its quality should not significantly im-
pact GA performance. Their conclusions were that PRNG
quality had no statistically significant effect on GA perfor-
mance. However, this study was conducted on a generation
by generation basis, and it revealed that in GA performance
could vary depending on the PRNG and test function cho-
sen. The end result was that good PRNGs could actually
result in poorer GA performance, and poor PRNGs could
result in slightly better GA performance in isolated cases.

In 2002, Cantù-Paz performed an ”ablation” study [4]
where the individual GA components of initialization, selec-
tion, crossover and mutation were separately tested. Both
PRNGs and true random sources were tested. The results
indicated that the PRNG used to initialize the random pop-
ulation are critical, whilst the other components were rela-
tively unaffected. His conclusions were that the best PRNG
available should be used to avoid misinterpretation of the
results due to fortunate accidents.

With a basic notion of how PRNGS could impact GAs,
the next step was determining the appropriate method for
parallelizing the PRNG for our distributed GA.



4.2 Methods for Parallelization of PRNGs
There are four common methods of designing parallel ran-

dom number generators [27], central server, cycle division,
cycle splitting, and parameterization.

The central server method establishes one process as a
central random number server for all other processes in the
parallel application. The immediate problem is the tremen-
dous inter-process communications overhead, as each pro-
cess must have exclusive access during its request to avoid
conflicts. Another problem is that reproducibility becomes
impossible to assure, as processes may make requests in dif-
ferent orders due to network traffic and the application im-
plementation.

In cycle division, the period of a serial PRNG is subdi-
vided amongst processors in one of three basic ways: näıve
seed selection, cycle splitting and ”leap frog”. In näıve seed
selection, the user randomly chooses a different seed for each
processor. The näıve hope here is that the portions of the
PRNG period that each processor consumes are widely sep-
arated and do not overlap. Another method, cycle splitting,
involves the user carefully selecting the seeds to ensure they
are widely separated. In this way, a contiguous block of ran-
dom numbers from the serial PRNG can be assigned to each
processor. However, if the processors consume too many
random numbers, the period portions could again overlap.
Finally, there is the leap frog method. When given N pro-
cessors, each processor gets numbers from the serial PRNG
period which are N numbers apart. Here, the hazard is that
long range correlations in the serial PRNG become short-
range correlations within each stream.

The problem with all these methods is that the resulting
PRNG is non-scalable; each additional processor takes an
equal share of the finite period of the original serial PRNG.
Also, reproducibility becomes an issue as each additional
processor results in a different serial PRNG period partition
for all processors.

The parameterization method by contrast promises to pro-
vide independent and uncorrelated random number streams
for each processor. There are two basic methods of parame-
terization [18]: seed parameterization and iterative function
parameterization. Seed parameterization works on specific
PRNGs for which each initial random seed automatically se-
lects a smaller, separate and independent period. A unique
seed is assigned to each processor, ensuring each processor
gets a unique period. The second method, iterative func-
tion parameterization, creates multiple independent random
number streams by generating a different PRNG iteration
function for each processor. The idea is that given a number
i, the PRNG would generate a unique ith iteration function.

At the time of this writing, the best parallel PRNG avail-
able appears to be the parallel MT, named ”Dynamic Cre-
ation” (DC) [16]. DC implements iterative function parame-
terization, accepting a number of parameters including word
size, period, working memory and ID number. A small MT
is then produced based on the submitted parameters. The
key idea here is that the characteristic polynomial of the
MT’s linear recurrence encodes the specified ID number, en-
suring a unique and highly independent PRNG for each ID.

4.3 PRNG Requirements of the Parallel GA
To date there appears to be little discussion in the litera-

ture on parallel GAs in regards to PRNGs. In our research
PRNGs became significant for a number of reasons. First,

to gain an unbiased idea of the performance of P-RnaPredict
we average our results over 30 randomly seeded runs. This
implicitly assumes that the random numbers generated for
each run are independent of each other. Second, the GA’s
consumption of random numbers has been rapidly increas-
ing as we perform structure prediction on longer RNA se-
quences. This has reached a point where the period of the
PRNGs available in the standard C library are no longer
adequate. Third, the parallelization of the initial serial GA
required a corresponding parallelization of whatever PRNG
we used.

Cantù-Paz’s ablation study underscores the importance
of independent PRNG during population initialization. An
especially hazardous scenario occurs when parallel PRNG
methods such as näıve seed selection or cycle splitting are
used in a distributed GA. Consider an example of a dis-
tributed GA with two demes where the initial subpopula-
tions are being generated. If each random chromosome in
the initial population requires n random numbers, then the
total amount of random numbers required to initialize each
subpopulation is nm, where m is the population size. With
a PRNG with a period of length p, each deme requires a sec-
tion of that period of length nm to generate its initial pop-
ulation. The worst case scenario is if these sections overlap
such that one section offsets the other by a multiple of the
chromosome length n. Should this occur, identical chromo-
somes will be generated in the demes, greatly reducing the
diversity within the parallel GA and resulting in diminished
performance. This problem worsens with an increase in the
number of demes.

Based on these observations, two parallel PRNGs were
selected for evaluation in the parallel GA implementation.
The first was the DC PRNG described above. The second
was a parallelized version of a MCG [13]. The MCG’s pa-
rameters were m=231-1, c=0, and a=6208991 as suggested
by [7]. This MCG was parallelized by the leap-frog method
suggested by [8], and was deliberately chosen to have a lower
quality and shorter period than the DC.

Aside from the parallel PRNGs, we also elected to check
our results against the original serial GA, which used the
standard C library PRNG RAND [15]. With these three
PRNGs providing a spectrum of relative quality and period
length, we were able to determine the impact of PRNGs on
our GA.

5. METHOD
For this set of experiments, the population was subdivided

into demes, and each deme was assigned to a single proces-
sor. The pseudocode for the distributed GA model is as
follows:

Initialize random population
Evaluate fitness of individuals
For all NUM GENERATIONS

For all DEME COUNT
For all DEME SIZE

Reproduce by crossover in deme
Mutate
Employ replacement (STDS or KBR)
Apply Elitism

If MIGRATION INTERVAL, migrate

Given the enourmous number of possible parameter com-
binations, the selection of parameter sets for these experi-



Table 1: Organism Sequence Details
Base Pairs

Organism Length (nt) in Known Structure
A. griffini 556 131
H. rubra 543 138

H. marismortui 122 38
S. cerevisiae 118 37

ments was based on previously published experimental re-
sults [11, 29]. The parameters specifically relating to the se-
rial GA were chosen based on those which produced the best
set of results in [29], and were set as follows: The global pop-
ulation was set to 700, with the crossover probability (Pc)
set to 0.7. The mutation probability (Pm) varied as either
0.25 or 0.8. Our prior experiments showed that the standard
roulette wheel selection (STDS) worked well in this domain,
so all runs presented here use STDS. Similarly, 1-Elitism [12]
was also applied in all experiments. We selected the INN-HB
thermodynamic model and the CX [24] crossover.

The parameters specifically relating to the distributed GA
were chosen based on those which produced the best set of
results in [11], and were set as follows: the global popula-
tion was split into two separate sets of deme sizes and deme
counts: 50 and 14, and 70 and 10 respectively. The migra-
tion interval were fixed at 20 generations, and the migration
rate was fixed at 10 percent. Finally, the topology was fully
connected, and the migration policy was set to ”best replace
worst.” Each parameter set was repeated with 30 random
seeds and the results averaged.

Four RNA sequences were taken as test data from the
Comparative RNA Web Site [2]; they were chosen to provide
a good variety of sequence lengths and a variety of organ-
isms. Each sequence chosen had a known structure avail-
able for comparison, determined by comparative methods.
The three sequences used were a 556 nucleotide (nt) Acan-
thamoeba griffini sequence, a 543 nt Hildenbrandia rubra
sequence, a 118 nt Saccharomyces cerevisiae sequence, and
a 122 nt Haloarcula marismortui sequence; their relevant
statistics are summarized in Table 1.

Each set of parameters was tested with one of the three
PRNGs. The first two were the DC and MCG generators
detailed above. The third test was performed using the se-
rial implementation of the distributed GA, which employed
the GNU C standard library PRNG RAND. All runs were
done on a 128 node Beowulf cluster which supports MPI.
This permitted us to perform runs with up to 128 demes in
parallel, drastically reducing the time to run the experiment.

The following sections present a summary of results for
each RNA sequence. Parameters which do not vary be-
tween test runs have been omitted for brevity. “Deme Size”
indicates the population of an individual deme. “Pm” indi-
cates the probability of mutation. “Deme Count” indicates
the number of demes used. “PRNG” indicates the type of
PRNG used. “Avg. Fitness” is the free energy measured
in kcal/mol, averaged over 30 randomly seeded runs. “Avg.
Base Pair %” is the percent of base pairs which match the
predicted structure, averaged over 30 randomly seeded runs.
Finally, “Best Base Pair %” is the percentage of matching
base pairs from the run with the highest percentage out of
the 30 randomly seeded runs for that specified parameter
set. Each table is sorted by Deme Size, Pm and Avg. Fit-

ness in order to group the results by parameter set. This
is done to clearly delineate the performance differences be-
tween the three PRNGs, in terms of the average final free
energy reached.

5.1 Acanthamoeba griffini - 556 nt
Table 2 indicates that the MCG PRNG performed best in

two of the parameter sets based on average free energy, with
the DC and RAND PRNGs performing best in one param-
eter set each. Overall, the MCG PRNG reached the best
average free energy at -190.79 kcal/mol with the following
parameters: a Deme Size of 70, a Deme Count of 10, and a
Pm of 0.8. Averaged over 30 runs, the DC PRNG found the
highest percentage of base pairs matching the known struc-
ture at 32.34%. The best overall structure was found with
64.88% matching base pairs with the following parameters:
a MCG PRNG, a Deme Size of 70, a Deme Count of 10, and
a Pm of 0.8.

Table 2: Parallel GA results using three different
PRNGs on the A. griffini sequence

Avg. Best
Base Base

Deme Deme Avg. Pair Pair
Size Pm Count PRNG Fitness % %
70 0.25 10 DC -187.58 28.39 58.77
70 0.25 10 MCG -187.29 30.35 56.48
70 0.25 10 RAND -186.35 27.04 46.56

70 0.8 10 MCG -190.79 29.79 64.88
70 0.8 10 DC -189.35 29.26 60.30
70 0.8 10 RAND -187.8 28.39 60.30

50 0.25 14 RAND -186.51 26.89 52.67
50 0.25 14 DC -184.74 32.34 58.01
50 0.25 14 MCG -184.43 28.04 48.09

50 0.8 14 MCG -188.85 31.67 54.96
50 0.8 14 DC -188.29 26.92 48.85
50 0.8 14 RAND -185.27 27.17 47.32

5.2 Hildenbrandia rubra - 543 nt
In Table 3 we see that based on average free energy the

DC PRNG performed best in two of the parameter sets,
with the MCG and RAND PRNGs performing best in one
parameter set each. Overall, the MCG PRNG reached the
best average free energy at -207.08 kcal/mol with the fol-
lowing parameters: a Deme Size of 50, a Deme Count of
14, and a Pm of 0.8. The overall best structures matched
48.55% of the base pairs in the known structure, and were
found in single runs from the following two parameter sets:
the first was a MCG PRNG, Deme Size of 50, Deme Count
of 14, and Pm of 0.8. The second was a RAND PRNG, with
a Deme Size of 70, a Deme Count of 10, and a Pm of 0.25.
Finally, the highest percentage of matching base pairs aver-
aged over the 30 runs was 29.66%, and it occurred in a run
set with the following parameters: a MCG PRNG, a Deme
Size of 70, a Deme Count of 10, and a Pm of 0.8.

5.3 Haloarcula marismortui - 122 nt
In Table 4 we can see that based on average free energy

the DC and RAND PRNG tied for best performance in three



Table 3: Parallel GA results using three different
PRNGs on the H. rubra sequence

Avg. Best
Base Base

Deme Deme Avg. Pair Pair
Size Pm Count PRNG Fitness % %
70 0.25 10 DC -200.61 25.09 41.30
70 0.25 10 RAND -199.65 24.32 48.55
70 0.25 10 MCG -198.76 24.44 40.57

70 0.8 10 DC -204.17 26.28 47.82
70 0.8 10 RAND -203.66 27.58 46.37
70 0.8 10 MCG -203.14 29.66 44.92

50 0.25 14 RAND -200.64 27.19 44.20
50 0.25 14 DC -199.05 24.42 41.30
50 0.25 14 MCG -198.83 26.81 41.30

50 0.8 14 MCG -207.08 27.75 48.55
50 0.8 14 RAND -202.93 26.64 45.65
50 0.8 14 DC -199.23 22.89 38.40

out of the four parameter sets, with the RAND PRNG per-
forming best in the fourth parameter set. Overall, the DC
and RAND PRNGs both reached the best average free en-
ergy at -54.94 kcal/mol with the following identical param-
eters: a Deme Size of 70, a Deme Count of 10, and a Pm

of 0.8. However, the DC PRNG edged out the RAND with
the best Averaged Base Pair Percentage of 42.10%. For
this sequence, the overall best structure was found match-
ing 71.05% of base pairs in the known structure with the
following parameter set: a MCG PRNG, a Deme Size of 70,
a Deme Count of 10, and a Pm of 0.25.

Table 4: Parallel GA results using three different
PRNGs on the H. marismortui sequence

Avg. Best
Base Base

Deme Deme Avg. Pair Pair
Size Pm Count PRNG Fitness % %
70 0.25 10 RAND -54.93 38.59 42.10
70 0.25 10 DC -54.93 39.47 42.10
70 0.25 10 MCG -54.88 39.56 71.05

70 0.8 10 RAND -54.94 41.22 42.10
70 0.8 10 DC -54.94 42.10 42.10
70 0.8 10 MCG -54.93 39.47 42.10

50 0.25 14 RAND -54.92 37.71 42.10
50 0.25 14 DC -54.92 36.84 42.10
50 0.25 14 MCG -54.91 35.08 42.10

50 0.8 14 RAND -54.93 40.35 42.10
50 0.8 14 MCG -54.92 35.96 42.10
50 0.8 14 DC -54.92 37.71 42.10

5.4 Saccharomyces cerevisiae - 118 nt
The results in Table 5 indicate that all runs for the Sac-

charomyces cerevisiae RNA sequence converged to identical
free energy values and secondary structures, regardless of
parameter settings or the chosen PRNG. The prediction ac-
curacy was very high.

Table 5: Parallel GA results using three different
PRNGs on the S. cerevisiae sequence

Avg. Best
Base Base

Deme Deme Avg. Pair Pair
Size Pm Count PRNG Fitness % %
70 0.25 10 MCG -57.52 89.18 89.18
70 0.25 10 DC -57.52 89.18 89.18
70 0.25 10 RAND -57.52 89.18 89.18

70 0.8 10 MCG -57.52 89.18 89.18
70 0.8 10 DC -57.52 89.18 89.18
70 0.8 10 RAND -57.52 89.18 89.18

50 0.25 14 MCG -57.52 89.18 89.18
50 0.25 14 DC -57.52 89.18 89.18
50 0.25 14 RAND -57.52 89.18 89.18

50 0.8 14 MCG -57.52 89.18 89.18
50 0.8 14 DC -57.52 89.18 89.18
50 0.8 14 RAND -57.52 89.18 89.18

6. DISCUSSION
After reviewing the results from the four sequences, it

appears that the parallel implementation of the distributed
GA (P-RnaPredict) performs comparably to the original se-
rial version (RnaPredict). It is interesting to note that the
differences in performance between the two parallel PRNGs
and the original serial GA PRNG do not appear to be sig-
nificant. This reinforces the findings of the previous serial
GA studies discussed in Section 4.

Although we employ average matching base pairs to known
structures as one of the ranking criteria for the experiment
runs, it is important to note that the only value the GAs
are designed to optimize is free energy. With free energy
as the only applicable comparison between the algorithms,
the results indicate both the serial and parallel GAs offer
relatively similar performance.

One final area of interest is in the highest matching base
pair count. It is important to note that there is no perfect
correlation between the lowest free energy value in our mod-
els and the highest matching base pair count. Consequently,
without having a known structure in advance it would be im-
possible to determine which particular run would have the
highest count of base pair matches. This is a general limi-
tation from which all structure prediction algorithms based
on free energy models suffer.

6.1 Secondary Structure Comparison
For the S. cerevisiae sequence, the highest number of cor-

rectly predicted base pairs P-RnaPredict found was 33 out
of 37, or 89.18%. Figure 1 shows a comparison between the
known secondary structure for the Saccharomyces cerevisiae
sequence, and the secondary structure predicted by the par-
allel GA. Light grey bonds indicate base pairs in the known
structure not predicted by the GA. Dark grey bonds indi-
cate base pairs predicted by the GA but not present in the
known structure. Black bonds indicate base pairs present
both in the known and predicted structure.

It is interesting to note that current thermodynamic mod-
els do not account for non-canonical base pairs. However,
they do exist in naturally occurring structures including S.



Figure 1: The above image shows a comparison be-
tween the known and predicted secondary struc-
tures for the Saccharomyces cerevisiae RNA se-
quence. Dark grey lines indicate predicted base
pairs, light grey indicate base pairs in the known
structure, and the black lines indicate the overlap
between predicted and known base pairs. In this
case, the parallel GA was able to predict 89.2% of
the known base pairs.

cerevisiae. Note the two CU pairs in the structure in Figure
1. These could not have been predicted with the current
thermodynamic models. This is why P-RnaPredict has pre-
dicted a different helix than what is occurring naturally (see
the slight shift of the helix in the figure). Within the limits
of the underlying model, P-RnaPredict has found all correct
base pairs it could possibly find. H.marismortui has simi-
lar length as S.cerevisiae, however, it contains many more
non-canonical base pairs. This explains why the prediction
accuracy is much lower in this case than for S.cerevisiae.

For longer sequences, the prediction accuracy drops which
can be attributed largely to limitations of the thermody-
namic model which is not able to model global interactions
as the structures grow larger.

While clearly the choice of PRNG has an impact on the
overall results, individual differences between them can vary.
There is no clear difference between DC and MCG to be
observed from the current data set, however, RAND seems
to display the worst performance consistently.

7. CONCLUSIONS
We have presented P-RnaPredict, a parallel GA for RNA

secondary structure prediction based on the serial RnaPre-
dict. The importance of PRNGs in parallel GAs has been
discussed and methods for PRNG parallelization have been
reviewed. The impact of two distinct parallel PRNGs on the
performance of P-RnaPredict has been investigated. The
results from four sequences of 118, 122, 543, and 556 nt in-
dicate that PRNG quality does not have a significant effect
on GA performance, which is in keeping with the previous
research on serial GAs and PRNGs reviewed in Section 4.
However, the serial version of RAND consistently underper-
formed and it cannot easily be parallelized.

Overall, prediction accuracy is good, particularly so for
shorter sequences, however, non-canonical base pairs in nat-
urally occurring structures cannot be modelled with current
thermodynamic models.

In future work we will test both a broader set of parame-
ters and a greater number of organisms to further evaluate
P-RnaPredict. The speedup factor of the parallel GA will

also be investigated. In addition, we plan to compare the
quality of structures predicted by P-RnaPredict with other
algorithms including the Nussinov DP and mfold.
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